1
|
Neuman K, Zhang X, Lejeune BT, Pizzarella D, Vázquez M, Lewis LH, Koppes AN, Koppes RA. Static Magnetic Stimulation and Magnetic Microwires Synergistically Enhance and Guide Neurite Outgrowth. Adv Healthc Mater 2025; 14:e2403956. [PMID: 39568232 PMCID: PMC11773108 DOI: 10.1002/adhm.202403956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 11/22/2024]
Abstract
Axonal growth is heavily influenced by topography and biophysical stimuli including magnetic and electrical fields. Despite extensive investigation, the degree of influence and the underlying genetic mechanisms remain poorly understood. Here, a novel approach to guide neurite growth is undertaken using an innovative ferromagnetic composite material - glass-coated magnetic microwire - to furnish a synergistic combination of magnetic and topographical cues. Whole rat dorsal root ganglia (DRG) are cultured under five different conditions: control, static magnetic field, magnetic microwire, static magnetic field + glass fiber, and static magnetic field + magnetic microwire. DRG outgrowth responses under each condition, including total neurite outgrowth and directionality, are compared. The combination of both magnetic stimulation and topography significantly increases total neurite outgrowth compared to the controls. The combination of magnetic stimulation and magnetic microwire lead to a strong directional bias of growth along the microwire, double what is observed with the glass fiber. Next generation RNA sequencing of DRG exposed to static magnetic field + magnetic microwire reveals the downregulation of genes relating to the immune response, interleukin signaling, and signal transduction. These results set the stage for contemplating future biophysical stimulation for axonal guidance and improved understanding of material-tissue interactions.
Collapse
Affiliation(s)
- Katelyn Neuman
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | - Xiaoyu Zhang
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Brian. T. Lejeune
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| | | | - Manuel Vázquez
- Instituto de Ciencia de Materiales de MadridCSICMadrid28049Spain
| | - Laura H. Lewis
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Abigail N. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
- Dept. of BioengineeringNortheastern UniversityBostonMA02115USA
- Dept. of BiologyNortheastern UniversityBostonMA02115USA
| | - Ryan A. Koppes
- Dept. of Chemical EngineeringNortheastern UniversityBostonMA02115USA
| |
Collapse
|
2
|
Park R, Kang MS, Heo G, Shin YC, Han DW, Hong SW. Regulated Behavior in Living Cells with Highly Aligned Configurations on Nanowrinkled Graphene Oxide Substrates: Deep Learning Based on Interplay of Cellular Contact Guidance. ACS NANO 2024; 18:1325-1344. [PMID: 38099607 DOI: 10.1021/acsnano.2c09815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Micro-/nanotopographical cues have emerged as a practical and promising strategy for controlling cell fate and reprogramming, which play a key role as biophysical regulators in diverse cellular processes and behaviors. Extracellular biophysical factors can trigger intracellular physiological signaling via mechanotransduction and promote cellular responses such as cell adhesion, migration, proliferation, gene/protein expression, and differentiation. Here, we engineered a highly ordered nanowrinkled graphene oxide (GO) surface via the mechanical deformation of an ultrathin GO film on an elastomeric substrate to observe specific cellular responses based on surface-mediated topographical cues. The ultrathin GO film on the uniaxially prestrained elastomeric substrate through self-assembly and subsequent compressive force produced GO nanowrinkles with periodic amplitude. To examine the acute cellular behaviors on the GO-based cell interface with nanostructured arrays of wrinkles, we cultured L929 fibroblasts and HT22 hippocampal neuronal cells. As a result, our developed cell-culture substrate obviously provided a directional guidance effect. In addition, based on the observed results, we adapted a deep learning (DL)-based data processing technique to precisely interpret the cell behaviors on the nanowrinkled GO surfaces. According to the learning/transfer learning protocol of the DL network, we detected cell boundaries, elongation, and orientation and quantitatively evaluated cell velocity, traveling distance, displacement, and orientation. The presented experimental results have intriguing implications such that the nanotopographical microenvironment could engineer the living cells' morphological polarization to assemble them into useful tissue chips consisting of multiple cell types.
