1
|
Kumar S, Sharma V, Thakur N, Singh B. Investigation of physicochemical, morphological and biomedical properties of network hydrogels derived from arabinogalactan of acacia-tragacanth gum. Int J Biol Macromol 2025; 301:140477. [PMID: 39889988 DOI: 10.1016/j.ijbiomac.2025.140477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/31/2024] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Recently, significant progress has been made in the development of natural polysaccharide-derived functional copolymers for advanced biomedical uses. Herein, the main objective of the present research work was to explore the potential of gum acacia (GA) and tragacanth gum (TG) for developing network hydrogels to use in drug delivery (DD) applications. The copolymers were prepared by grafting of 3-sulfopropylacrlate (SPA) onto gum (GA-TG). FE-SEM, AFM, XRD, XPS, FTIR, 13C NMR and DSC techniques were applied for their characterizations and structural analysis. The physicochemical, morphological and biomedical properties of hydrogels were investigated. The optimized polymer network exhibited a mesh size (ξ) of 13.95 mm and a cross-linking density (ρ) of 6.44 × 10-5 mol/cm3. FE-SEM and AFM revealed heterogeneous morphology and rough topology of copolymer hydrogels. The XRD revealed the amorphous state of the copolymer. FTIR and 13C NMR confirmed the incorporation of poly(SPA) chains onto gums. Diffusion of meropenem drug occurred in a sustained manner with a non-Fickian diffusion mechanism. The release profile of the drug was best described by the First-order kinetic model. The results of polymer-blood interactions revealed their non-haemolytic & non-thrombogenic features. Copolymers exhibited antioxidant nature and illustrated 40.72 ± 2.08 % scavenging ability during DPPH assay. The hydrogel demonstrated a mucoadhesive nature and required 100 ± 10 mN forces to separate from mucous membrane. The meropenem impregnated hydrogel exhibited antibacterial activity against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) bacteria, respectively. The results of various properties demonstrated the suitability of network hydrogels for DD uses.
Collapse
Affiliation(s)
- Sushil Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Vikrant Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Nistha Thakur
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| |
Collapse
|
2
|
Swieton J, Miklosz J, Bielicka N, Frackiewicz A, Depczynski K, Stolarek M, Bonarek P, Kaminski K, Rozga P, Yusa SI, Gromotowicz-Poplawska A, Szczubialka K, Pawlak D, Mogielnicki A, Kalaska B. Synthesis, Biological Evaluation and Reversal of Sulfonated Di- and Triblock Copolymers as Novel Parenteral Anticoagulants. Adv Healthc Mater 2024; 13:e2402191. [PMID: 39370656 DOI: 10.1002/adhm.202402191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Despite targeting different coagulation cascade sites, all Food and Drug Administration-approved anticoagulants present an elevated risk of bleeding, including potentially life-threatening intracranial hemorrhage. Existing studies have not thoroughly investigated the efficacy and safety of sulfonate polymers in animal models and fully elucidate the precise mechanisms by which these polymers act. The activity and safety of sulfonated di- and triblock copolymers containing poly(sodium styrenesulfonate) (PSSS), poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPS), poly(ethylene glycol) (PEG), poly(sodium methacrylate) (PMAAS), poly(acrylic acid) (PAA), and poly(sodium 11-acrylamidoundecanoate) (PAaU) blocks are synthesized and assessed. PSSS-based copolymers exhibit greater anticoagulant activity than PAMPS-based ones. Their activity is mainly affected by the total concentration of sulfonate groups and molecular weight. PEG-containing copolymers demonstrate a better safety profile than PAA-containing ones. The selected copolymer PEG47-PSSS32 exhibits potent anticoagulant activity in rodents after subcutaneous and intravenous administration. Heparin Binding Copolymer (HBC) completely reverses the anticoagulant activity of polymer in rat and human plasma. No interaction with platelets is observed. Selected copolymer targets mainly factor XII and fibrinogen, and to a lesser extent factors X, IX, VIII, and II, suggesting potential application in blood-contacting biomaterials for anticoagulation purposes. Further studies are needed to explore its therapeutic applications fully.
