1
|
Konishi K, Tsurumaki E, Konishi GI. Aggregation-Induced Emission in Bridged (E,E)-1,4-Diphenyl-1,3-butadiene Derivatives with Six- and Seven-Membered Rings. Chem Asian J 2025:e202500191. [PMID: 40044598 DOI: 10.1002/asia.202500191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Recently, we developed a new aggregation-induced emission (AIE) luminogen (AIEgen), bridged stilbene, by incorporating a propylene group into the C=C bond of the luminescent phenyl stilbene. This bridged structure, featuring a seven-membered ring, induces a significant conformational change, causing the C=C bond to twist in the excited state, thereby enhancing non-radiative decay in solution. In this study, we introduced bridged structures with alkylene groups of varying lengths into (E,E)-1,4-diphenyl-1,3-butadiene (DPB). The variation in the bridged structures of the synthesized DPB derivatives notably influenced the environmental sensitivity of fluorescence. Whereas the compound with two six-membered ring structures exhibited emission in solution and in the polycrystalline state, derivatives with a seven-membered ring exhibited AIE properties. Specifically, BDPB[7,7], featuring two seven-membered ring structures, demonstrated AIE characteristics with solid-state luminescence originating from J-aggregates. However, the fluorescence quantum yield was low in poly(methyl methacrylate) (PMMA) dispersion films, where molecular motion was restricted. These findings open new possibilities for designing unique AIEgens that remain nonluminescent even in highly viscous or confined environments, such as PMMA films.
Collapse
Affiliation(s)
- Kensei Konishi
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, Institute of Science Tokyo, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Gen-Ichi Konishi
- Department of Chemical Science and Engineering, Institute of Science Tokyo, 2-12-1 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
2
|
Gawade VK, Jadhav RW, Bhosale SV. AIE-Based & Organic Luminescent Materials: Nanoarchitectonics and Advanced Applications. Chem Asian J 2024; 19:e202400682. [PMID: 39136399 DOI: 10.1002/asia.202400682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Indexed: 10/18/2024]
Abstract
Organic luminescence materials makes the molecule more enthusiastic in wide variety of applications. The luminescent organic materials are in a attraction of the researchers, and the Aggregation-Induced Emission (AIE) is attributed to the occurrence that particular chromophores (typically fluorophores) display very low or nearly no emission in the monomolecular soluble state but become highly emissive when forming aggregates in solution or in solid state. This phenomenon is relatively abnormal when compared with many other traditional fluorophores. AIE research suppresses aggregation-caused quenching (ACQ). Nevertheless, the carbon dots (CDs) and quantum dots have shown to have tyical florescence properties, therefore, recent years many researchers have also attracted for their developments. The CDs, luminescent, and AIE materials are not only used in biomedical applications and organic light-emitting diodes but also in sensing, self-assembly, and other areas. One should introduce promising material to a designed framework that exhibits AIE characteristics to ensure moral results in AIE. Amongest, AIE-active tetraphenylethylene (TPE) is attractive fluorophores due to its easy synthesis strategy. This review article discusses the synthesis properties of TPE, CDs, and luminescent materials with a broad range of applications. We have outlined linear, branched-shaped supramolecular, and hybrid macromolecules due to its potential in the future.
Collapse
Affiliation(s)
- Vilas K Gawade
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Karnataka, Kalaburgi, 585367, India
| | - Ratan W Jadhav
- Department of Chemical Sciences, IISER Kolkata, Kolkata, 741246, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Karnataka, Kalaburgi, 585367, India
| |
Collapse
|
3
|
Turelli M, Ciofini I, Wang Q, Ottochian A, Labat F, Adamo C. Organic compounds for solid state luminescence enhancement/aggregation induced emission: a theoretical perspective. Phys Chem Chem Phys 2023; 25:17769-17786. [PMID: 37377211 DOI: 10.1039/d3cp02364h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Organic luminophores displaying one or more forms of luminescence enhancement in solid state are extremely promising for the development and performance optimization of functional materials essential to many modern key technologies. Yet, the effort to harness their huge potential is riddled with hurdles that ultimately come down to a limited understanding of the interactions that result in the diverse molecular environments responsible for the macroscopic response. In this context, the benefits of a theoretical framework able to provide mechanistic explanations to observations, supported by quantitative predictions of the phenomenon, are rather apparent. In this perspective, we review some of the established facts and recent developments about the current theoretical understanding of solid-state luminescence enhancement (SLE) with an accent on aggregation-induced emission (AIE). A description of the macroscopic phenomenon and the questions it raises is accompanied by a discussion of the approaches and quantum chemistry methods that are more apt to model these molecular systems with the inclusion of an accurate yet efficient simulation of the local environment. A sketch of a general framework, building from the current available knowledge, is then attempted via the analysis of a few varied SLE/AIE molecular systems from literature. A number of fundamental elements are identified offering the basis for outlining design rules for molecular architectures exhibiting SLE that involve specific structural features with the double role of modulating the optical response of the luminophores and defining the environment they experience in solid state.
