1
|
Li P, Huang Y, Lan L, Xu D, Dan Y, Jiang L. UV/blue-light-blocking polylactide films derived from bio-sources for food packaging application. Int J Biol Macromol 2025; 306:141751. [PMID: 40049477 DOI: 10.1016/j.ijbiomac.2025.141751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/16/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Transparent biodegradable packaging materials capable of blocking the broad-spectrum of UV and blue light (200-500 nm) are crucial for packaging of light-sensitive food. This study offers a fully bio-based solution based on polylactide and natural light absorbers, aloe-emodin (AE) and riboflavin (RF), whose combined UV-vis absorption spectrum covers all the light between 200 and 500 nm. AE and RF were bonded to polylactide chains by serving as initiators for the ring-opening polymerization of lactide, resulting in the synthesis of light-blocking polylactides, PLA-E and PLA-R. To fabricate UV and blue light-blocking polylactide film (PLA/EmRn), PLA-E and PLA-R were blended with commercial polylactide. For the PLA/EmRn film containing only 0.87 mass% AE and RF group introduced by PLA-E and PLA-R, the transmittance against the UV-B, UV-A and blue light was only 38.8 %, 27.7 % and 25.5 %, respectively. Meanwhile, the film maintains high transparency (91.4 %) and good tensile strength above 59 MPa. Furthermore, the PLA/EmRn film exhibits an extended capacity for light-blocking, which may help reduce the photodegradation of the photosensitive nutrient riboflavin. Its protective performance surpasses both the polylactide film and commercially available PET packaging films. This study offers an eco-friendly strategy for developing UV/blue light-blocking food packaging based on all renewable resources.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yun Huang
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Lidan Lan
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Dawei Xu
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China; Tianfu Yongxing Laboratory, Chengdu 610213, China
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering (Sichuan University), Polymer Research Institute of Sichuan University, Chengdu 610065, China.
| |
Collapse
|
2
|
Keihankhadiv S, Neugebauer D. Polymerizable Cholinium-Based Antibiotics for Polymer Carriers: Systems with Combined Load of Cloxacillin and Ampicillin. Molecules 2024; 29:5973. [PMID: 39770062 PMCID: PMC11678903 DOI: 10.3390/molecules29245973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Single and dual-drug delivery systems (DDSs) based on linear choline polymers were designed through the controlled polymerization of a pharmaceutically functionalized monomer, i.e., [2-(methacryloyloxy)ethyl]trimethylammonium, with counterions of cloxacillin (TMAMA/CLX), or its copolymerization with [2-(methacryloyloxy)ethyl]trimethylammonium with ampicillin (TMAMA/AMP), providing antibiotic properties. This strategy was effective in attaining well-defined linear copolymers with 38-93 mol. % of TMAMA content, which were regulated by the initial ratio of TMAMA to methyl methacrylate comonomer. The polymer compositions were controlled by the total monomer conversion (40-75%), resulting in a variable degree of polymerization (DPn = 160-300) and pharmaceutical anion contents (CLX- 51-80% and AMP- 78-87%). In aqueous solution, the polymers formed particles with sizes ranging between 274 and 380 nm for CLX- systems and 288-348 nm for CLX-/AMP- systems. In vitro drug release, driven by the exchange of pharmaceutical anions with phosphate ions in phosphate-buffered saline (PBS), imitating a physiological fluid, demonstrated release efficiencies of 58-76% for CLX- (10.5-13.6 µg/mL) in single systems, and 91-100% for CLX- (12.9-15.1 µg/mL) and 97-100% for AMP- (21.1-23.3 µg/mL) in dual systems. Compared to conventional systems delivering antibiotics without a polymer carrier, the choline-based polymer DDS attained satisfactory levels of drug loading content and (co-)release from the polymer carriers, offering a promising alternative for antibiotic delivery.