Collapse
Affiliation(s)
- Rowoon Park
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gyeonghwa Heo
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yong Cheol Shin
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Ohio 44195, United States
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- Engineering Research Center for Color-Modulated Extra-Sensory Perception Technology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
3
|
Li MC, Chang PY, Luo HR, Chang LY, Lin CY, Yang CY, Lee OKS, Wu Lee YH, Tarng DC. Functioning tailor-made 3D-printed vascular graft for hemodialysis. J Vasc Access 2024; 25:244-253. [PMID: 35773975 DOI: 10.1177/11297298221086173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The two ends of arteriovenous graft (AVG) are anastomosed to the upper limb vessels by surgery for hemodialysis therapy. However, the size of upper limb vessels varies to a large extent among different individuals. METHODS According to the shape and size of neck vessels quantified from the preoperative computed tomography angiographic scan, the ethylene-vinyl acetate (EVA)-based AVG was produced in H-shape by the three-dimensional (3D) printer and then sterilized. This study investigated the function of this novel 3D-printed AVG in vitro and in vivo. RESULTS This 3D-printed AVG can be implanted in the rabbit's common carotid artery and common jugular vein with ease and functions in vivo. The surgical procedure was quick, and no suture was required. The blood loss was minimal, and no hematoma was noted at least 1 week after the surgery. The blood flow velocity within the implanted AVG was 14.9 ± 3.7 cm/s. Additionally, the in vitro characterization experiments demonstrated that this EVA-based biomaterial is biocompatible and possesses a superior recovery property than ePTFE after hemodialysis needle cannulation. CONCLUSIONS Through the 3D printing technology, the EVA-based AVG can be tailor-made to fit the specific vessel size. This kind of 3D-printed AVG is functioning in vivo, and our results realize personalized vascular implants. Further large-animal studies are warranted to examine the long-term patency.
Collapse
Affiliation(s)
- Ming-Chia Li
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
| | - Pu-Yuan Chang
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
| | - Huai-Rou Luo
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
| | - Ling-Yuan Chang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
| | - Chuan-Yi Lin
- Taiwan Instrument Research Center, National Applied Research Laboratories, Hsinchu
| | - Chih-Yu Yang
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Division of Clinical Toxicology and Occupational Medicine, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
| | - Oscar Kuang-Sheng Lee
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei
- Department of Orthopedic Surgery, China Medical University Hospital, Taichung
| | - Yan-Hwa Wu Lee
- Department of Biological Science and Technology, College of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
| | - Der-Cherng Tarng
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), Hsinchu
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei
| |
Collapse
|
4
|
Mungenast L, Nieminen R, Gaiser C, Faia-Torres AB, Rühe J, Suter-Dick L. Electrospun decellularized extracellular matrix scaffolds promote the regeneration of injured neurons. BIOMATERIALS AND BIOSYSTEMS 2023; 11:100081. [PMID: 37427248 PMCID: PMC10329103 DOI: 10.1016/j.bbiosy.2023.100081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/23/2023] [Accepted: 06/17/2023] [Indexed: 07/11/2023] Open
Abstract
Traumatic injury to the spinal cord (SCI) causes the transection of neurons, formation of a lesion cavity, and remodeling of the microenvironment by excessive extracellular matrix (ECM) deposition and scar formation leading to a regeneration-prohibiting environment. Electrospun fiber scaffolds have been shown to simulate the ECM and increase neural alignment and neurite outgrowth contributing to a growth-permissive matrix. In this work, electrospun ECM-like fibers providing biochemical and topological cues are implemented into a scaffold to represent an oriented biomaterial suitable for the alignment and migration of neural cells in order to improve spinal cord regeneration. The successfully decellularized spinal cord ECM (dECM), with no visible cell nuclei and dsDNA content < 50 ng/mg tissue, showed preserved ECM components, such as glycosaminoglycans and collagens. Serving as the biomaterial for 3D printer-assisted electrospinning, highly aligned and randomly distributed dECM fiber scaffolds (< 1 µm fiber diameter) were fabricated. The scaffolds were cytocompatible and supported the viability of a human neural cell line (SH-SY5Y) for 14 days. Cells were selectively differentiated into neurons, as confirmed by immunolabeling of specific cell markers (ChAT, Tubulin ß), and followed the orientation given by the dECM scaffolds. After generating a lesion site on the cell-scaffold model, cell migration was observed and compared to reference poly-ε-caprolactone fiber scaffolds. The aligned dECM fiber scaffold promoted the fastest and most efficient lesion closure, indicating superior cell guiding capabilities of dECM-based scaffolds. The strategy of combining decellularized tissues with controlled deposition of fibers to optimize biochemical and topographical cues opens the way for clinically relevant central nervous system scaffolding solutions.