Collapse
Affiliation(s)
- Michele Turelli
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Qinfan Wang
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Alistar Ottochian
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Frédéric Labat
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
| | - Carlo Adamo
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Theoretical Chemistry and Modeling Team, 75005 Paris, France.
- Institut Universitaire de France, 103 Boulevard Saint Michel, F-75005 Paris, France
| |
Collapse
|
4
|
Dini VA, Gradone A, Villa M, Gingras M, Focarete ML, Ceroni P, Gualandi C, Bergamini G. A high-sensitivity long-lifetime phosphorescent RIE additive to probe free volume-related phenomena in polymers. Chem Commun (Camb) 2023; 59:1465-1468. [PMID: 36651351 DOI: 10.1039/d2cc05908h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The photophysical behaviour of phosphorescent rigidification-induced emission (RIE) dyes is highly affected by their micro- and nanoenvironment. The lifetime measure of RIE dyes dispersed in polymers represents an effective approach to gain valuable information on polymer free volume and thus develop materials potentially able to self-monitor physical ageing and mechanical stresses.
Collapse
Affiliation(s)
- Valentina Antonia Dini
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Alessandro Gradone
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,CNR Institute for microelectronics and microsystems, Via Gobetti 101, 40129, Bologna, Italy.
| | - Marco Villa
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINAM, Marseille, France
| | - Maria Letizia Focarete
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - Paola Ceroni
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| | - Chiara Gualandi
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy. .,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), Alma Mater Studiorum - Università di Bologna, 40064 Ozzano dell'Emilia, Bologna, Italy.,Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136, Bologna, Italy
| | - Giacomo Bergamini
- Department of Chemistry "Giacomo Ciamician" and INSTM UdR of Bologna, University of Bologna, Via Selmi, 2, 40126, Bologna, Italy.
| |
Collapse
|
5
|
de la Hoz Tomás M, Yamaguchi M, Cohen B, Hisaki I, Douhal A. Deciphering the ultrafast dynamics of a new tetraphenylethylene derivative in solutions: charge separation, phenyl ring rotation and CC bond twisting. Phys Chem Chem Phys 2023; 25:1755-1767. [PMID: 36594826 DOI: 10.1039/d2cp05220b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tetraphenylethylene (TPE) derivatives are one of the fundamental units for developing aggregation induced emission (AIE) scaffolds. However, the underlying mechanisms implicated in the relaxation of the excited TPE remain a topic of ongoing discussion, while the effect of bulky substituents on its photobehaviour is still under scrutiny. Here, we report a detailed study of the photophysical properties of a new symmetrical and bulky TPE derivative with terphenyl groups (TTECOOBu) in solvents of different polarities and viscosities. Using femto- to nanosecond (fs-ns) time-resolved absorption and emission techniques, we elucidated the role of the phenyl group rotations and core ethylene bond twisting in its behaviour. We demonstrate that TTECOOBu in DCM solutions undergoes a 600 fs charge separation along the ethylene bond leading to a resonance structure with a lifetime of ∼1 ns. The latter relaxes via two consecutive events: a twisting of the ethylene bond (∼ 9 ps) and a rotation of the phenyl rings (∼ 30 ps) leading to conformationally-relaxed species with a largely Stokes-shifted emission (∼ 12 500 cm-1). The formation of the red-emitting species clearly depends on the solvent viscosity and rigidity of the medium. Contrary to the photobehavior in the highly viscous triacetin or rigid polymer matrix of PMMA, a reversible mechanism was observed in DCM and DMF solutions. These results provide new findings on the ultrafast mechanisms of excited TPE derivatives and should help in the development of new molecular rotors with interesting AIE properties for photonic applications.
Collapse
Affiliation(s)
- Mario de la Hoz Tomás
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Mao Yamaguchi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| | - Ichiro Hisaki
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071 Toledo, Spain.
