1
|
Achenbach P, Altinova H, Brook GA. Substrate topography as a powerful tool to modify glial cell biology and interactions. Neural Regen Res 2025; 20:1390-1391. [PMID: 39075898 PMCID: PMC11624884 DOI: 10.4103/nrr.nrr-d-24-00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/08/2024] [Accepted: 05/21/2024] [Indexed: 07/31/2024] Open
Affiliation(s)
- Pascal Achenbach
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Haktan Altinova
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Neurosurgery, RWTH Aachen University Hospital, Aachen, Germany
- Berlin State Office for Health and Social Affairs (LAGeSo), Berlin, Germany
| | - Gary A. Brook
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
2
|
Qin Y, Chen B, Hu Y, Zhang X, Wang Z, Ma C, Yang R, Wang B, Li F, Niu S, Han Y, Lu D. Biophysically Optimized Nanofiber-Hydrogel Scaffold Composite Acts as "Bio-Bonsai" for Peripheral Nerve Simulation and Regeneration via Orienting Adipose Derived Stem Cells into Schwann-Like Cell Differentiation. Adv Healthc Mater 2025:e2404178. [PMID: 40195902 DOI: 10.1002/adhm.202404178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/04/2025] [Indexed: 04/09/2025]
Abstract
Efficient repairment of peripheral nerve injury (PNI) remains a severe clinical challenge worldwide, and recovering the regenerative capability of neurons in peripheral nervous system is hindered by the slow rate and inaccurate direction of axonal elongation. Schwann cells (SCs) loaded nerve guidance conduit has been proven to improve PNI repair, but the low cell survival rate and incomplete differentiation of SCs limited its practical application. To address these hurdles, a biophysically optimized nanofiber-hydrogel scaffold composite (APML@PC) is prepared in this study, the "bio"bonsai""inspired strategy integrates topological and biological cues to promote adipose-derived mesenchymal stem cells (ADSCs) adhesion, proliferation, and Schwann-like cell differentiation. In vitro and in vivo experiments confirmed the favorable biocompatibility and reasonable biodegradation behavior of this inducible platform, and the robust capability to promote axonal growth, remyelination regeneration, as well as nerve function recovery. This novel composite can serve as a promising candidate for the development of advanced stem cell-based peripheral nerve regeneration, thereby paving a new avenue for clinically effective PNI therapy.
Collapse
Affiliation(s)
- Yanrong Qin
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Bo Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Yubin Hu
- Department of Medical Imaging, the First Affiliated Hospital of Kunming Medical University, Kunming, 650031, P. R. China
| | - Xiyu Zhang
- State key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Zihan Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Chengjie Ma
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Ruishan Yang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Bang Wang
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Fan Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Yi Han
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| | - Di Lu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Collage of Rehabilitation, Kunming Medical University, Kunming, 650500, P. R. China
| |
Collapse
|
3
|
Galindo AN, Chi AK, Liashenko I, O’Neill KL, Sharma R, Khachatourian JD, Hajarizadeh A, Dalton PD, Hettiaratchi MH. Hyaluronic Acid-Coated Melt Electrowritten Scaffolds Promote Myoblast Attachment, Alignment, and Differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641880. [PMID: 40161586 PMCID: PMC11952302 DOI: 10.1101/2025.03.06.641880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purpose In muscle tissues, anisotropic cell alignment is essential for optimal muscle fiber development and function. Biomaterials for muscle tissue engineering must guide cellular alignment while supporting cell proliferation and myogenic differentiation. Methods Here, we describe the fabrication of a tissue-engineered construct consisting of a scaffold of aligned poly(ε-caprolactone) (PCL) microfibers coated in a dynamic covalent hydrazone crosslinked hyaluronic acid (HA) hydrogel to support myoblast attachment, alignment, and differentiation. Norbornene modification of HA further enabled functionalization with fibronectin-derived arginine-glycine-aspartic acid (RGD) peptide. Scaffolds were fabricated using melt electrowriting (MEW), a three-dimensional (3D)-printing technique that uses stabilization of fluid columns to produce precisely aligned polymeric microfibers. We evaluated scaffolds with fiber diameters of 10 μm, 20 μm, and 30 μm of non-coated, HA-coated, and HA-RGD-coated MEW scaffolds through immunocytochemistry and creatine kinase activity assays. Results HA-coated and HA-RGD-coated scaffolds showed increased cellular attachment of C2C12 mouse skeletal myoblasts on all fiber diameters compared to non-coated scaffolds, with HA-RGD-coated scaffolds demonstrating the highest cell attachment. All scaffolds supported cellular alignment along the fibers. Cells differentiated on scaffolds showed anisotropic alignment with increased myotube formation on HA-RGD-coated scaffolds as seen by myosin heavy chain (MHC) staining. Highest creatine kinase (CK) activity on day 5 signified the successful differentiation of C2C12 cells into mature myotubes. Conclusion This unique combination of tunable biophysical and biochemical cues enables the creation of a biomimetic tissue engineered scaffold, providing a platform for new therapeutic approaches for muscle regeneration.