Collapse
Affiliation(s)
- Justyna Swieton
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Joanna Miklosz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Natalia Bielicka
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Aleksandra Frackiewicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Karol Depczynski
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Marta Stolarek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, prof. S. Lojasiewicza 11 St., Krakow, 30-348, Poland
| | - Piotr Bonarek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Kamil Kaminski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Piotr Rozga
- Drug Discovery and Early Development Department, Adamed Pharma S.A., Pienkow, Mariana Adamkiewicza 6A St., Czosnow, 05-152, Poland
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 167 Shosha, Himeji, 671-2280, Japan
| | - Anna Gromotowicz-Poplawska
- Department of Biopharmacy and Radiopharmacy, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Krzysztof Szczubialka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2 St., Krakow, 30-387, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Andrzej Mogielnicki
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| | - Bartlomiej Kalaska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., Bialystok, 15-089, Poland
| |
Collapse
|
3
|
Nahain AA, Li J, Modhiran N, Watterson D, Li JP, Ignjatovic V, Monagle P, Tsanaktsidis J, Vamvounis G, Ferro V. Antiviral Activities of Heparan Sulfate Mimetic RAFT Polymers Against Mosquito-borne Viruses. ACS APPLIED BIO MATERIALS 2024; 7:2862-2871. [PMID: 38699864 DOI: 10.1021/acsabm.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Mosquito-borne viruses are a major worldwide health problem associated with high morbidity and mortality rates and significant impacts on national healthcare budgets. The development of antiviral drugs for both the treatment and prophylaxis of these diseases is thus of considerable importance. To address the need for therapeutics with antiviral activity, a library of heparan sulfate mimetic polymers was screened against dengue virus (DENV), Yellow fever virus (YFV), Zika virus (ZIKV), and Ross River virus (RRV). The polymers were prepared by RAFT polymerization of various acidic monomers with a target MW of 20 kDa (average Mn ∼ 27 kDa by GPC). Among the polymers, poly(SS), a homopolymer of sodium styrenesulfonate, was identified as a broad spectrum antiviral with activity against all the tested viruses and particularly potent inhibition of YFV (IC50 = 310 pM). Our results further uncovered that poly(SS) exhibited a robust inhibition of ZIKV infection in both mosquito and human cell lines, which points out the potential functions of poly(SS) in preventing mosquito-borne viruses associated diseases by blocking viral transmission in their mosquito vectors and mitigating viral infection in patients.
Collapse
Affiliation(s)
- Abdullah Al Nahain
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jinlin Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria 3052, Australia
- Department of Paediatrics, The University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Clinical Haematology, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Research Way, Clayton, Victoria 3168, Australia
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Gu J, Li Y, Lu G, Ma Y, Zhang Y, Chen J. Glycopolymer-grafted nanoparticles as glycosaminoglycan mimics with cell proliferation and anti-tumor metastasis activities. Int J Biol Macromol 2023; 253:126975. [PMID: 37739278 DOI: 10.1016/j.ijbiomac.2023.126975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally existing extracellular components with a variety important biological functions. However, their heterogeneous chemical compositions and the challenges in purification have become the main disadvantages for clinical applications. Thus, various synthetic glycopolymers have been designed to mimic the structures and functions of natural GAGs. In the current study, glycopolymers from structurally simple glucose or N-acetylglucosamine monomers were synthesized, which were further subjected to sulfation of different degrees and grafting onto silica nanoparticles, leading to spherical-shaped nano-structures of uniform diameters. With the successively strengthened multivalent effect, the obtained glycopolymer nanoparticles not only showed excellent effects on promotion of cell proliferation by stabilizing growth factors, but also significantly inhibited tumor metastasis by weakening the adhesion between tumor cells and activated platelets. Among the prepared nanoparticles, S3-PGNAc@Si with N-acetylglucosamine segment and the highest sulfation degree exhibited the strongest bioactivities, which were even close to those of heparin. This work presents a novel approach for structural and functional mimicking of natural GAGs from simple and low-cost monosaccharides, holding great potential for a range of biomedical applications.