Collapse
Affiliation(s)
- Lena Mungenast
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Ronya Nieminen
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Carine Gaiser
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Ana Bela Faia-Torres
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
| | - Jürgen Rühe
- Department of Microsystems Engineering, IMTEK, University of Freiburg, Freiburg 79110, Germany
| | - Laura Suter-Dick
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, Muttenz 4132, Switzerland
- SCAHT: Swiss Centre for Applied Human Toxicology, Missionsstrasse 64, Basel 4055, Switzerland
| |
Collapse
|
5
|
Hu Y, Zhang H, Wei H, Cheng H, Cai J, Chen X, Xia L, Wang H, Chai R. Scaffolds with Anisotropic Structure for Neural Tissue Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
6
|
Carthew J, Taylor JBJ, Garcia-Cruz MR, Kiaie N, Voelcker NH, Cadarso VJ, Frith JE. The Bumpy Road to Stem Cell Therapies: Rational Design of Surface Topographies to Dictate Stem Cell Mechanotransduction and Fate. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23066-23101. [PMID: 35192344 DOI: 10.1021/acsami.1c22109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cells sense and respond to a variety of physical cues from their surrounding microenvironment, and these are interpreted through mechanotransductive processes to inform their behavior. These mechanisms have particular relevance to stem cells, where control of stem cell proliferation, potency, and differentiation is key to their successful application in regenerative medicine. It is increasingly recognized that surface micro- and nanotopographies influence stem cell behavior and may represent a powerful tool with which to direct the morphology and fate of stem cells. Current progress toward this goal has been driven by combined advances in fabrication technologies and cell biology. Here, the capacity to generate precisely defined micro- and nanoscale topographies has facilitated the studies that provide knowledge of the mechanotransducive processes that govern the cellular response as well as knowledge of the specific features that can drive cells toward a defined differentiation outcome. However, the path forward is not fully defined, and the "bumpy road" that lays ahead must be crossed before the full potential of these approaches can be fully exploited. This review focuses on the challenges and opportunities in applying micro- and nanotopographies to dictate stem cell fate for regenerative medicine. Here, key techniques used to produce topographic features are reviewed, such as photolithography, block copolymer lithography, electron beam lithography, nanoimprint lithography, soft lithography, scanning probe lithography, colloidal lithography, electrospinning, and surface roughening, alongside their advantages and disadvantages. The biological impacts of surface topographies are then discussed, including the current understanding of the mechanotransductive mechanisms by which these cues are interpreted by the cells, as well as the specific effects of surface topographies on cell differentiation and fate. Finally, considerations in translating these technologies and their future prospects are evaluated.
Collapse
Affiliation(s)
- James Carthew
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jason B J Taylor
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Maria R Garcia-Cruz
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nasim Kiaie
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Victor J Cadarso
- Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia
- Centre to Impact Antimicrobial Resistance, Monash University, Clayton, Victoria 3800, Australia
| | - Jessica E Frith
- Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Victoria 3800, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Recent Developments in Surface Topography-Modulated Neurogenesis. BIOCHIP JOURNAL 2021. [DOI: 10.1007/s13206-021-00040-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Xue W, Shi W, Kong Y, Kuss M, Duan B. Anisotropic scaffolds for peripheral nerve and spinal cord regeneration. Bioact Mater 2021; 6:4141-4160. [PMID: 33997498 PMCID: PMC8099454 DOI: 10.1016/j.bioactmat.2021.04.019] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
The treatment of long-gap (>10 mm) peripheral nerve injury (PNI) and spinal cord injury (SCI) remains a continuous challenge due to limited native tissue regeneration capabilities. The current clinical strategy of using autografts for PNI suffers from a source shortage, while the pharmacological treatment for SCI presents dissatisfactory results. Tissue engineering, as an alternative, is a promising approach for regenerating peripheral nerves and spinal cords. Through providing a beneficial environment, a scaffold is the primary element in tissue engineering. In particular, scaffolds with anisotropic structures resembling the native extracellular matrix (ECM) can effectively guide neural outgrowth and reconnection. In this review, the anatomy of peripheral nerves and spinal cords, as well as current clinical treatments for PNI and SCI, is first summarized. An overview of the critical components in peripheral nerve and spinal cord tissue engineering and the current status of regeneration approaches are also discussed. Recent advances in the fabrication of anisotropic surface patterns, aligned fibrous substrates, and 3D hydrogel scaffolds, as well as their in vitro and in vivo effects are highlighted. Finally, we summarize potential mechanisms underlying the anisotropic architectures in orienting axonal and glial cell growth, along with their challenges and prospects.