Collapse
Affiliation(s)
- Alycia N. Galindo
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Alyssa K. Chi
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
- Department of Chemistry and Biochemistry, University of Oregon
| | - Ievgenii Liashenko
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Kelly L. O’Neill
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Ruchi Sharma
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Jenna D. Khachatourian
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
- Department of Human Physiology, University of Oregon
| | - Armaan Hajarizadeh
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
- Department of Computer and Data Sciences, University of Oregon
| | - Paul D. Dalton
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
| | - Marian H. Hettiaratchi
- Department of Bioengineering, Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon
- Department of Chemistry and Biochemistry, University of Oregon
| |
Collapse
|
4
|
Saiz PG, Reizabal A, Vilas-Vilela JL, Dalton PD, Lanceros-Mendez S. Materials and Strategies to Enhance Melt Electrowriting Potential. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312084. [PMID: 38447132 DOI: 10.1002/adma.202312084] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/04/2024] [Indexed: 03/08/2024]
Abstract
Melt electrowriting (MEW) is an emerging additive manufacturing (AM) technology that enables the precise deposition of continuous polymeric microfibers, allowing for the creation of high-resolution constructs. In recent years, MEW has undergone a revolution, with the introduction of active properties or additional functionalities through novel polymer processing strategies, the incorporation of functional fillers, postprocessing, or the combination with other techniques. While extensively explored in biomedical applications, MEW's potential in other fields remains untapped. Thus, this review explores MEW's characteristics from a materials science perspective, emphasizing the diverse range of materials and composites processed by this technique and their current and potential applications. Additionally, the prospects offered by postprinting processing techniques are explored, together with the synergy achieved by combining melt electrowriting with other manufacturing methods. By highlighting the untapped potentials of MEW, this review aims to inspire research groups across various fields to leverage this technology for innovative endeavors.
Collapse
Affiliation(s)
- Paula G Saiz
- Macromolecular Chemistry Research Group (LABQUIMAC) Department of Physical Chemistry Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403, USA
| | - Ander Reizabal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403, USA
- BCMaterials, Basque Center for Materials Applications, and Nanostructures, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Jose Luis Vilas-Vilela
- Macromolecular Chemistry Research Group (LABQUIMAC) Department of Physical Chemistry Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Spain
- BCMaterials, Basque Center for Materials Applications, and Nanostructures, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, OR, 97403, USA
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials Applications, and Nanostructures, Bldg. Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
5
|
Sun S, Liu Y, Gao H, Guan W, Zhao Y, Li G. Cell culture on suspended fiber for tissue regeneration: A review. Int J Biol Macromol 2024; 268:131827. [PMID: 38670204 DOI: 10.1016/j.ijbiomac.2024.131827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Cell culturing is a cornerstone of tissue engineering, playing a crucial role in tissue regeneration, drug screening, and the study of disease mechanisms. Among various culturing techniques, 3D culture systems, particularly those utilizing suspended fiber scaffolds, offer a more physiologically relevant environment than traditional 2D monolayer cultures. These 3D scaffolds enhance cell growth, differentiation, and proliferation by mimicking the in vivo cellular milieu. This review focuses on the critical role of suspended fiber scaffolds in tissue engineering. We compare the effectiveness of 3D suspended fiber scaffolds with 2D culture systems, discussing their respective benefits and limitations in the context of tissue regeneration. Furthermore, we explore the preparation methods of suspended fiber scaffolds and their potential applications. The review concludes by considering future research directions for optimizing suspended fiber scaffolds to address specific challenges in tissue regeneration, underscoring their significant promise in advancing tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Shaolan Sun
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Yaqiong Liu
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Hongxia Gao
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Wenchao Guan
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Yahong Zhao
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, 226001 Nantong, PR China; NMPA Key Laboratory for Quality Evaluation of Medical Protective and Implant Devices, 450018 Zhengzhou, PR China.
| |
Collapse
|
6
|
Andrade Mier MS, Bakirci E, Stahlhut P, Blum R, Dalton PD, Villmann C. Primary Glial Cell and Glioblastoma Morphology in Cocultures Depends on Scaffold Design and Hydrogel Composition. Adv Biol (Weinh) 2023; 7:e2300029. [PMID: 37017512 DOI: 10.1002/adbi.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 04/06/2023]
Abstract
3D cell cultures better replicate the in vivo environment compared to 2D models. Glioblastoma multiforme, a malignant brain tumor, highly profits from its cellular environment. Here, the U87 glioblastoma cell line in the presence/absence of primary astrocytes is studied. Thiolated hyaluronic acid (HA-SH) hydrogel reinforced with microfiber scaffolds is compared to Matrigel. Hyaluronic acid is a major extracellular matrix (ECM) component in the brain. Poly(ɛ-caprolactone) (PCL) scaffolds are written by meltelectrowriting in a box and triangular shaped design with pore sizes of 200 µm. Scaffolds are composed of 10-layers of PCL microfibers. It is found that scaffold design has an impact on cellular morphology in the absence of hydrogel. Moreover, the used hydrogels have profound influences on cellular morphology resulting in spheroid formation in HA-SH for both the tumor-derived cell line and astrocytes, while cell viability is high. Although cocultures of U87 and astrocytes exhibit cell-cell interactions, polynucleated spheroid formation is still present for U87 cells in HA-SH. Locally restricted ECM production or inability to secrete ECM proteins may underlie the observed cell morphologies. Thus, the 3D reinforced PCL-HA-SH composite with glioma-like cells and astrocytes constitutes a reproducible system to further investigate the impact of hydrogel modifications on cellular behavior and development.