Collapse
Affiliation(s)
- Jieyu Gu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Guodong Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Yongxin Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
5
|
Smith RAA, Luo X, Lu X, Tan TC, Le BQ, Zubkova OV, Tyler PC, Nurcombe V, Cool SM. Enhancing BMP-2-mediated osteogenesis with a synthetic heparan sulfate mimetic. BIOMATERIALS ADVANCES 2023; 155:213671. [PMID: 39492001 DOI: 10.1016/j.bioadv.2023.213671] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 11/05/2024]
Abstract
Bone morphogenetic protein 2 (BMP-2) is an osteoinductive protein and a potent inducers of bone formation, playing an essential role during bone fracture repair. Heparan sulfate (HS), a highly charged and linear polysaccharide, is known to interact with and enhance BMP-2 bioactivity. Despite showing potential as a potent adjuvant of the endogenous bone healing response, commercially available HS is derived from animal sources which are less desirable when considering translation into the clinic. In the present study, we screen twenty glycomimetics against BMP-2 to determine if fully synthetic analogues of HS can enhance the bioactivity of BMP-2 in vitro and bone healing in vivo. We found that a four-armed dendrimer harboring oversulfated maltose residues could bind BMP-2 with high affinity, enhance BMP-2 bioactivity in vitro and enhance bone regeneration in vivo. These data suggest fully synthetic glycomimetics are viable alternatives to naturally derived HS and offer an attractive alternative for clinical translation.
Collapse
Affiliation(s)
- Raymond A A Smith
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia.
| | - Xiaoman Luo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Xiaohua Lu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Tuan Chun Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Bach Q Le
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Olga V Zubkova
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
| | - Peter C Tyler
- The Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, New Zealand
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore; Department of Orthopaedic Surgery, Yong Yoo Lin School of Medicine, National University of Singapore; School of Chemical Engineering, The University of Queensland, Brisbane, Qld 4072, Australia.
| |
Collapse
|
6
|
Ye B, Cai Z, Wang Q, Zhang Y, Chen J. Supramolecular self-assembly of glycosaminoglycan mimetic nanostructures for cell proliferation and 3D cell culture application. Int J Biol Macromol 2023; 231:123179. [PMID: 36621740 DOI: 10.1016/j.ijbiomac.2023.123179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/06/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Glycosaminoglycans (GAGs), such as heparin, heparan sulfate and chondroitin sulfate, are playing important roles in various biological processes. Due to the laborious work of organic or enzymatic total synthesis of GAGs, different approaches, including glycopolymers, dendrimers, etc., have been developed to mimic the structures and bioactivities of GAGs, but the syntheses can still be difficult. In the current study, a new format of GAG mimetic structure, supramolecularly assembled polymers, have been easily prepared by mixing fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) and sulfated glyco-modified fluorenylmethoxy derivatives (FGS and FG3S). The self-assembly behavior of these polymers into different structural formats of nanoparticles, nanofibers and macroscopic hydrogels upon adjusted concentrations and composite ratios have been detailed studied. The nanofibers modified with highly sulfated glycol groups (FG3S/Fmoc-FF) showed strong promotion effect for cell proliferation, which efficiency was even similar to that of natural heparin, higher than nanoparticles or non-/low-sulfated glyco-modified nanofibers. Moreover, the supramolecular polymers were further made into hydrogels that capable of 3D cell culture. This study provided a novel and efficient approach for GAG mimicking, showing great potential for tissue engineering related applications.
