1
|
Lee W, Chouhan JL, Harit AK, Park C, Kim D, McCuskey SR, Bazan GC, Woo HY. Emerging Potential of Conjugated Polyelectrolytes beyond Boundaries. ACS NANO 2025; 19:5938-5965. [PMID: 39924885 DOI: 10.1021/acsnano.4c17565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Conjugated polyelectrolytes (CPEs) constitute a distinct class of materials defined by a π-conjugated backbone and ionic side chains. The delocalized π electrons offer distinct electronic and optical properties, while the presence of ionic moieties enables precise adjustments of hydrophilicity, pH neutrality, self-doping, and ionic conductivity. A recent proliferation of applications for CPEs underscores their dual nature, marking a notable expansion in their potential in technological innovation. The ability to fine-tune both electronic and ionic traits broadens horizons for their utility, spanning organic/inorganic optoelectronics, electrochemical transistors, photocatalytic water splitting, thermoelectric devices, and energy storage systems. This review highlights recent advancements in CPE research, emphasizing synthetic strategies for integrating a wide range of structural units that can tailor optoelectronic and ion transport functions. It also explores innovative applications across diverse domains and discusses a range of operational mechanisms. Additionally, the review addresses persistent challenges and prospects in the field, contributing to ongoing progress toward the implementation of CPEs in emerging technological opportunities.
Collapse
Affiliation(s)
- Wonho Lee
- Department of Polymer Science and Engineering and Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | | | - Amit Kumar Harit
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chaeyeon Park
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Daam Kim
- Department of Polymer Science and Engineering and Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea
| | - Samantha R McCuskey
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
| | - Guillermo C Bazan
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore 636921, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117543, Singapore
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Wu J, Gu M, Travaglini L, Lauto A, Ta D, Wagner P, Wagner K, Zeglio E, Savva A, Officer D, Mawad D. Organic Mixed Ionic-Electronic Conductors Based on Tunable and Functional Poly(3,4-ethylenedioxythiophene) Copolymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28969-28979. [PMID: 38778796 DOI: 10.1021/acsami.4c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) are being explored in applications such as bioelectronics, biosensors, energy conversion and storage, and optoelectronics. OMIECs are largely composed of conjugated polymers that couple ionic and electronic transport in their structure as well as synthetic flexibility. Despite extensive research, previous studies have mainly focused on either enhancing ion conduction or enabling synthetic modification. This limited the number of OMIECs that excel in both domains. Here, a series of OMIECs based on functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) copolymers that combine efficient ion/electron transport with the versatility of post-functionalization were developed. EDOT monomers bearing sulfonic (EDOTS) and carboxylic acid (EDOTCOOH) groups were electrochemically copolymerized in different ratios on oxygen plasma-treated conductive substrates. The plasma treatment enabled the synthesis of copolymers containing high ratios of EDOTS (up to 68%), otherwise not possible with untreated substrates. This flexibility in synthesis resulted in the fabrication of copolymers with tunable properties in terms of conductivity (2-0.0019 S/cm) and ion/electron transport, for example, as revealed by their volumetric capacitances (122-11 F/cm3). The importance of the organic nature of the OMIECs that are amenable to synthetic modification was also demonstrated. EDOTCOOH was successfully post-functionalized without influencing the ionic and electronic transport of the copolymers. This opens a new way to tailor the properties of the OMIECs to specific applications, especially in the field of bioelectronics.