| |
Collapse
|
6
|
Ge S, Wang E, Li J, Tang BZ. Aggregation-Induced Emission Boosting the Study of Polymer Science. Macromol Rapid Commun 2022; 43:e2200080. [PMID: 35320607 DOI: 10.1002/marc.202200080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/09/2022] [Indexed: 11/07/2022]
Abstract
The past one hundred years witness the great development of polymer science. The advancement of polymer science is closely related with the developing of characterization techniques and methods, from viscometry in molecular weight determination to advanced techniques including differential scanning calorimetry, nuclear magnetic resonance and scanning electron microscopy. However, these techniques are normally constrained to tedious sample preparation, high cost, harsh experimental condition, or ex-situ characterization. Fluorescence technology has the merits of high sensitivity and direct visualization. Contrary to conventional aggregation-causing quenching fluorophores, those dyes with aggregation-induced emission characteristic show high emission efficiency in aggregate states. Based on the restriction of intramolecular motions for AIE properties, the AIE materials are very sensitive to the surrounding microenvironments owing to the twisted propeller-like structures and therefore reveal great potentials in polymer's study. The AIE concept has been successfully used in polymer's study and provides us a deeper understanding on polymer structure and properties. In this review, the applications of AIEgens in polymer science for visualizing polymerization, glass transition, dissolution, crystallization, gelation, self-assembly, phase separation, cracking and self-healing were exemplified and summarized. Lastly, the challenges and perspectives in the study of polymer science using AIEgens are addressed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sheng Ge
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Erjing Wang
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Jinhua Li
- S. Ge, Dr. E. Wang, Prof. J. Li, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, School of Materials Science and Engineering, Hubei University, No. 368 Youyi Avenue, Wuchang District, Wuhan, 430062, China
| | - Ben Zhong Tang
- Prof. B. Z. Tang, Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, No. 2001 Longxiang Boulevard, Longgang District, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
7
|
Sun X, Guo D, Cao Y, Lin F, Huang H, Yang Z, Chen Y, Chi Z. Stretching-enhanced emission behavior of polyurethane composites containing pyrene derivatives. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Lyu G, Southern TJF, Charles BL, Roger M, Gerbier P, Clément S, Evans RC. Aggregation-induced emission from silole-based lumophores embedded in organic-inorganic hybrid hosts. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:13914-13925. [PMID: 34745631 PMCID: PMC8515938 DOI: 10.1039/d1tc02794h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/05/2021] [Indexed: 05/29/2023]
Abstract
Aggregation-induced emitters - or AIEgens - are often symbolised by their photoluminescence enhancement as a result of aggregation in a poor solvent. However, for some applications, it is preferable for the AIE response to be induced in the solid-state. Here, the ability of an organic-inorganic hybrid polymer host to induce the AIE response from embedded silole-based lumophores has been explored. We have focussed on understanding how the incorporation method controls the extent of lumophore aggregation and thus the associated photophysical properties. To achieve this, two sample concentration series have been prepared, based on either the parent AIEgen 1,1-dimethyl-2,3,4,5-tetraphenylsilole (DMTPS) or the silylated analogue (DMTPS-Sil), which were physically doped or covalently grafted, respectively, to dU(600) - a member of the ureasil family of poly(oxyalkylene)/siloxane hybrids. Steady-state and time-resolved photoluminescence measurements, coupled with confocal microscopy studies, revealed that covalent grafting leads to improved dispersibility of the AIEgen, reduced scattering losses, increased photoluminescence quantum yields (up to ca. 40%) and improved chemical stability. Moreover, the ureasil also functions as a photoactive host that undergoes excitation energy transfer to the embedded DMTPS-Sil with an efficiency of almost 70%. This study highlights the potential for designing complex photoluminescent hybrid polymers exhibiting an ehanced AIE response for solid-state optical applications.
Collapse
Affiliation(s)
- Guanpeng Lyu
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Thomas J F Southern
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Bethan L Charles
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| | - Maxime Roger
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | | | | | - Rachel C Evans
- Department of Material Science and Metallurgy, University of Cambridge 27 Charles Babbage Road Cambridge CB3 0FS UK
| |
Collapse
|
9
|
Husband JT, Xie Y, Wilks TR, Male L, Torrent-Sucarrat M, Stavros VG, O'Reilly RK. Rigidochromism by imide functionalisation of an aminomaleimide fluorophore. Chem Sci 2021; 12:10550-10557. [PMID: 34447549 PMCID: PMC8356812 DOI: 10.1039/d1sc03307g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Fluorescent dyes that exhibit high solid state quantum yields and sensitivity to the mechanical properties of their local environment are useful for a wide variety of applications, but are limited in chemical diversity. We report a trityl-functionalised maleimide that displays rigidochromic behaviour, becoming highly fluorescent when immobilised in a solid matrix, while displaying negligible fluorescence in solution. Furthermore, the dye's quantum yield is shown to be sensitive to the nature of the surrounding matrix. Computational studies reveal that this behaviour arises from the precise tuning of inter- and intramolecular noncovalent interactions. This work expands the diversity of molecules exhibiting solid state environment sensitivity, and provides important fundamental insights into their design.