Collapse
Affiliation(s)
- Wen Xue
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yunfan Kong
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
9
|
Parker BJ, Rhodes DI, O'Brien CM, Rodda AE, Cameron NR. Nerve guidance conduit development for primary treatment of peripheral nerve transection injuries: A commercial perspective. Acta Biomater 2021; 135:64-86. [PMID: 34492374 DOI: 10.1016/j.actbio.2021.08.052] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Commercial nerve guidance conduits (NGCs) for repair of peripheral nerve discontinuities are of little use in gaps larger than 30 mm, and for smaller gaps they often fail to compete with the autografts that they are designed to replace. While recent research to develop new technologies for use in NGCs has produced many advanced designs with seemingly positive functional outcomes in animal models, these advances have not been translated into viable clinical products. While there have been many detailed reviews of the technologies available for creating NGCs, none of these have focussed on the requirements of the commercialisation process which are vital to ensure the translation of a technology from bench to clinic. Consideration of the factors essential for commercial viability, including regulatory clearance, reimbursement processes, manufacturability and scale up, and quality management early in the design process is vital in giving new technologies the best chance at achieving real-world impact. Here we have attempted to summarise the major components to consider during the development of emerging NGC technologies as a guide for those looking to develop new technology in this domain. We also examine a selection of the latest academic developments from the viewpoint of clinical translation, and discuss areas where we believe further work would be most likely to bring new NGC technologies to the clinic. STATEMENT OF SIGNIFICANCE: NGCs for peripheral nerve repairs represent an adaptable foundation with potential to incorporate modifications to improve nerve regeneration outcomes. In this review we outline the regulatory processes that functionally distinct NGCs may need to address and explore new modifications and the complications that may need to be addressed during the translation process from bench to clinic.
Collapse
Affiliation(s)
- Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - David I Rhodes
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; ReNerve Pty. Ltd., Brunswick East 3057, Australia
| | - Carmel M O'Brien
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Research Way, Clayton, Victoria 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and innovation Precinct (STRIP), Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Andrew E Rodda
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom.
| |
Collapse
|
10
|
Vedaraman S, Perez‐Tirado A, Haraszti T, Gerardo‐Nava J, Nishiguchi A, De Laporte L. Anisometric Microstructures to Determine Minimal Critical Physical Cues Required for Neurite Alignment. Adv Healthc Mater 2021; 10:e2100874. [PMID: 34197054 PMCID: PMC11468524 DOI: 10.1002/adhm.202100874] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Indexed: 12/17/2022]
Abstract
In nerve regeneration, scaffolds play an important role in providing an artificial extracellular matrix with architectural, mechanical, and biochemical cues to bridge the site of injury. Directed nerve growth is a crucial aspect of nerve repair, often introduced by engineered scaffolds imparting linear tracks. The influence of physical cues, determined by well-defined architectures, has been mainly studied for implantable scaffolds and is usually limited to continuous guiding features. In this report, the potential of short anisometric microelements in inducing aligned neurite extension, their dimensions, and the role of vertical and horizontal distances between them, is investigated. This provides crucial information to create efficient injectable 3D materials with discontinuous, in situ magnetically oriented microstructures, like the Anisogel. By designing and fabricating periodic, anisometric, discreet guidance cues in a high-throughput 2D in vitro platform using two-photon lithography techniques, the authors are able to decipher the minimal guidance cues required for directed nerve growth along the major axis of the microelements. These features determine whether axons grow unidirectionally or cross paths via the open spaces between the elements, which is vital for the design of injectable Anisogels for enhanced nerve repair.