Collapse
Affiliation(s)
- Jiaxin Wu
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Modi Gu
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Lorenzo Travaglini
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Daniel Ta
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Klaudia Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Erica Zeglio
- Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, 114 18 Stockholm, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Digital Futures, Stockholm SE-100 44, Sweden
| | - Achilleas Savva
- Bioelectronics Section, Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, Delft 2628 CD, The Netherlands
| | - David Officer
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Schmidt M, Karg M, Thelakkat M, Brendel JC. Correlating Molar Mass, π-Conjugation, and Optical Properties of Narrowly Distributed Anionic Polythiophenes in Aqueous Solutions. Macromol Rapid Commun 2024; 45:e2300396. [PMID: 37533353 DOI: 10.1002/marc.202300396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Polythiophene-based conjugated polyelectrolytes (CPE) are attracting increasing attention as sensor or interface materials in chemistry and biology. While cationic polythiophenes are better understood, limited structural information is available on their anionic counterparts. Limited access to well-defined polymers has made the study of structure-property relationships difficult and clear correlations have remained elusive. By combining controlled Kumada catalyst transfer polymerization with a polymer-analog substitution, regioregular and narrowly distributed poly(6-(thiophen-3-yl)hexane-1-sulfonate)s (PTHS) with tailored chain length are prepared. Analysis of their aqueous solution structures by small-angle neutron scattering (SANS) revealed a cylindrical conformation for all polymers tested, with a length close to the contour length of the polymer chains, while the estimated radii remain too small (<1.5 nm) for extensive π-stacking of the chains. The latter is particularly interesting as the longest polymer exhibits a concentration-independent structured absorption typical of crystalline polythiophenes. Increasing the ionic strength of the solution diminishes these features as the Coulomb repulsion between the charged repeat units is shielded, allowing the polymer to adopt a more coiled conformation. The extended π-conjugation, therefore, appears to be a key parameter for these unique optical features, which are not present in the corresponding cationic polythiophenes.
Collapse
Affiliation(s)
- Martina Schmidt
- Applied Functional Polymers (AFUPO), University of Bayreuth, 95440, Bayreuth, Germany
| | - Matthias Karg
- Physical Chemistry I, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers (AFUPO), University of Bayreuth, 95440, Bayreuth, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
4
|
Danielsen SPO, Thompson BJ, Fredrickson GH, Nguyen TQ, Bazan GC, Segalman RA. Ionic Tunability of Conjugated Polyelectrolyte Solutions. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Scott P. O. Danielsen
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Brittany J. Thompson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Glenn H. Fredrickson
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| | - Thuc-Quyen Nguyen
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Guillermo C. Bazan
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Rachel A. Segalman
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Abstract
![]()
Electronically interfacing with the
nervous system for the purposes
of health diagnostics and therapy, sports performance monitoring,
or device control has been a subject of intense academic and industrial
research for decades. This trend has only increased in recent years,
with numerous high-profile research initiatives and commercial endeavors.
An important research theme has emerged as a result, which is the
incorporation of semiconducting polymers in various devices that communicate
with the nervous system—from wearable brain-monitoring caps
to penetrating implantable microelectrodes. This has been driven by
the potential of this broad class of materials to improve the electrical
and mechanical properties of the tissue–device interface, along
with possibilities for increased biocompatibility. In this review
we first begin with a tutorial on neural interfacing, by reviewing
the basics of nervous system function, device physics, and neuroelectrophysiological
techniques and their demands, and finally we give a brief perspective
on how material improvements can address current deficiencies in this
system. The second part is a detailed review of past work on semiconducting
polymers, covering electrical properties, structure, synthesis, and
processing.
Collapse
Affiliation(s)
- Ivan B Dimov
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Maximilian Moser
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K
| | - Iain McCulloch
- University of Oxford, Department of Chemistry, Oxford OX1 3TA, United Kingdom.,King Abdullah University of Science and Technology (KAUST), KAUST Solar Center, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Chevrier M, Kesters J, Houston JE, Van den Brande N, Chambon S, Richeter S, Van Mele B, Arnold T, Mehdi A, Lazzaroni R, Dubois P, Evans RC, Maes W, Clément S. Phosphonium‐based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self‐assembly and photovoltaic performances. POLYM INT 2021. [DOI: 10.1002/pi.6088] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Michèle Chevrier
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
- Service des Matériaux Polymères et Composites (SMPC), Centre d'Innovation et de Recherche en Matériaux et Polymères (CIRMAP), Université de Mons – UMONS Mons Belgium
| | - Jurgen Kesters