Collapse
Affiliation(s)
- Jonathan T Husband
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Yujie Xie
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Thomas R Wilks
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Miquel Torrent-Sucarrat
- Department of Organic Chemistry I, Universidad del País Vasco (UPV/EHU), Donostia International Physics Center (DIPC) Manuel Lardizabal Ibilbidea 3 Donostia 20018 Spain
- Ikerbasque, Basque Foundation for Science Plaza Euskadi 5 48009 Bilbao Euskadi Spain
| | | | - Rachel K O'Reilly
- School of Chemistry, University of Birmingham, Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
10
|
de Thieulloy L, Le Bras L, Zumer B, Sanz García J, Lemarchand C, Pineau N, Adamo C, Perrier A. Aggregation-Induced Emission: A Challenge for Computational Chemistry Taking TPA-BMO as an Example*. Chemphyschem 2021; 22:1802-1816. [PMID: 34161645 DOI: 10.1002/cphc.202100239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/07/2021] [Indexed: 11/08/2022]
Abstract
A multi-environment computational approach is proposed to study the modulation of the emission behavior of the triphenylamine (Z)-4-benzylidene-2-methyloxazol-5(4H)-one (TPA-BMO) molecule [Tang et al., J. Phys. Chem. C 119, 21875 (2015)]. We aim at (1) proposing a realistic description of the molecule in several environments (solution, aggregate, polymer matrix), (2) modelling its absorption and emission properties, and (3) providing a qualitative understanding of the experimental observations by highlighting the photophysical phenomena leading to the emission modulation. To this purpose, we rely on (TD-)DFT calculations and classical Molecular Dynamics simulations, but also on the hybrid ONIOM QM/QM' approach and the in situ chemical polymerization methodology. In low-polar solvents, the investigation of the potential energy surfaces and the modulation of the emission quantum yield can be attributed to possible photophysical energy dissipation caused by low-frequency vibrational modes. In the aggregate and in the polymer matrix, the emission modulation can be qualitatively interpreted in terms of the possible restriction of the intramolecular vibrations. For these two systems, our study highlights that a careful modelling of the environment is far from trivial but is fundamental to model the optical properties of the fluorophore.
Collapse
Affiliation(s)
- Laure de Thieulloy
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005, Paris, France
| | - Laura Le Bras
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005, Paris, France
| | - Benoît Zumer
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005, Paris, France
| | - Juan Sanz García
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR7616, F-75005, Paris, France
| | - Claire Lemarchand
- CEA/DAM/DIF, 91297, Arpajon Cedex, France.,Université Paris-Saclay, CEA, Laboratoire Matière sous Conditions Extrêmes, 91680, Bruyères-le-Chatel, France
| | - Nicolas Pineau
- CEA/DAM/DIF, 91297, Arpajon Cedex, France.,Université Paris-Saclay, CEA, Laboratoire Matière sous Conditions Extrêmes, 91680, Bruyères-le-Chatel, France
| | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005, Paris, France.,Institut Universitaire de France, 103 Bd Saint-Michel, F-75005, Paris, France
| | - Aurélie Perrier
- Chimie ParisTech, PSL Research University, CNRS, Institute of Chemistry for Life and Health Sciences (i-CLeHS), F-75005, Paris, France.,Université de Paris, F-75006, Paris, France
| |
Collapse
|
11
|
|
12
|
Han T, Wang X, Wang D, Tang BZ. Functional Polymer Systems with Aggregation-Induced Emission and Stimuli Responses. Top Curr Chem (Cham) 2021; 379:7. [PMID: 33428022 PMCID: PMC7797498 DOI: 10.1007/s41061-020-00321-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/18/2020] [Indexed: 01/31/2023]
Abstract
Functional polymer systems with stimuli responses have attracted great attention over the years due to their diverse range of applications. Such polymers are capable of altering their chemical and/or physical properties, such as chemical structures, chain conformation, solubility, shape, morphologies, and optical properties, in response to single or multiple stimuli. Among various stimuli-responsive polymers, those with aggregation-induced emission (AIE) properties possess the advantages of high sensitivity, fast response, large contrast, excellent photostability, and low background noise. The changes in fluorescence signal can be conveniently detected and monitored using portable instruments. The integration of AIE and stimuli responses into one polymer system provides a feasible and effective strategy for the development of smart polymers with high sensitivity to environmental variations. Here, we review the recent advances in the design, preparation, performance, and applications of functional synthetic polymer systems with AIE and stimuli responses. Various AIE-based polymer systems with responsiveness toward single physical or chemical stimuli as well as multiple stimuli are summarized with specific examples. The current challenges and perspectives on the future development of this research area will also be discussed at the end of this review.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xinnan Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
13
|
Han T, Liu L, Wang D, Yang J, Tang BZ. Mechanochromic Fluorescent Polymers Enabled by AIE Processes. Macromol Rapid Commun 2020; 42:e2000311. [PMID: 32648346 DOI: 10.1002/marc.202000311] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/28/2020] [Indexed: 02/06/2023]
Abstract
Polymeric materials are susceptible to the chain re-conformation, reorientation, slippage, and bond cleavage upon mechanical stimuli, which are likely to further grow into macro-damages and eventually lead to the compromise or loss of materials performance. Therefore, it is of great academic importance and practical significance to sensitively detect the local mechanical states in polymers and monitor the dynamic variations in polymer structures and properties under external forces. Mechanochromic fluorescent polymers (MFP) are a class of smart materials by utilizing sensitive fluorescent motifs to detect polymer chain events upon mechanical stimuli. Taking advantage of the unique aggregation-induced emission (AIE) effect, a variety of MFP systems that can self-report their mechanical states and mechano-induced structural and property changes through fluorescence signals have been developed. In this feature article, an overview of the recent progress on MFP systems enabled by AIE process is presented. The main design principles, including physically doping dispersed or microencapsulated AIE luminogens (AIEgens) into polymer matrix, chemically linking AIEgens in polymer backbones, and utilizing the clusterization-triggered emission of polymers containing nonconventional luminogens, are discussed with representative examples. Perspectives on the existing challenges and problems in this field are also discussed to guide future development.