Collapse
Affiliation(s)
| | - Dorota Neugebauer
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
3
|
Ramu A, Rajendrakumar K. Evaluation of the Role of [{Cu(PMDETA)} 2(O 2 2-)] 2+ in Open-Air Photo ATRP of Methyl Methacrylate. ACS OMEGA 2024; 9:44916-44930. [PMID: 39554403 PMCID: PMC11561604 DOI: 10.1021/acsomega.4c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 11/19/2024]
Abstract
Herein, we report an open-air, photo accelerated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) without employing any deoxygenating agent. Under open-air photo ATRP conditions, oxygen reversibly binds with [{Cu (PMDETA)}2(O2 2-)]2+ (1) to form the required activator, which was demonstrated by simple benchtop oxygen/nitrogen purging experiments. The binding mode of oxygen in (1) (μ(η2-η2) peroxo dicopper(II)) was investigated using UV Visible-NIR, FT-Raman and X-ray photoelectron (XPS) spectroscopic techniques. DFT studies and electrochemical measurements further support the catalytic role of (1) in open-air photo ATRP. With the synergistic involvement of Cu (II)Br2, PMDETA ligand and the intensity of light (365 nm, 4.2 mW cm-2), a well-controlled rapid polymerization of MMA under open-air condition was achieved (1.25< Đ < 1.47, 94% conversion in 200 min). The bromo chain end fidelity was exemplified by chain extension experiment, block copolymerization and MALDI-ToF analysis. Other monomers such as methyl acrylate, glycidyl methacrylate, and benzyl methacrylate were also polymerized under open-air condition with reasonable control over molecular weight and Đ. An open-air photo polymerization methodology would be fruitful for applications like photocurable printing, dental, optoelectronics, stereolithography, and protective coatings where simple but rapid photopolymerizations are desirable.
Collapse
Affiliation(s)
- Arumugam Ramu
- Department
of chemistry, School of Advanced Sciences Vellore Institute of Technology, Chennai 600127, India
| | - Kannapiran Rajendrakumar
- Centre
for Advanced Materials and Innovative Technologies (CAMIT) Vellore Institute of Technology, Chennai 600127, India
| |
Collapse
|
4
|
Wang J, Kong J, Zhang X. Riboflavin-induced photo-ATRP electrochemical strategy for detection of biomarker trypsin. Talanta 2024; 277:126386. [PMID: 38876027 DOI: 10.1016/j.talanta.2024.126386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/28/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
The detection of trypsin and its inhibitors is important for both clinical diagnosis and disease treatment. Abnormal trypsin activity affects pancreatic function and leads to corresponding pathological changes in the body. Therefore, the study presented a riboflavin-induced photo-ATRP electrochemical assay of trypsin activity and its inhibitor, including detection of trypsin activity in real urine samples. Experiments were performed on indium tin oxide (ITO) electrodes modified with sulfhydryl groups of 3-mercaptopropionic acid, and target trypsin-specific cleavage of BSA-Au nanocluster (BSA-Au NCs) was followed by the modification of Au NCs to the electrodes using Au-S. The Au NCs immobilized monodeoxy-monomercapto-β-cyclodextrin@adamantan-2-amine (SH-β-CD@2-NH2-Ada) host-guest inclusion complexes to the electrode surfaces via Au-S. In a two-component photo-initiator system consisting of riboflavin as an initiator and ascorbic acid (AA) as a mild reducing agent under mild blue light radiation, a large number of electroactive substances were grafted onto the electrode surface to generate electrochemical signals. In addition, we have successfully realized the detection of clinical drug inhibitors of trypsin. The detection limit of the system is as low as 0.0024 ng/mL, which much littler than the average standard of trypsin in the patient's urine or serum. It's worth noting that this work will provide researchers with a different route to design electrochemical sensors based on non-covalent recognition strategies.
Collapse
Affiliation(s)
- Jiao Wang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, PR China.
| | - Xueji Zhang
- School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangdong, 518060, PR China
| |
Collapse
|
5
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
6
|
Karazan ZM, Roushani M. Selective determination of cadmium and lead ions in different food samples by poly (riboflavin)/carbon black-modified glassy carbon electrode. Food Chem 2023; 423:136283. [PMID: 37187010 DOI: 10.1016/j.foodchem.2023.136283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/17/2023]
Abstract
In this research, a poly (riboflavin)/carbon black-modified glassy carbon electrode (PRF/CB/GCE) is introduced as a novel electrochemical sensor toward Cd2+ and Pb2+ simultaneous measurement in presence of bismuth ions, applying differential pulse anodic stripping voltammetry (DPASV). Regarding the optimized conditions, the linear ranges were achieved from 0.5 to 600 nM for Cd2+ and Pb2+. The detection limit (LOD) was found to be 0.16 nM for Cd2+ and 0.13 nM for Pb2+. In order to perform the technique in real application, the proposed electrode was used to simultaneously detect ions in rice, honey, and vegetable samples with satisfactory recoveries - indicating that the sensor possesses good practicability to determine Cd2+ and Pb2+. Moreover, an atomic absorption spectrometry (AAS) was used in order to detect the concentration of ions as a reference technique in rice, honey, and vegetable samples.