- UHasselt – Hasselt University, Institute for Materials Research (IMO), Design and Synthesis of Organic Semiconductors (DSOS) Diepenbeek Belgium
| | - Judith E Houston
- Jülich Centre for Neutron Science (JCNS) at the Heinz Maier‐Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH Garching Germany
| | - Niko Van den Brande
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - Sylvain Chambon
- Univ. Bordeaux, IMS, CNRS, UMR 5218, Bordeaux INP, ENSCBP Talence France
| | | | - Bruno Van Mele
- Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel (VUB) Brussels Belgium
| | - Thomas Arnold
- Diamond Light Source Ltd, Harwell Science and Innovation Campus Didcot UK
- European Spallation Source ERIC Lund Sweden
- Department of Chemistry University of Bath Bath UK
- ISIS Neutron and Muon Source, Rutherford Appleton Laboratory Didcot UK
| | - Ahmad Mehdi
- ICGM, Univ. Montpellier, CNRS, ENSCM Montpellier France
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, CIRMAP University of Mons – UMONS Mons Belgium
| | - Philippe Dubois
- Service des Matériaux Polymères et Composites (SMPC), Centre d'Innovation et de Recherche en Matériaux et Polymères (CIRMAP), Université de Mons – UMONS Mons Belgium
| | - Rachel C Evans
- Department of Materials Science and Metallurgy University of Cambridge Cambridge UK
| | - Wouter Maes
- UHasselt – Hasselt University, Institute for Materials Research (IMO), Design and Synthesis of Organic Semiconductors (DSOS) Diepenbeek Belgium
| | | |
Collapse
|
7
|
Jang CH, Harit AK, Lee S, Kim SH, Jeong JE, Park JH, Jung ED, Ha JM, Kwak SK, Woo HY, Song MH. Sky-Blue-Emissive Perovskite Light-Emitting Diodes: Crystal Growth and Interfacial Control Using Conjugated Polyelectrolytes as a Hole-Transporting Layer. ACS NANO 2020; 14:13246-13255. [PMID: 32910640 DOI: 10.1021/acsnano.0c04968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of poly(fluorene-co-phenylene)-based anionic conjugated polyelectrolytes (CPEs) are prepared with varying sizes of counterions (tetramethylammonium, tetraethylammonium, and tetrabutylammonium (TBA+)) and studied as a hole-transporting layer (HTL) for sky-blue-emissive perovskite light-emitting diodes (PeLEDs). Ionic CPE HTLs improve the wettability, compatibility, and nucleation of perovskite crystals at interfaces, enabling highly crystalline perovskite crystal growth with enhanced light-emitting properties. By incorporating the CPE HTLs containing bulky TBA+ counterions (MPS2-TBA) in place of PEDOT:PSS, the decreased phonon-electron coupling and increased exciton binding energy in perovskites are measured by temperature-dependent photoluminescence (PL) measurements. By increasing the size of counterions in CPE interlayers, the PL intensities and lifetimes of perovskite films increase. Through space-charge-limited current measurements, the lowest trap density is measured in the perovskite film on MPS2-TBA, emphasizing a critical role of larger counterions. Using density functional theory, MPS2-TBA is calculated to show the strongest adsorption affinity toward the interstitial defect of lead ions, explaining its pronounced interfacial defect passivation. The counterion size in CPE interlayers is interpreted as a main factor to determine the adsorption affinity onto perovskite, which determines the interacted area as noncovalent adsorption occurs. Finally, the sky-blue-emissive quasi-2D PeLED with MPS2-TBA shows the highest luminance efficiency (a peak EQE of 2.6% at 489 nm) and significantly improved spectral stability.
Collapse
Affiliation(s)
- Chung Hyeon Jang
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Amit Kumar Harit
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Seungjin Lee
- Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario M5S 3G4, Canada
| | - Su Hwan Kim
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Ji-Eun Jeong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jong Hyun Park
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Eui Dae Jung
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jung Min Ha
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Sang Kyu Kwak
- Department of Energy Engineering and School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Myoung Hoon Song
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| |
Collapse
|
8
|
Lill AT, Cao DX, Schrock M, Vollbrecht J, Huang J, Nguyen-Dang T, Brus VV, Yurash B, Leifert D, Bazan GC, Nguyen TQ. Organic Electrochemical Transistors Based on the Conjugated Polyelectrolyte PCPDTBT-SO 3 K (CPE-K). ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908120. [PMID: 32656778 DOI: 10.1002/adma.201908120] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/27/2020] [Indexed: 06/11/2023]
Abstract
PCPDTBT-SO3 K (CPE-K), a conjugated polyelectrolyte, is presented as a mixed conductor material that can be used to fabricate high transconductance accumulation mode organic electrochemical transistors (OECTs). OECTs are utilized in a wide range of applications such as analyte detection, neural interfacing, impedance sensing, and neuromorphic computing. The use of interdigitated contacts to enable high transconductance in a relatively small device area in comparison to standard contacts is demonstrated. Such characteristics are highly desired in applications such as neural-activity sensing, where the device area must be minimized to reduce invasiveness. The physical and electrical properties of CPE-K are fully characterized to allow a direct comparison to other top performing OECT materials. CPE-K demonstrates an electrical performance that is among the best reported in the literature for OECT materials. In addition, CPE-K OECTs operate in the accumulation mode, which allows for much lower energy consumption in comparison to commonly used depletion mode devices.