Collapse
Affiliation(s)
- Sitara Vedaraman
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH AachenWorringerweg 1–2Aachen52074Germany
| | - Amaury Perez‐Tirado
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | - Tamas Haraszti
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH AachenWorringerweg 1–2Aachen52074Germany
| | - Jose Gerardo‐Nava
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
| | - Akihiro Nishiguchi
- Biomaterials FieldResearch Center for Functional MaterialsNational Institute for Materials ScienceTsukuba305‐0044Japan
| | - Laura De Laporte
- DWI‐Leibniz Institute for Interactive MaterialsForckenbeckstrasse 50Aachen52074Germany
- Institute for Technical and Macromolecular ChemistryRWTH AachenWorringerweg 1–2Aachen52074Germany
- Institute of Applied Medical EngineeringDepartment of Advanced Materials for BiomedicineRWTH UniversityForckenbeckstraße 55Aachen52074Germany
| |
Collapse
|
11
|
Mattiassi S, Rizwan M, Grigsby CL, Zaw AM, Leong KW, Yim EKF. Enhanced efficiency of nonviral direct neuronal reprogramming on topographical patterns. Biomater Sci 2021; 9:5175-5191. [PMID: 34128504 DOI: 10.1039/d1bm00400j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonviral direct neuronal reprogramming holds significant potential in the fields of tissue engineering and regenerative medicine. However, the issue of low reprogramming efficiency poses a major barrier to its application. We propose that topographical cues, which have been applied successfully to enhance lineage-directed differentiation and multipotent stem cell transdifferentiation, could improve nonviral direct neuronal reprogramming efficiency. To investigate, we used a polymer-BAM (Brn2, Ascl1, Myt1l) factor transfection polypex to reprogram primary mouse embryonic fibroblasts. Using a multiarchitecture chip, we screened for patterns that may improve transfection and/or subsequent induced neuron reprogramming efficiency. Selected patterns were then investigated further by analyzing β-tubulin III (TUJ1) and microtubule-associated protein 2 (MAP2) protein expression, cell morphology and electrophysiological function of induced neurons. Certain hierarchical topographies, with nanopatterns imprinted on micropatterns, significantly improved the percentage of TUJ1+ and MAP2+ cells. It is postulated that the microscale base pattern enhances initial BAM expression while the nanoscale sub-pattern promotes subsequent maturation. This is because the base pattern alone increased expression of TUJ1 and MAP2, while the nanoscale pattern was the only pattern yielding induced neurons capable of firing multiple action potentials. Nanoscale patterns also produced the highest fraction of cells showing spontaneous synaptic activity. Overall, reprogramming efficiency with one dose of polyplex on hierarchical patterns was comparable to that of five doses without topography. Thus, topography can enhance nonviral direct reprogramming of fibroblasts into induced neurons.
Collapse
Affiliation(s)
- Sabrina Mattiassi
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario N2L 3G1, Canada.
| | | | | | | | | | | |
Collapse
|
12
|
Raj V, Jagadish C, Gautam V. Understanding, engineering, and modulating the growth of neural networks: An interdisciplinary approach. BIOPHYSICS REVIEWS 2021; 2:021303. [PMID: 38505122 PMCID: PMC10903502 DOI: 10.1063/5.0043014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/25/2021] [Indexed: 03/21/2024]
Abstract
A deeper understanding of the brain and its function remains one of the most significant scientific challenges. It not only is required to find cures for a plethora of brain-related diseases and injuries but also opens up possibilities for achieving technological wonders, such as brain-machine interface and highly energy-efficient computing devices. Central to the brain's function is its basic functioning unit (i.e., the neuron). There has been a tremendous effort to understand the underlying mechanisms of neuronal growth on both biochemical and biophysical levels. In the past decade, this increased understanding has led to the possibility of controlling and modulating neuronal growth in vitro through external chemical and physical methods. We provide a detailed overview of the most fundamental aspects of neuronal growth and discuss how researchers are using interdisciplinary ideas to engineer neuronal networks in vitro. We first discuss the biochemical and biophysical mechanisms of neuronal growth as we stress the fact that the biochemical or biophysical processes during neuronal growth are not independent of each other but, rather, are complementary. Next, we discuss how utilizing these fundamental mechanisms can enable control over neuronal growth for advanced neuroengineering and biomedical applications. At the end of this review, we discuss some of the open questions and our perspectives on the challenges and possibilities related to controlling and engineering the growth of neuronal networks, specifically in relation to the materials, substrates, model systems, modulation techniques, data science, and artificial intelligence.