Collapse
Affiliation(s)
| | - Mahmoud Roushani
- Department of Chemistry, Faculty of Sciences, Ilam University, Ilam 69315-516, Iran.
| |
Collapse
|
7
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
8
|
Yan L, Xu L. Fluorescent nano‐particles prepared by
eATRP
combined with self‐assembly imprinting technology. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Liu Yan
- School of Chemistry and Chemical Engineering Southwest University Chongqing People's Republic of China
| | - Lan Xu
- School of Chemistry and Chemical Engineering Southwest University Chongqing People's Republic of China
| |
Collapse
|
9
|
Zaborniak I, Chmielarz P. How we can improve ARGET ATRP in an aqueous system: Honey as an unusual solution for polymerization of (meth)acrylates. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2022.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Münch AS, Simon F, Merlitz H, Uhlmann P. Investigation of an oleophobic-hydrophilic polymer brush with switchable wettability for easy-to-clean coatings. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
11
|
Flejszar M, Ślusarczyk K, Chmielarz P, Smenda J, Wolski K, Wytrwal-Sarna M, Oszajca M. SI-ATRP on the lab bench: A facile recipe for oxygen-tolerant PDMAEMA brushes synthesis using microliter volumes of reagents. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Zaborniak I, Sroka M, Chmielarz P. Lemonade as a rich source of antioxidants: Polymerization of 2-(dimethylamino)ethyl methacrylate in lemon extract. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Flejszar M, Ślusarczyk K, Chmielarz P, Wolski K, Isse AA, Gennaro A, Wytrwal-Sarna M, Oszajca M. Working electrode geometry effect: A new concept for fabrication of patterned polymer brushes via SI-seATRP at ambient conditions. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
14
|
Umapathi R, Kumar K, Ghoreishian SM, Rani GM, Huh YS, Venkatesu P. Interactions between a biomedical thermoresponsive polymer and imidazolium-based ionic liquids: A comprehensive biophysical investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Yang H, Cai S, Jiang Y, Cao Z, Ma W, Gong F, Tao G, Liu C. High‐efficient surface tailoring via reverse atom transfer radical polymerization and reversible addition‐fragmentation chain‐transfer polymerization in an aqueous system initiated by a monocenter redox pair. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haicun Yang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Shuipi Cai
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Yu Jiang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Wenzhong Ma
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University) Changzhou Jiangsu China
| | - Fanghong Gong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- School of Mechanical Technology Wuxi Institute of Technology Wuxi Jiangsu China
| | - Guoliang Tao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou Jiangsu China
- Changzhou University Huaide College Changzhou Jiangsu China
| |
Collapse
|
16
|
Abstract
Electrochemically mediated atom transfer radical polymerization (eATRP) of styrene was studied in detail by using CuBr2/TPMA (TPMA = tris(2-pyridylmethyl)amine) as a catalyst. Redox properties of various Cu(II) species were investigated in CH3CN, dimethylformamide (DMF), and dimethyl sulfoxide (DMSO) both in the absence and presence of 50% (v/v) styrene. This investigation together with preliminary eATRP experiments at 80 °C indicated DMF as the best solvent. The effects of catalyst, monomer, and initiator concentrations were also examined. The livingness of the polymerization was studied by chain extension and electrochemical temporal control of polymerization.
Collapse
|
17
|
Zaborniak I, Macior A, Chmielarz P. Smart, Naturally-Derived Macromolecules for Controlled Drug Release. Molecules 2021; 26:molecules26071918. [PMID: 33805508 PMCID: PMC8037046 DOI: 10.3390/molecules26071918] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/05/2022] Open
Abstract
A series of troxerutin-based macromolecules with ten poly(acrylic acid) (PAA) or poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) homopolymer side chains were synthesized by a supplemental activator and reducing agent atom transfer radical polymerization (SARA ATRP) approach. The prepared precisely-defined structures with low dispersity (Mw/Mn < 1.09 for PAA-based, and Mw/Mn < 1.71 for PDMAEMA-based macromolecules) exhibited pH-responsive behavior depending on the length of the polymer grafts. The properties of the received polyelectrolytes were investigated by dynamic light scattering (DLS) measurement to determine the hydrodynamic diameter and zeta potential upon pH changes. Additionally, PDMAEMA-based polymers showed thermoresponsive properties and exhibited phase transfer at a lower critical solution temperature (LCST). Thanks to polyelectrolyte characteristics, the prepared polymers were investigated as smart materials for controlled release of quercetin. The influence of the length of the polymer grafts for the quercetin release profile was examined by UV–VIS spectroscopy. The results suggest the strong correlation between the length of the polymer chains and the efficiency of active substance release, thus, the adjustment of the composition of the macromolecules characterized by branched architecture can precisely control the properties of smart delivery systems.