Collapse
Affiliation(s)
- Alexander T Lill
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - David X Cao
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Max Schrock
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Joachim Vollbrecht
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jianfei Huang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tung Nguyen-Dang
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Viktor V Brus
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Brett Yurash
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dirk Leifert
- Organisch-Chemisches Institut, Münster University, Münster, 48149, Germany
| | - Guillermo C Bazan
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Thuc-Quyen Nguyen
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
9
|
Jung ED, Harit AK, Kim DH, Jang CH, Park JH, Cho S, Song MH, Woo HY. Multiply Charged Conjugated Polyelectrolytes as a Multifunctional Interlayer for Efficient and Scalable Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002333. [PMID: 32567159 DOI: 10.1002/adma.202002333] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/11/2020] [Indexed: 06/11/2023]
Abstract
A series of anionic conjugated polyelectrolytes (CPEs) is synthesized based on poly(fluorene-co-phenylene) by varying the side-chain ionic density from two to six per repeat units (MPS2-TMA, MPS4-TMA, and MPS6-TMA). The effect of MPS2, 4, 6-TMA as interlayers on top of a hole-extraction layer of poly(bis(4-phenyl)-2,4,6-trimethylphenylamine (PTAA) is investigated in inverted perovskite solar cells (PeSCs). Owing to the improved wettability of perovskites on hydrophobic PTAA with the CPEs, the PeSCs with CPE interlayers demonstrate a significantly enhanced device performance, with negligible device-to-device dependence relative to the reference PeSC without CPEs. By increasing the ionic density in the MPS-TMA interlayers, the wetting, interfacial defect passivation, and crystal growth of the perovskites are significantly improved without increasing the series resistance of the PeSCs. In particular, the open-circuit voltage increases from 1.06 V for the PeSC with MPS2-TMA to 1.11 V for the PeSC with MPS6-TMA. The trap densities of the PeSCs with MPS2,4,6-TMA are further analyzed using frequency-dependent capacitance measurements. Finally, a large-area (1 cm2 ) PeSC is successfully fabricated with MPS6-TMA, showing a power conversion efficiency of 18.38% with negligible hysteresis and a stable power output under light soaking for 60 s.
Collapse
Affiliation(s)
- Eui Dae Jung
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Amit Kumar Harit
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Do Hui Kim
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Chung Hyeon Jang
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Jong Hyun Park
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Shinuk Cho
- Department of Physics and EHSRC, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Myoung Hoon Song
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan, 44919, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Schmode P, Savva A, Kahl R, Ohayon D, Meichsner F, Dolynchuk O, Thurn-Albrecht T, Inal S, Thelakkat M. The Key Role of Side Chain Linkage in Structure Formation and Mixed Conduction of Ethylene Glycol Substituted Polythiophenes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13029-13039. [PMID: 32066232 DOI: 10.1021/acsami.9b21604] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Functionalizing conjugated polymers with polar ethylene glycol side chains enables enhanced swelling and facilitates ion transport in addition to electronic transport in such systems. Here, we investigate three polythiophene homopolymers (P3MEET, P3MEEMT, and P3MEEET) having differently linked (without spacer and with methyl and ethyl spacer, respectively) diethylene glycol side chains. All the polymers were tested in organic electrochemical transistors (OECTs). They show drastic differences in the device performance. The highest μOECT C* product of 11.5 F/cm·V·s was obtained for ethyl-spaced P3MEEET. How the injection and transport of ions is influenced by the side-chain linkage was studied with electrochemical impedance spectroscopy, which shows a dramatic increase in volumetric capacitance from 80 ± 9 up to 242 ± 17 F/cm3 on going from P3MEET to P3MEEET. Thus, ethyl-spaced P3MEEET exhibits one of the highest reported volumetric capacitance values among p-type polymers. Moreover, P3MEEET exhibits in dry thin films an organic field-effect transistor (OFET) hole mobility of 0.005 cm2/V·s, highest among the three, which is one order of magnitude higher than that for P3MEEMT. The extracted hole mobility from OECT (oxidized swollen state) and the hole mobility in solid-state thin films (OFET) show contradictory trends for P3MEEMT and P3MEEET. In order to understand exactly the properties in the hydrated and dry states, the crystal structure of the polymers was investigated with wide-angle X-ray scattering (WAXS) and grazing incidence WAXS, and the water uptake under applied potential was monitored using electrochemical quartz crystal microbalance with dissipation monitoring (E-QCMD). These measurements reveal an amorphous state for P3MEET and a semicrystalline state for P3MEEMT and P3MEEEET. On the other hand, E-QCMD confirms that P3MEEET swells 10 times more than P3MEEMT in the oxidized state. Thus, the importance of the ethyl spacer toward crystallinity and mixed-conduction properties was clearly demonstrated, emphasizing the impact of side chain linkage of diethylene glycol. This detailed study offers a better understanding of how to design high-performance organic mixed conductors.