Collapse
Affiliation(s)
- Ting Han
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lijie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jinglei Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
14
|
Yu JR, Chou HC, Yang CW, Liao WS, Hwang IS, Chen C. A horizontal-type scanning near-field optical microscope with torsional mode operation toward high-resolution and non-destructive imaging of soft materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:073703. [PMID: 32752832 DOI: 10.1063/5.0009422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
We design and build a horizontal-type aperture based scanning near-field optical microscope (a-SNOM) with superior mechanical stability toward high-resolution and non-destructive topographic and optical imaging. We adopt the torsional mode in AFM (atomic force microscopy) operation to achieve a better force sensitivity and a higher topographic resolution when using pyramidal a-SNOM tips. The performance and stability of the AFM are evaluated through single-walled carbon nanotube and poly(3-hexyl-thiophene) nanowire samples. An optical resolution of 93 nm is deduced from the a-SNOM imaging of a metallic grating. Finally, a-SNOM fluorescence imaging of soft lipid domains is successfully achieved without sample damage by our horizontal-type a-SNOM instrument with torsional mode AFM operation.
Collapse
Affiliation(s)
- Jia-Ru Yu
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - He-Chun Chou
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| | - Chih-Wen Yang
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wei-Ssu Liao
- Department of Chemistry, National Taiwan University, Da-an, Taipei 106, Taiwan
| | - Ing-Shouh Hwang
- Institute of Physics, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chi Chen
- Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 115, Taiwan
| |
Collapse
|
15
|
Iwai R, Suzuki S, Sasaki S, Sairi AS, Igawa K, Suenobu T, Morokuma K, Konishi G. Bridged Stilbenes: AIEgens Designed via a Simple Strategy to Control the Non‐radiative Decay Pathway. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Riki Iwai
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1-H-134 O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Satoshi Suzuki
- Fukui Institute for Fundamental Chemistry Kyoto University Takano-Nishibiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| | - Shunsuke Sasaki
- Université de Nantes CNRS Institut des Matériaux Jean Rouxel IMN F-44000 Nantes France
| | - Amir Sharidan Sairi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1-H-134 O-okayama, Meguro-ku Tokyo 152-8552 Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering Kyushu University Fukuoka 816-8580 Japan
| | - Tomoyoshi Suenobu
- Division of Advanced Science and Biotechnology Osaka University 2-1 Yamada-oka, Suita Osaka 565 Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry Kyoto University Takano-Nishibiraki-cho 34-4, Sakyou-ku Kyoto 606-8103 Japan
| | - Gen‐ichi Konishi
- Department of Chemical Science and Engineering Tokyo Institute of Technology 2-12-1-H-134 O-okayama, Meguro-ku Tokyo 152-8552 Japan
| |
Collapse
|
16
|
Suzuki S, Sasaki S, Sairi AS, Iwai R, Tang BZ, Konishi G. Principles of Aggregation-Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications. Angew Chem Int Ed Engl 2020; 59:9856-9867. [PMID: 32154630 PMCID: PMC7318703 DOI: 10.1002/anie.202000940] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Indexed: 12/16/2022]
Abstract
Twenty years ago, the concept of aggregation-induced emission (AIE) was proposed, and this unique luminescent property has attracted scientific interest ever since. However, AIE denominates only the phenomenon, while the details of its underlying guiding principles remain to be elucidated. This minireview discusses the basic principles of AIE based on our previous mechanistic study of the photophysical behavior of 9,10-bis(N,N-dialkylamino)anthracene (BDAA) and the corresponding mechanistic analysis by quantum chemical calculations. BDAA comprises an anthracene core and small electron donors, which allows the quantum chemical aspects of AIE to be discussed. The key factor for AIE is the control over the non-radiative decay (deactivation) pathway, which can be visualized by considering the conical intersection (CI) on a potential energy surface. Controlling the conical intersection (CI) on the potential energy surface enables the separate formation of fluorescent (CI:high) and non-fluorescent (CI:low) molecules [control of conical intersection accessibility (CCIA)]. The novelty and originality of AIE in the field of photochemistry lies in the creation of functionality by design and in the active control over deactivation pathways. Moreover, we provide a new design strategy for AIE luminogens (AIEgens) and discuss selected examples.