Collapse
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Angelika Macior
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
- Correspondence: ; Tel.: +48-17-865-1809
| |
Collapse
|
18
|
Riboflavin-mediated radical polymerization – Outlook for eco-friendly synthesis of functional materials. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Zaborniak I, Chmielarz P. Miniemulsion switchable electrolysis under constant current conditions. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry Rzeszow University of Technology Rzeszów Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry Rzeszow University of Technology Rzeszów Poland
| |
Collapse
|
20
|
Flejszar M, Chmielarz P, Wolski K, Grześ G, Zapotoczny S. Polymer Brushes via Surface-Initiated Electrochemically Mediated ATRP: Role of a Sacrificial Initiator in Polymerization of Acrylates on Silicon Substrates. MATERIALS 2020; 13:ma13163559. [PMID: 32806681 PMCID: PMC7475859 DOI: 10.3390/ma13163559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 01/05/2023]
Abstract
Silicon wafers as semiconductors are essential components of integrated circuits in electronic devices. For this reason, modification of the silicon surface is an important factor in the manufacturing of new hybrid materials applied in micro- and nanoelectronics. Herein, copolymer brushes of hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) and hydrophobic poly(tert-butyl acrylate) (PtBA) were grafted from silicon wafers via simplified electrochemically mediated atom transfer radical polymerization (seATRP) according to a surface-initiated approach. The syntheses of PHEA-b-PtBA copolymers were carried out with diminished catalytic complex concentration (successively 25 and 6 ppm of Cu). In order to optimize the reaction condition, the effect of the addition of a supporting electrolyte was investigated. A controlled increase in PHEA brush thickness was confirmed by atomic force microscopy (AFM). Various other parameters including contact angles and free surface energy (FSE) for the modified silicon wafer were presented. Furthermore, the effect of the presence of a sacrificial initiator in solution on the thickness of the grafted brushes was reported. Successfully fabricated inorganic–organic hybrid nanomaterials show potential application in biomedicine and microelectronics devices, e.g., biosensors.
Collapse
Affiliation(s)
- Monika Flejszar
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland;
- Correspondence: ; Tel.: +48-17-865-1809
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| | - Gabriela Grześ
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| | - Szczepan Zapotoczny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland; (K.W.); (G.G.); (S.Z.)
| |
Collapse
|
21
|
Surmacz K, Chmielarz P. Low Ppm Atom Transfer Radical Polymerization in (Mini)Emulsion Systems. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1717. [PMID: 32268579 PMCID: PMC7178667 DOI: 10.3390/ma13071717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
In the last decade, unceasing interest in atom transfer radical polymerization (ATRP) has been noted, especially in aqueous dispersion systems. Emulsion or miniemulsion is a preferred environment for industrial polymerization due to easier heat dissipation and lower production costs associated with the use of water as a dispersant. The main purpose of this review is to summarize ATRP methods used in emulsion media with different variants of initiating systems. A comparison of a dual over single catalytic approache by interfacial and ion pair catalysis is presented. In addition, future development directions for these methods are suggested for better use in biomedical and electronics industries.
Collapse
Affiliation(s)
- Karolina Surmacz
- Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland;
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
| |
Collapse
|
22
|
Zaborniak I, Surmacz K, Flejszar M, Chmielarz P. Triple‐functional riboflavin‐based molecule for efficient atom transfer radical polymerization in miniemulsion media. J Appl Polym Sci 2020. [DOI: 10.1002/app.49275] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of ChemistryRzeszow University of Technology Rzeszów Poland
| | - Karolina Surmacz
- Doctoral School of Engineering and Technical SciencesRzeszów University of Technology Rzeszów Poland
| | - Monika Flejszar
- Department of Physical Chemistry, Faculty of ChemistryRzeszow University of Technology Rzeszów Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of ChemistryRzeszow University of Technology Rzeszów Poland
| |
Collapse
|