Collapse
Affiliation(s)
- Mateo S Andrade Mier
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| | - Ezgi Bakirci
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital Würzburg, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - Paul D Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute, University Hospital Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Blvd, Eugene, OR, 97403, USA
| | - Carmen Villmann
- Institute for Clinical Neurobiology, University Hospital Würzburg, Versbacherstr. 5, 97078, Würzburg, Germany
| |
Collapse
|
7
|
Yao C, Qiu Z, Li X, Zhu H, Li D, He J. Electrohydrodynamic Printing of Microfibrous Architectures with Cell-Scale Spacing for Improved Cellular Migration and Neurite Outgrowth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207331. [PMID: 36775926 DOI: 10.1002/smll.202207331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/25/2023] [Indexed: 05/11/2023]
Abstract
Electrohydrodynamic (EHD) printing provides unparalleled opportunities in fabricating microfibrous architectures to direct cellular orientation. However, it faces great challenges in depositing orderly microfibers with cell-scale spacing due to inherent fiber-fiber electrostatic interactions. Here a finite element method is established to analyze the electrostatic forces induced on the EHD-printed microfibers and the relationship between the fiber diameter and spacing for parallel deposition of EHD-printed microfibers is revealed theoretically and experimentally. It is found that uniform fiber arrangement can be achieved when the fiber spacing is five times larger than the fiber diameter. This finding enables the successful printing of parallel fibrous architectures with a fiber diameter of 4.9 ± 0.1 µm and a cell-scale fiber spacing of 25.6 ± 1.9 µm. The resultant microfibrous architectures exhibit unique capability to direct cellular alignment and enhance cellular density and migration as the fiber spacing decreases from 100 to 25 µm. The EHD-printed parallel microfibers with cell-scale spacing are found to improve the outgrowth length of neurites and accelerate the migration of Schwann cells from Dorsal Root Ganglion spheres, which facilitate the formation of densely-arranged and highly-aligned cellular constructs. The presented method is promising to produce biomimetic microfibrous architectures for functional nerve regeneration.
Collapse
Affiliation(s)
- Cong Yao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- NMPA Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
8
|
Assessing the response of human primary macrophages to defined fibrous architectures fabricated by melt electrowriting. Bioact Mater 2023; 21:209-222. [PMID: 36101857 PMCID: PMC9440261 DOI: 10.1016/j.bioactmat.2022.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/01/2023] Open
|
9
|
Reizabal A, Tandon B, Lanceros-Méndez S, Dalton PD. Electrohydrodynamic 3D Printing of Aqueous Solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205255. [PMID: 36482162 DOI: 10.1002/smll.202205255] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Among the various electrohydrodynamic (EHD) processing techniques, electrowriting (EW) produces the most complex 3D structures. Aqueous solution EW similarly retains the potential for additive manufacturing well-resolved 3D structures, while providing new opportunities for processing biologically derived polymers and eschewing organic solvents. However, research on aqueous-based EHD processing is still limited. To summarize the field and advocate for increased use of aqueous bio-based materials, this review summarizes the most significant contributions of aqueous solution processing. Special emphasis has been placed on understanding the effects of different printing parameters, the prospects for 3D processing new materials, and future challenges.
Collapse
Affiliation(s)
- Ander Reizabal
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Biranche Tandon
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
| | - Senentxu Lanceros-Méndez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Paul D Dalton
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, 1505 Franklin Boulevard, Eugene, 97403, OR, USA
| |
Collapse
|
10
|
3D printing of bio-instructive materials: Toward directing the cell. Bioact Mater 2023; 19:292-327. [PMID: 35574057 PMCID: PMC9058956 DOI: 10.1016/j.bioactmat.2022.04.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 01/10/2023] Open
|
11
|
Haag H, Sonnleitner D, Lang G, Dalton PD. Melt electrowriting to produce microfiber fragments. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hannah Haag
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute University Hospital of Würzburg Würzburg Germany
- Surface and Interface Engineered Materials, Campus Group T KU Leuven Leuven Belgium
- Prometheus, Division of Skeletal Tissue Engineering KU Leuven Leuven Belgium
| | | | - Gregor Lang
- Biopolymer Processing Group University of Bayreuth Bayreuth Germany
| | - Paul D. Dalton
- Department of Functional Materials in Medicine and Dentistry and Bavarian Polymer Institute University Hospital of Würzburg Würzburg Germany
- Phil and Penny Knight Campus for Accelerating Scientific Impact University of Oregon Eugene Oregon
| |
Collapse
|