Collapse
Affiliation(s)
- Vidur Raj
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Vini Gautam
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
13
|
Chen YJ, Huang YA, Ho CT, Yang JM, Chao JI, Li MC, Hwang E. A Nanodiamond-Based Surface Topography Downregulates the MicroRNA miR6236 to Enhance Neuronal Development and Regeneration. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yi-Ju Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Yung-An Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Chris T. Ho
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
| | - Jinn-Moon Yang
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Jui-I Chao
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Ming-Chia Li
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| | - Eric Hwang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan 300
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan 300
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan 300
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan 300
| |
Collapse
|
14
|
Yang CY, Huang WY, Chen LH, Liang NW, Wang HC, Lu J, Wang X, Wang TW. Neural tissue engineering: the influence of scaffold surface topography and extracellular matrix microenvironment. J Mater Chem B 2021; 9:567-584. [DOI: 10.1039/d0tb01605e] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Strategies using surface topography, contact guidance and biomechanical cues in the design of scaffolds as an ECM support for neural tissue engineering.
Collapse
Affiliation(s)
- Chun-Yi Yang
- Institute for Regenerative Medicine and Biomimetic Materials
- School of Materials Science and Engineering
- Tsinghua University
- Beijing
- China
| | - Wei-Yuan Huang
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Liang-Hsin Chen
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Nai-Wen Liang
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Huan-Chih Wang
- Division of Neurosurgery
- Department of Surgery
- National Taiwan University Hospital
- Taipei
- Taiwan
| | - Jiaju Lu
- Institute for Regenerative Medicine and Biomimetic Materials
- School of Materials Science and Engineering
- Tsinghua University
- Beijing
- China
| | - Xiumei Wang
- Institute for Regenerative Medicine and Biomimetic Materials
- School of Materials Science and Engineering
- Tsinghua University
- Beijing
- China
| | - Tzu-Wei Wang
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| |
Collapse
|
15
|
Nishiguchi A, Kapiti G, Höhner JR, Singh S, Moeller M. In Situ 3D-Printing using a Bio-ink of Protein-photosensitizer Conjugates for Single-cell Manipulation. ACS APPLIED BIO MATERIALS 2020; 3:2378-2384. [PMID: 32832880 PMCID: PMC7434051 DOI: 10.1021/acsabm.0c00116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 01/08/2023]
Abstract
Living tissues dynamically modulate their structure and functions through physical and biochemical interactions in the three-dimensional (3D)-microenvironment for their homeostasis or the developmental process of an embryo. However, the manipulation of cellular functions in vitro is still challenging due to the lack of a dynamic material system that can vary the 3D-cellular microenvironment in time and space. Here, we show an in situ 3D-printing technique based on multiphoton lithography using a biocompatible photoresist, bio-ink. The bio-ink composed of protein-photosensitizer conjugates has the ability to cause singlet oxygen and cross-linking reaction to fabricate protein gels with submicrometer-scale precision. Remarkably, the conjugates substantially improve the cytocompatibility and the efficiency of gelation due to the stealth effect of rose bengal (RB) and efficient transfer of singlet oxygen to bovine serum albumin (BSA). 3D-printing in the presence of cells allows for the microfabrication of a protein scaffold and controlled single-cell behavior. This dynamic material system to direct cell fate may offer emerging applications for drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Akihiro Nishiguchi
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstrasse 50, D-52056 Aachen Germany
| | - Gent Kapiti
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstrasse 50, D-52056 Aachen Germany
| | - J. Robin Höhner
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstrasse 50, D-52056 Aachen Germany
| | - Smriti Singh
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstrasse 50, D-52056 Aachen Germany
| | - Martin Moeller
- DWI—Leibniz-Institute
for Interactive Materials, Forckenbeckstrasse 50, D-52056 Aachen Germany
| |
Collapse
|
16
|