Collapse
Affiliation(s)
- Satoshi Suzuki
- Fukui Institute for Fundamental ChemistryKyoto UniversityTakano-Nishibiraki-cho 34-4, Sakyou-kuKyoto606-8103Japan
| | - Shunsuke Sasaki
- Université de NantesCNRSInstitut des Matériaux Jean Rouxel, IMNF-44000NantesFrance
| | - Amir Sharidan Sairi
- Department of Chemical Science and EngineeringTokyo Institute of Technology2-12-1-H-134 O-okayama, Meguro-kuTokyo152-8552Japan
| | - Riki Iwai
- Department of Chemical Science and EngineeringTokyo Institute of Technology2-12-1-H-134 O-okayama, Meguro-kuTokyo152-8552Japan
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong
| | - Gen‐ichi Konishi
- Department of Chemical Science and EngineeringTokyo Institute of Technology2-12-1-H-134 O-okayama, Meguro-kuTokyo152-8552Japan
- PRESTO (Japan) Science and Technology Agency (JST)Japan
| |
Collapse
|
17
|
Principles of Aggregation‐Induced Emission: Design of Deactivation Pathways for Advanced AIEgens and Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000940] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
18
|
Iwai R, Suzuki S, Sasaki S, Sairi AS, Igawa K, Suenobu T, Morokuma K, Konishi GI. Bridged Stilbenes: AIEgens Designed via a Simple Strategy to Control the Non-radiative Decay Pathway. Angew Chem Int Ed Engl 2020; 59:10566-10573. [PMID: 32119188 DOI: 10.1002/anie.202000943] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Indexed: 12/18/2022]
Abstract
To broaden the application of aggregation-induced emission (AIE) luminogens (AIEgens), the design of novel small-molecular dyes that exhibit high fluorescence quantum yield (Φfl ) in the solid state is required. Considering that the mechanism of AIE can be rationalized based on steric avoidance of non-radiative decay pathways, a series of bridged stilbenes was designed, and their non-radiative decay pathways were investigated theoretically. Bridged stilbenes with short alkyl chains exhibited a strong fluorescence emission in solution and in the solid state, while bridged stilbenes with long alkyl chains exhibited AIE. Based on this theoretical prediction, we developed the bridged stilbenes BPST[7] and DPB[7], which demonstrate excellent AIE behavior.
Collapse
Affiliation(s)
- Riki Iwai
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Satoshi Suzuki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishibiraki-cho 34-4, Sakyou-ku, Kyoto, 606-8103, Japan
| | - Shunsuke Sasaki
- Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel, IMN, F-44000, Nantes, France
| | - Amir Sharidan Sairi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Fukuoka, 816-8580, Japan
| | - Tomoyoshi Suenobu
- Division of Advanced Science and Biotechnology, Osaka University, 2-1 Yamada-oka, Suita, Osaka, 565, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University, Takano-Nishibiraki-cho 34-4, Sakyou-ku, Kyoto, 606-8103, Japan
| | - Gen-Ichi Konishi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 2-12-1-H-134 O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
| |
Collapse
|
19
|
Pucci A. Mechanochromic Fluorescent Polymers with Aggregation-Induced Emission Features. SENSORS (BASEL, SWITZERLAND) 2019; 19:E4969. [PMID: 31739634 PMCID: PMC6891766 DOI: 10.3390/s19224969] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/07/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Abstract
Mechanochromic polymers are defined as materials that are able to detect a mechanical stress through an optical output. This feature has evoked a growing interest in the last decades, thanks to the progress of chromogenic molecules whose optical characteristics and chemical functionalities allow their effective insertion in many thermoplastic and thermoset matrices. Among the different types of fluorogenic probes able to detect mechanical solicitations, those with aggregation-induced emission (i.e., AIEgens) have attracted tremendous interest since their discovery in 2001. In the present review, the main principles behind the AIEgens working behavior are introduced along with the current state of knowledge concerning the design and preparation of the derived mechanochromic fluorescent polymers. Examples are provided concerning the most ingenious solution for the preparation of chromogenic materials, starting from different types of commodity plastics or synthetic polymers and combined with the latest AIE technology to provide the most sensitive response to mechanical stress.