Collapse
Affiliation(s)
- Philip Schmode
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Achilleas Savva
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Robert Kahl
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - David Ohayon
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Florian Meichsner
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| | - Oleksandr Dolynchuk
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Thomas Thurn-Albrecht
- Experimental Polymer Physics Group, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120 Halle, Germany
| | - Sahika Inal
- Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mukundan Thelakkat
- Applied Functional Polymers, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
- Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
11
|
Wieland M, Dingler C, Merkle R, Maier J, Ludwigs S. Humidity-Controlled Water Uptake and Conductivities in Ion and Electron Mixed Conducting Polythiophene Films. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6742-6751. [PMID: 31976650 DOI: 10.1021/acsami.9b21181] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mixed conducting polymer films are of great interest in applications where an interface between electronic and ionic charge transport is needed, e.g., in bioelectronics, electrochemical energy applications, and photovoltaic device interfaces. The role of water on charge transport is of high relevance not only for aqueous environments but also for devices that are manufactured at ambient conditions with varying relative humidities. In this contribution, we present our results on the influence of controlled humidity changes on the mixed conductivity and correlation to the concomitant water uptake in the films. Two sulfonate-bearing polythiophene systems are studied: a self-made conjugated polyelectrolyte, poly(6-(thiophen-3-yl)hexane-1-sulfonate)-sodium (PTS-Na), and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS) with different ratios of PEDOT and the polyelectrolyte PSS. Our data give clear evidence of the similarities between the aforementioned polythiophene systems and pure ionic membranes such as Nafion used in fuel cells. As such, a phase separation between the hydrophobic electronically conducting polythiophene phase and the hydrophilic water-swellable ion-conducting phase is proposed. Changing the humidity from dry conditions up to ∼90% relative humidity results in extremely high water uptakes of more than 90 wt %, which corresponds to ∼13 water molecules per sulfonate unit at maximum water uptake. Conversely, the electronic conductivity is less sensitive to increasing humidity, which is due to percolation pathways. The ionic conductivity strongly increases from 10-10 S/cm at dry conditions to 10-3 S/cm at around 30 wt % water content and then levels off at maximum conductivities of 10-3-10-2 S/cm up to water contents of 90 wt %.