Smith AS, Choi E, Gray K, Macadangdang J, Ahn EH, Clark EC, Laflamme MA, Wu JC, Murry CE, Tung L, Kim DH. NanoMEA: A Tool for High-Throughput, Electrophysiological Phenotyping of Patterned Excitable Cells. NANO LETTERS 2020; 20:1561-1570. [PMID: 31845810 PMCID: PMC7547911 DOI: 10.1021/acs.nanolett.9b04152] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Matrix nanotopographical cues are known to regulate the structure and function of somatic cells derived from human pluripotent stem cell (hPSC) sources. High-throughput electrophysiological analysis of excitable cells derived from hPSCs is possible via multielectrode arrays (MEAs) but conventional MEA platforms use flat substrates and do not reproduce physiologically relevant tissue-specific architecture. To address this issue, we developed a high-throughput nanotopographically patterned multielectrode array (nanoMEA) by integrating conductive, ion-permeable, nanotopographic patterns with 48-well MEA plates, and investigated the effect of substrate-mediated cytoskeletal organization on hPSC-derived cardiomyocyte and neuronal function at scale. Using our nanoMEA platform, we found patterned hPSC-derived cardiac monolayers exhibit both enhanced structural organization and greater sensitivity to treatment with calcium blocking or conduction inhibiting compounds when subjected to high-throughput dose-response studies. Similarly, hPSC-derived neurons grown on nanoMEA substrates exhibit faster migration and neurite outgrowth speeds, greater colocalization of pre- and postsynaptic markers, and enhanced cell-cell communication only revealed through examination of data sets derived from multiple technical replicates. The presented data highlight the nanoMEA as a new tool to facilitate high-throughput, electrophysiological analysis of ordered cardiac and neuronal monolayers, which can have important implications for preclinical analysis of excitable cell function.
Collapse
Affiliation(s)
- Alec S.T. Smith
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
| | - Eunpyo Choi
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Kevin Gray
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- NanoSurface Biomedical, Inc. Seattle, WA 98195, USA
| | - Jesse Macadangdang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- NanoSurface Biomedical, Inc. Seattle, WA 98195, USA
| | - Eun Hyun Ahn
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Elisa C. Clark
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Michael A. Laflamme
- Toronto General Hospital Research Institute, McEwen Centre for Regenerative Medicine, University Health Network, Toronto, ON M5G 2C4, Canada
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Charles E. Murry
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
- Department of Medicine/Cardiology, University of Washington, Seattle, WA 98195, USA
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
- To whom correspondence should be addressed: Dr. Deok-Ho Kim, Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Ross Research Building, 715B, 720 Rutland Avenue, Baltimore, MD 21205,
| |
Collapse
|
17
|
Carvalho CR, Oliveira JM, Reis RL. Modern Trends for Peripheral Nerve Repair and Regeneration: Beyond the Hollow Nerve Guidance Conduit. Front Bioeng Biotechnol 2019; 7:337. [PMID: 31824934 PMCID: PMC6882937 DOI: 10.3389/fbioe.2019.00337] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve repair and regeneration remains among the greatest challenges in tissue engineering and regenerative medicine. Even though peripheral nerve injuries (PNIs) are capable of some degree of regeneration, frail recovery is seen even when the best microsurgical technique is applied. PNIs are known to be very incapacitating for the patient, due to the deprivation of motor and sensory abilities. Since there is no optimal solution for tackling this problem up to this day, the evolution in the field is constant, with innovative designs of advanced nerve guidance conduits (NGCs) being reported every day. As a basic concept, a NGC should act as a physical barrier from the external environment, concomitantly acting as physical guidance for the regenerative axons across the gap lesion. NGCs should also be able to retain the naturally released nerve growth factors secreted by the damaged nerve stumps, as well as reducing the invasion of scar tissue-forming fibroblasts to the injury site. Based on the neurobiological knowledge related to the events that succeed after a nerve injury, neuronal subsistence is subjected to the existence of an ideal environment of growth factors, hormones, cytokines, and extracellular matrix (ECM) factors. Therefore, it is known that multifunctional NGCs fabricated through combinatorial approaches are needed to improve the functional and clinical outcomes after PNIs. The present work overviews the current reports dealing with the several features that can be used to improve peripheral nerve regeneration (PNR), ranging from the simple use of hollow NGCs to tissue engineered intraluminal fillers, or to even more advanced strategies, comprising the molecular and gene therapies as well as cell-based therapies.