Collapse
Affiliation(s)
- Andrea Pucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
20
|
Le Bras L, Adamo C, Perrier A. In Silico Investigation of the Aggregation‐Caused Quenching: the “Tolane‐Based Molecule” Case. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Laura Le Bras
- Chimie ParisTechPSL Research University, CNRS, Institute of Chemistry for Life and Health Science (i-CLeHS) F-75005 Paris France
| | - Carlo Adamo
- Chimie ParisTechPSL Research University, CNRS, Institute of Chemistry for Life and Health Science (i-CLeHS) F-75005 Paris France
- Institut Universitaire de France 103 Boulevard Saint Michel F-75005 Paris France
| | - Aurélie Perrier
- Chimie ParisTechPSL Research University, CNRS, Institute of Chemistry for Life and Health Science (i-CLeHS) F-75005 Paris France
- Université Paris DiderotSorbonne Paris Cité 5 rue Thomas Mann F-75205 Paris Cedex 13 France
| |
Collapse
|
21
|
Qiu Z, Liu X, Lam JWY, Tang BZ. The Marriage of Aggregation-Induced Emission with Polymer Science. Macromol Rapid Commun 2018; 40:e1800568. [DOI: 10.1002/marc.201800568] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Indexed: 01/23/2023]
Affiliation(s)
- Zijie Qiu
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Xiaolin Liu
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- Center for Aggregation-Induced Emission; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute; No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan Shenzhen 518057 China
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- Center for Aggregation-Induced Emission; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
22
|
Han T, Gui C, Lam JWY, Jiang M, Xie N, Kwok RTK, Tang BZ. High-Contrast Visualization and Differentiation of Microphase Separation in Polymer Blends by Fluorescent AIE Probes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00973] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ting Han
- Guangdong
Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Chen Gui
- Guangdong
Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Jacky W. Y. Lam
- Guangdong
Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Meijuan Jiang
- Guangdong
Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ni Xie
- Guangdong
Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ryan T. K. Kwok
- Guangdong
Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Ben Zhong Tang
- Guangdong
Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
23
|
Roose J, Leung ACS, Wang J, Peng Q, Sung HHY, Williams ID, Tang BZ. A colour-tunable chiral AIEgen: reversible coordination, enantiomer discrimination and morphology visualization. Chem Sci 2016; 7:6106-6114. [PMID: 30034751 PMCID: PMC6024173 DOI: 10.1039/c6sc01614f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/31/2016] [Indexed: 11/21/2022] Open
Abstract
We present a conceptually new approach to synthesise a boron-containing Aggregation-Induced Emissive Luminogen (AIEgen) with a chiral chromophore. An intramolecular N-B coordinating bond results in a low-energy transition that renders the material red-emissive in a solid state. By competitive binding of nucleophiles to the boron atom, this bond is replaced in favour of an intermolecular coordinating bond, which results in a tremendous blue-shift in both the absorption and emission. A supportive DFT computation elucidates that a breakage of the intramolecular N-B coordinating bond causes a tremendous loss of conjugation in the LUMO, resulting in a larger energy gap. Owing to the fact that our scaffold is intrinsically chiral and Lewis-acidic, we demonstrate how our AIEgen discriminates between two pairs of enantiomers in a simple UV-vis measurement. Furthermore, the binding capabilities are exploited to stain polymer blends that comprised a non-coordinating and a Lewis-basic polymer. The red fluorescence that originates only from domains of the non-coordinating polymer is conveniently detected by a fluorescence microscope. Thus, compared to current analytical methods, we present a cheaper and faster methodology to study the micro-morphologies of certain polymer blends.
Collapse
Affiliation(s)
- Jesse Roose
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD , South Area , High-tech Park , Nanshan , Shenzhen 518057 , China .
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Anakin Chun Sing Leung
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD , South Area , High-tech Park , Nanshan , Shenzhen 518057 , China .
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Jia Wang
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| | - Qian Peng
- Key Laboratory of Organic Solids , Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , China
| | - Herman H-Y Sung
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Ian Duncan Williams
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing 1st RD , South Area , High-tech Park , Nanshan , Shenzhen 518057 , China .