Collapse
Affiliation(s)
- Baotong Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; School of Chemical & Material Engineering, Jiangnan Universtiy, Wuxi, 214122, P.R. China
| | - Zhi Cai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qimeng Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| | - Jinghua Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
7
|
Jiang L, Zhang T, Lu H, Li S, Lv K, Tuffour A, Zhang L, Ding K, Li JP, Li H, Liu X. Heparin mimetics as potential intervention for COVID-19 and their bio-manufacturing. Synth Syst Biotechnol 2023; 8:11-19. [PMID: 36313216 PMCID: PMC9595387 DOI: 10.1016/j.synbio.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
The COVID-19 pandemic has caused severe health problems worldwide and unprecedented decimation of the global economy. Moreover, after more than 2 years, many populations are still under pressure of infection. Thus, a broader perspective in developing antiviral strategies is still of great importance. Inspired by the observed multiple benefits of heparin in the treatment of thrombosis, the potential of low molecular weight heparin (LMWH) for the treatment of COVID-19 have been explored. Clinical applications found that LMWH decreased the level of inflammatory cytokines in COVID-19 patients, accordingly reducing lethality. Furthermore, several in vitro studies have demonstrated the important roles of heparan sulfate in SARS-CoV-2 infection and the inhibitory effects of heparin and heparin mimetics in viral infection. These clinical observations and designed studies argue for the potential to develop heparin mimetics as anti-SARS-CoV-2 drug candidates. In this review, we summarize the properties of heparin as an anticoagulant and the pharmaceutical possibilities for the treatment of virus infection, focusing on the perspectives of developing heparin mimetics via chemical synthesis, chemoenzymatic synthesis, and bioengineered production by microbial cell factories. The ultimate goal is to pave the eminent need for exploring novel compounds to treat coronavirus infection-caused diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, 210093, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianji Zhang
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Hongzhong Lu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Saijuan Li
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Kangjie Lv
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Alex Tuffour
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kan Ding
- Glycochemistry & Glycobiology Lab, Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jin-Ping Li
- International Research Center for Soft Matter, Beijing University of Chemical Technology, Beijing, 100029, China
- Department of Medical Biochemistry and Microbiology, University of Uppsala, Uppsala, Sweden
| | - Hongmei Li
- Division of Chemistry and Analytical Science, Key Laboratory of Chemical Metrology and Applications on Nutrition and Health for State Market Regulation, National Institute of Metrology, Beijing, 100029, China
| | - Xueting Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Hoffmann M, Snyder NL, Hartmann L. Glycosaminoglycan Mimetic Precision Glycomacromolecules with Sequence-Defined Sulfation and Rigidity Patterns. Biomacromolecules 2022; 23:4004-4014. [PMID: 35959886 DOI: 10.1021/acs.biomac.2c00829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sulfated glycosaminoglycans (sGAGs) such as heparan sulfate (HS) are structurally diverse linear polysaccharides that are involved in many biological processes and have gained interest as antiviral compounds. Their recognition is driven by a complex orchestra of structural parameters that are still under intense investigation. One distinct characteristic is the incorporation of sulfation patterns including highly sulfated and non-sulfated sequences that provide variations in flexibility and conformation, which in turn impact the biological function of sGAGs. However, these distinct features have not yet been fully realized in the synthetic preparation of sGAG mimetics. Here, we present the synthesis of three groups of sulfated glycomacromolecules as sGAG mimetics: (i) globally sulfated glycooligomers, (ii) glycooligomers with sequence-defined sulfation patterns, and (iii) a globally sulfated glycooligomer-oligo-L-proline hybrid structure. The complete synthesis, including chemical sulfation, was conducted on solid support, enabled by the introduction of a commercially available photocleavable linker allowing for the preservation of sensitive sulfates during cleavage of the products. Structures were obtained in good purity and with high degrees of sulfation demonstrating the wide applicability of this methodology to prepare tailor-made sulfated glycomacromolecules and similar sGAG mimetics. Structures were tested for their anticoagulant properties showing activity similar to their natural HS counterpart and significantly lower than HP.