Collapse
Affiliation(s)
- Matthias Wieland
- IPOC-Functional Polymers, Institute for Polymer Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Carsten Dingler
- IPOC-Functional Polymers, Institute for Polymer Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| | - Rotraut Merkle
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - Joachim Maier
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - Sabine Ludwigs
- IPOC-Functional Polymers, Institute for Polymer Chemistry , University of Stuttgart , Pfaffenwaldring 55 , 70569 Stuttgart , Germany
| |
Collapse
|
12
|
Conductive multilayer film based on composite materials made of conjugated polyelectrolytes and inorganic particles. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Goel M, Heinrich CD, Krauss G, Thelakkat M. Principles of Structural Design of Conjugated Polymers Showing Excellent Charge Transport toward Thermoelectrics and Bioelectronics Applications. Macromol Rapid Commun 2019; 40:e1800915. [DOI: 10.1002/marc.201800915] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/21/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Mahima Goel
- Applied Functional PolymersMacromolecular Chemistry IUniversity of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
| | - C. David Heinrich
- Applied Functional PolymersMacromolecular Chemistry IUniversity of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
| | - Gert Krauss
- Applied Functional PolymersMacromolecular Chemistry IUniversity of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
| | - Mukundan Thelakkat
- Applied Functional PolymersMacromolecular Chemistry IUniversity of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
- Bavarian Polymer Institute (BPI)University of Bayreuth Universitätsstr. 30 Bayreuth 95440 Germany
| |
Collapse
|
14
|
Harrison JS, Waldow DA, Cox PA, Giridharagopal R, Adams M, Richmond V, Modahl S, Longstaff M, Zhuravlev R, Ginger DS. Noncontact Imaging of Ion Dynamics in Polymer Electrolytes with Time-Resolved Electrostatic Force Microscopy. ACS NANO 2019; 13:536-543. [PMID: 30566831 DOI: 10.1021/acsnano.8b07254] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ionic-transport processes govern performance in many classic and emerging devices, ranging from battery storage to modern mixed-conduction organic electrochemical transistors (OECT). Here, we study local ion-transport dynamics in polymer films using time-resolved electrostatic force microscopy (trEFM). We establish a correspondence between local and macroscopic measurements using local trEFM and macroscopic electrical impedance spectroscopy (EIS). We use polymer films doped with lithium bis(trifluoromethane)sulfonimide (LiTFSI) as a model system where the polymer backbone has oxanorbornenedicarboximide repeat units with an oligomeric ethylene oxide side chain of length n. Our results show that the local polymer response measured in the time domain with trEFM follows stretched-exponential relaxation kinetics, consistent with the Havriliak-Negami relaxation we measure in the frequency-domain EIS data for macroscopic samples of the same polymers. Furthermore, we show that the trEFM results capture the same trends as the EIS results-changes in ion dynamics with increasing temperature, increasing salt concentration, and increasing volume fraction of ethylene oxide side chains in the polymer matrix evolve with the same trends in both measurement techniques. We conclude from this correlation that trEFM data reflect, at the nanoscale, the same ionic processes probed in conventional EIS at the device level. Finally, as an example application for emerging materials syntheses, we use trEFM and infrared photoinduced force microscopy (PiFM) to image a diblock copolymer electrolyte for next-generation solid-state energy storage applications.
Collapse
Affiliation(s)
- Jeffrey S Harrison
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Dean A Waldow
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - Phillip A Cox
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Rajiv Giridharagopal
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| | - Marisa Adams
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - Victoria Richmond
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - Sevryn Modahl
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - Megan Longstaff
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - Rodion Zhuravlev
- Department of Chemistry , Pacific Lutheran University , Tacoma , Washington 98447 , United States
| | - David S Ginger
- Department of Chemistry , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
15
|
Zeglio E, Inganäs O. Active Materials for Organic Electrochemical Transistors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800941. [PMID: 30022545 DOI: 10.1002/adma.201800941] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/16/2018] [Indexed: 05/21/2023]
Abstract
The organic electrochemical transistor (OECT) is a device capable of simultaneously controlling the flow of electronic and ionic currents. This unique feature renders the OECT the perfect technology to interface man-made electronics, where signals are conveyed by electrons, with the world of the living, where information exchange relies on chemical signals. The function of the OECT is controlled by the properties of its core component, an organic conductor. Its chemical structure and interactions with electrolyte molecules at the nanoscale play a key role in regulating OECT operation and performance. Herein, the latest research progress in the design of active materials for OECTs is reviewed. Particular focus is given on the conducting polymers whose properties lead to advances in understanding the OECT working mechanism and improving the interface with biological systems for bioelectronics. The methods and device models that are developed to elucidate key relations between the structure of conducting polymer films and OECT function are discussed. Finally, the requirements of OECT design for in vivo applications are briefly outlined. The outcomes represent an important step toward the integration of organic electronic components with biological systems to record and modulate their functions.
Collapse
Affiliation(s)
- Erica Zeglio
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electromaterials Science, AIIM Facility, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Olle Inganäs
- Department of Physics Chemistry and Biology, Linköping University, SE-58183, Linköping, Sweden
| |
Collapse
|