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration & Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , Division of Biomedical Engineering , Division of Life Science and State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science & Technology , Clear Water Bay , Kowloon , Hong Kong , China
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
24
|
Lustig WP, Wang F, Teat SJ, Hu Z, Gong Q, Li J. Chromophore-Based Luminescent Metal–Organic Frameworks as Lighting Phosphors. Inorg Chem 2016; 55:7250-6. [DOI: 10.1021/acs.inorgchem.6b00897] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- William P. Lustig
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Fangming Wang
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Simon J. Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley California 94720, United States
| | - Zhichao Hu
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Qihan Gong
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| | - Jing Li
- Department
of Chemistry and Chemical Biology, Rutgers University, 610 Taylor
Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
25
|
Singh RS, Mukhopadhyay S, Biswas A, Pandey DS. Exquisite 1D Assemblies Arising from Rationally Designed Asymmetric Donor-Acceptor Architectures Exhibiting Aggregation-Induced Emission as a Function of Auxiliary Acceptor Strength. Chemistry 2015; 22:753-63. [DOI: 10.1002/chem.201503570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Indexed: 11/05/2022]
|
26
|
Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015; 115:11718-940. [DOI: 10.1021/acs.chemrev.5b00263] [Citation(s) in RCA: 5139] [Impact Index Per Article: 513.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ju Mei
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nelson L. C. Leung
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ryan T. K. Kwok
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W. Y. Lam
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute, Hi-Tech
Park, Nanshan, Shenzhen 518057, China
- Department of Chemistry,
HKUST Jockey Club Institute for Advanced Study, Institute of Molecular
Functional Materials, Division of Biomedical Engineering, State Key
Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Guangdong
Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State
Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Wang T, Wang H, Xing L, Zhang W, Gao C. Fabrication of Pyrene and Tetraphenylethylene Nanostructures by a Hydrolysis-Assisted Co-Assembly. CHINESE J CHEM 2015. [DOI: 10.1002/cjoc.201400673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Singh RS, Gupta RK, Paitandi RP, Dubey M, Sharma G, Koch B, Pandey DS. Morphological tuning via structural modulations in AIE luminogens with the minimum number of possible variables and their use in live cell imaging. Chem Commun (Camb) 2015; 51:9125-8. [DOI: 10.1039/c5cc02488a] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present three novel AIE luminogens based on a quinoline–BODIPY platform with strategic tuning of the morphology and optical properties of the nanoaggregates.
Collapse
Affiliation(s)
- Roop Shikha Singh
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | - Rakesh Kumar Gupta
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | | | - Mrigendra Dubey
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | - Gunjan Sharma
- Department of Zoology
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | - Biplob Koch
- Department of Zoology
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| | - Daya Shankar Pandey
- Department of Chemistry
- Faculty of Science
- Banaras Hindu University
- Varanasi 221 005
- India
| |
Collapse
|
29
|
Jana D, Boxi S, Parui PP, Ghorai BK. Planar–rotor architecture based pyrene–vinyl–tetraphenylethylene conjugated systems: photophysical properties and aggregation behavior. Org Biomol Chem 2015; 13:10663-74. [DOI: 10.1039/c5ob01564b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrene–tetraphenylethylene based monomers and tetramers were synthesized. Photophysical and electrochemical properties were investigated. Spacer, architecture and substituent dependent aggregation behavior were reported.
Collapse
Affiliation(s)
- Debabrata Jana
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711 103
- India
| | - Shatabdi Boxi
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711 103
- India
| | - Partha P. Parui
- Department of Chemistry
- Jadavpur University
- Kolkata 700 032
- India
| | - Binay K. Ghorai
- Department of Chemistry
- Indian Institute of Engineering Science and Technology
- Howrah 711 103
- India
| |
Collapse
|
30
|
Kumar S, Singh P, Srivastava R, Ghosh S. Packing directed beneficial role of 3-D rigid alicyclic arms on the templated molecular aggregation problem. RSC Adv 2015. [DOI: 10.1039/c5ra08231e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Tuning of solid state emission by controlling intermolecular interactions and spacing.
Collapse
Affiliation(s)
- Sunil Kumar
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| | - Punita Singh
- Physics of Energy Harvesting Division
- National Physical Laboratory
- New Delhi
- India
| | - Ritu Srivastava
- Physics of Energy Harvesting Division
- National Physical Laboratory
- New Delhi
- India
| | - Subrata Ghosh
- School of Basic Sciences
- Indian Institute of Technology Mandi
- Mandi-175001
- India
| |
Collapse
|
31
|
Tantussi F, Fuso F, Allegrini M, Micali N, Occhiuto IG, Scolaro LM, Patanè S. Linear and circular dichroism in porphyrin J-aggregates probed by polarization modulated scanning near-field optical microscopy. NANOSCALE 2014; 6:10874-10878. [PMID: 25117553 DOI: 10.1039/c4nr00918e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polarization modulated scanning near-field optical microscopy (PM-SNOM) is effective in detecting circular and linear dichroism with sub-wavelength resolution. PM-SNOM investigation of the chiroptical properties of single ribbon-like nanosized J-aggregates formed by acid induced aggregation of tris-(4-sulfonatophenyl)phenylporphyrin is reported. Linear dichroism maps give evidence of well-organized chromophores packed in linear arrays within the structure of the nanoribbons. Circular dichroism maps indicate that the molecules forming the nanoribbon have an inherently chiral structure at the local scale.
Collapse
Affiliation(s)
- Francesco Tantussi
- Dipartimento di Fisica "Enrico Fermi" and CNISM, Università di Pisa, Istituto Nazionale di Ottica INO-CNR, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|