Collapse
Affiliation(s)
- Miriam Hoffmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Nicole L Snyder
- Department of Chemistry, Davidson College, Davidson, North Carolina 28035, United States
| | - Laura Hartmann
- Department of Organic and Macromolecular Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Chhabra M, Doherty GG, See NW, Gandhi NS, Ferro V. From Cancer to COVID-19: A Perspective on Targeting Heparan Sulfate-Protein Interactions. CHEM REC 2021; 21:3087-3101. [PMID: 34145723 PMCID: PMC8441866 DOI: 10.1002/tcr.202100125] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Indexed: 12/16/2022]
Abstract
Heparan sulfate (HS) is a complex, polyanionic polysaccharide ubiquitously expressed on cell surfaces and in the extracellular matrix. HS interacts with numerous proteins to mediate a vast array of biological and pathological processes. Inhibition of HS-protein interactions is thus an attractive approach for new therapeutic development for cancer and infectious diseases, including COVID-19; however, synthesis of well-defined native HS oligosaccharides remains challenging. This has aroused significant interest in the development of HS mimetics which are more synthetically tractable and have fewer side effects, such as undesired anticoagulant activity. This account provides a perspective on the design and synthesis of different classes of HS mimetics with useful properties, and the development of various assays and molecular modelling tools to progress our understanding of their interactions with HS-binding proteins.
Collapse
Affiliation(s)
- Mohit Chhabra
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Gareth G. Doherty
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Nicholas W. See
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| | - Neha S. Gandhi
- School of Chemistry and PhysicsQueensland University of Technology4000BrisbaneQLDAustralia
| | - Vito Ferro
- School of Chemistry and Molecular BiosciencesThe University of Queensland4072BrisbaneQLDAustralia
| |
Collapse
|
10
|
Gockel LM, Heyes M, Li H, Al Nahain A, Gorzelanny C, Schlesinger M, Holdenrieder S, Li JP, Ferro V, Bendas G. Inhibition of Tumor-Host Cell Interactions Using Synthetic Heparin Mimetics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7080-7093. [PMID: 33533245 DOI: 10.1021/acsami.0c20744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low-molecular-weight heparin (LMWH) is the guideline-based drug for antithrombotic treatment of cancer patients, while its direct antitumor effects are a matter of ongoing debate. Although therapeutically established for decades, LMWH has several drawbacks mainly associated with its origin from animal sources. Aiming to overcome these limitations, a library of synthetic heparin mimetic polymers consisting of homo- and copolymers of sulfonated and carboxylated noncarbohydrate monomers has recently been synthesized via reversible addition-fragmentation chain transfer polymerization. These heparin mimetics were investigated for their capacities to interfere with simulated steps of tumor cell metastasis. Among them, homo- and copolymers from sodium 4-styrenesulfonate (poly(SSS)) with acrylic acid (poly(SSS-co-AA)) with an MW between 5 and 50 kDa efficiently attenuated cancer cell-induced coagulation and thus platelet activation and degranulation similar to or even better than LMWH. Furthermore, independent of anticoagulant activities, these polymers affected other metastasis-relevant targets with impressive affinities. Hence, they blocked heparanase enzymatic activity outmatching commercial heparins or a glycosidic drug candidate. Furthermore, these polymers bind P-selectin and the integrin VLA-4 similar to or even better than heparin, indicated by a biosensor approach and thus efficiently blocked melanoma cell binding to endothelium under blood flow conditions. This is the first report on the prospects of synthetic heparin mimetics as promising nontoxic compounds in oncology to potentially substitute heparin as an anticoagulant and to better understand its role as an antimetastatic drug.
Collapse
Affiliation(s)
- Lukas M Gockel
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Martin Heyes
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Honglian Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Abdullah Al Nahain
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christian Gorzelanny
- Experimental Dermatology, Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Martin Schlesinger
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Stefan Holdenrieder
- The German Heart Centre of Technical University Munich, Laboratory Medicine, 80636 Munich, Germany
| | - Jin-Ping Li
- Department of Medical Biochemistry and Microbiology, SciLifeLab Uppsala, The Biomedical Center, University of Uppsala, 75123 Uppsala, Sweden
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Gerd Bendas
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, 53121 Bonn, Germany
| |
Collapse
|