Collapse
Affiliation(s)
- Cristiana R. Carvalho
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Guimarães, Portugal
| |
Collapse
|
18
|
Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr Polym 2019; 224:115144. [PMID: 31472870 DOI: 10.1016/j.carbpol.2019.115144] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023]
Abstract
Scaffolds based on nanocellulose (NC) have crucial applications in tissue engineering (TE) owing to the biocompatibility, water absorption, water retention, optical transparency, and chemo-mechanical properties. In this review, we summarize the scaffolds based on nanocellulose, including nanocrystalline cellulose and nanofibrillated cellulose. We compare four representative methods to prepare NC-based scaffolds, containing electrospinning, freeze-drying, 3D printing, and solvent casting. We outline the characteristics of scaffolds obtained by different methods. Our focus is on the applications of NC-based scaffolds to repair, improve or replace damaged tissues and organs, including skin, blood vessel, nerve, skeletal muscle, heart, liver, and ophthalmology. NC-based scaffolds are attractive materials for regeneration of different tissues and organs due to the remarkable features. Finally, we propose the challenges and potentials of NC-based TE scaffolds.
Collapse
|
19
|
Bendella H, Rink S, Manthou M, Papamitsou T, Nakamura M, Angelov DN, Sarikcioglu L. Effect of surgically guided axonal regrowth into a 3-way-conduit (isogeneic trifurcated aorta) on functional recovery after facial-nerve reconstruction: Experimental study in rats. Restor Neurol Neurosci 2019; 37:181-196. [PMID: 31006701 DOI: 10.3233/rnn-190899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The "post-paralytic syndrome" after facial nerve reconstruction has been attributed to (i) malfunctioning axonal guidance at the fascicular (branches) level, (ii) collateral branching of the transected axons at the lesion site, and (iii) intensive intramuscular terminal sprouting of regenerating axons which causes poly-innervation of the neuromuscular junctions (NMJ). OBJECTIVE The first two reasons were approached by an innovative technique which should provide the re-growing axons optimal conditions to elongate and selectively re-innervate their original muscle groups. METHODS The transected facial nerve trunk was inserted into a 3-way-conduit (from isogeneic rat abdominal aorta) which should "guide" the re-growing facial axons to the three main branches of the facial nerve (zygomatic, buccal and marginal mandibular). The effect of this method was tested also on hypoglossal axons after hypoglossal-facial anastomosis (HFA). Coaptational (classic) FFA (facial-facial anastomosis) and HFA served as controls. RESULTS When compared to their coaptation (classic) alternatives, both types of 3-way-conduit operations (FFA and HFA) promoted a trend for reduction in the collateral axonal branching (the proportion of double- or triple-labelled perikarya after retrograde tracing was slightly reduced). In contrast, poly-innervation of NMJ in the levator labii superioris muscle was increased and vibrissal (whisking) function was worsened. CONCLUSIONS The use of 3-way-conduit provides no advantages to classic coaptation. Should the latter be impossible (too large interstump defects requiring too long interpositional nerve grafts), this type of reconstruction may be applied. (230 words).
Collapse
Affiliation(s)
- Habib Bendella
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | - Svenja Rink
- Department of Prosthetic Dentistry, School of Dental and Oral Medicine, University of Cologne, Cologne, Germany
| | - Marilena Manthou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Theodora Papamitsou
- Department of Histology and Embryology, Aristotle University Thessaloniki, Greece
| | - Makoto Nakamura
- Department of Neurosurgery, University of Witten/Herdecke, Cologne Merheim Medical Center (CMMC), Cologne, Germany
| | | | - Levent Sarikcioglu
- Department of Anatomy, Akdeniz University Faculty of Medicine, Antalya, Turkey
| |
Collapse
|