1
|
Shokrani H, Shokrani A, Sajadi SM, Khodadadi Yazdi M, Seidi F, Jouyandeh M, Zarrintaj P, Kar S, Kim SJ, Kuang T, Rabiee N, Hejna A, Saeb MR, Ramakrishna S. Polysaccharide-based nanocomposites for biomedical applications: a critical review. NANOSCALE HORIZONS 2022; 7:1136-1160. [PMID: 35881463 DOI: 10.1039/d2nh00214k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polysaccharides (PSA) have taken specific position among biomaterials for advanced applications in medicine. Nevertheless, poor mechanical properties are known as the main drawback of PSA, which highlights the need for PSA modification. Nanocomposites PSA (NPSA) are a class of biomaterials widely used as biomedical platforms, but despite their importance and worldwide use, they have not been reviewed. Herein, we critically reviewed the application of NPSA by categorizing them into generic and advanced application realms. First, the application of NPSA as drug and gene delivery systems, along with their role in the field as an antibacterial platform and hemostasis agent is discussed. Then, applications of NPSA for skin, bone, nerve, and cartilage tissue engineering are highlighted, followed by cell encapsulation and more critically cancer diagnosis and treatment potentials. In particular, three features of investigations are devoted to cancer therapy, i.e., radiotherapy, immunotherapy, and photothermal therapy, are comprehensively reviewed and discussed. Since this field is at an early stage of maturity, some other aspects such as bioimaging and biosensing are reviewed in order to give an idea of potential applications of NPSA for future developments, providing support for clinical applications. It is well-documented that using nanoparticles/nanomaterials above a critical concentration brings about concerns of toxicity; thus, their effect on cellular interactions would become critical. We compared nanoparticles used in the fabrication of NPSA in terms of toxicity mechanism to shed more light on future challenging aspects of NPSA development. Indeed, the neutralization mechanisms underlying the cytotoxicity of nanomaterials, which are expected to be induced by PSA introduction, should be taken into account for future investigations.
Collapse
Affiliation(s)
- Hanieh Shokrani
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amirhossein Shokrani
- Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran
| | - S Mohammad Sajadi
- Department of Nutrition, Cihan University-Erbil, Kurdistan Region, 625, Erbil, Iraq
| | - Mohsen Khodadadi Yazdi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, 210037 Nanjing, China.
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, OK 74078, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
| | - Tairong Kuang
- College of Material Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Alexander Hejna
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University Singapore, 10 Kent Ridge, Crescent 119260, Singapore.
| |
Collapse
|
2
|
Mei W, Liu Q, Zhou H, Wang J. Preparation and UV curing properties of oxazolidinone-based acrylate derivatives. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Kurniawan YS, Priyangga KTA, Jumina, Pranowo HD, Sholikhah EN, Zulkarnain AK, Fatimi HA, Julianus J. An Update on the Anticancer Activity of Xanthone Derivatives: A Review. Pharmaceuticals (Basel) 2021; 14:1144. [PMID: 34832926 PMCID: PMC8625896 DOI: 10.3390/ph14111144] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
The annual number of cancer deaths continues increasing every day; thus, it is urgent to search for and find active, selective, and efficient anticancer drugs as soon as possible. Among the available anticancer drugs, almost all of them contain heterocyclic moiety in their chemical structure. Xanthone is a heterocyclic compound with a dibenzo-γ-pyrone framework and well-known to have "privileged structures" for anticancer activities against several cancer cell lines. The wide anticancer activity of xanthones is produced by caspase activation, RNA binding, DNA cross-linking, as well as P-gp, kinase, aromatase, and topoisomerase inhibition. This anticancer activity depends on the type, number, and position of the attached functional groups in the xanthone skeleton. This review discusses the recent advances in the anticancer activity of xanthone derivatives, both from natural products isolation and synthesis methods, as the anticancer agent through in vitro, in vivo, and clinical assays.
Collapse
Affiliation(s)
- Yehezkiel Steven Kurniawan
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Krisfian Tata Aneka Priyangga
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Jumina
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Harno Dwi Pranowo
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (Y.S.K.); (K.T.A.P.); (H.D.P.)
| | - Eti Nurwening Sholikhah
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia;
| | - Abdul Karim Zulkarnain
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Hana Anisa Fatimi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; (A.K.Z.); (H.A.F.)
| | - Jeffry Julianus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sanata Dharma, Yogyakarta 55282, Indonesia;
| |
Collapse
|
4
|
Ataci N, Kazancioglu EO, Kalındemirtas FD, Kuruca SE, Arsu N. The interaction of light-activatable 2-thioxanthone thioacetic acid with ct-DNA and its cytotoxic activity: Novel theranostic agent. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118491. [PMID: 32485605 DOI: 10.1016/j.saa.2020.118491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, a thioxanthone derivative, 2-Thioxanthone Thioacetic Acid (TXSCH2COOH) was used to analyze the type of binding to calf thymus DNA in a physiological buffer (Tris-HCl buffer solution, pH:7.0). Several spectroscopic techniques were employed including UV-Vis absorption and fluorescence emission spectroscopy and viscosity measurements were also used to clarify the binding mode of TXSCH2COOH to ct-DNA. The intrinsic binding constant Kb of TXSCH2COOH-ct-DNA was found as 2.5 × 103 M-1 from the absorption studies. Increasing of fluorescence emission intensity was found approximately 74.4% by adding ct-DNA to the TXSCH2COOH solution. Fluorescence microscopy was employed to display imaging of the TXSCH2COOH-ct-DNA solution. Increasing of the iodide quenching effect was observed when TXSCH2COOH was added to the double stranded DNA and the calculated quenching constants of TXSCH2COOH and TXSCH2COOH-ct-DNA were found to be 1.89 × 103 M-1 and 1.19 × 104 M-1, respectively. Additionally, the iodide quenching experiment was conducted with single stranded DNA which led to a high Ksv value. All the experimental results including the viscosity values of ct-DNA with TXSCH2COOH demonstrated that the binding of TXSCH2COOH to ct-DNA was most likely groove binding. Furthermore, TXSCH2COOH was found to be an A-T rich minor groove binder. This was confirmed by the displacement assays with Hoechst 33258 compared to Ethidium Bromide. The in vitro cytotoxic activity measurements were performed by MTT assay on HT29 cell line for 72 h. TXSCH2COOH exhibited notable cytotoxic activities compared to the standard chemotherapy drugs, fluorouracil (5-FU), cisplatin in tumorigenic HT29 cell line. The 50% growth-inhibitory concentration (IC50) for TXSCH2COOH was 19,8 μg/mL while 5-FU and cisplatin were 28.9 μg/mL, 20 μg/mL, respectively. The increase in cytotoxic effect when TXSCH2COOH is activated by light indicates the potential of being theranostic cancer drug candidate.
Collapse
Affiliation(s)
- Nese Ataci
- Yildiz Technical University, Davutpasa Campus, Department of Chemistry, 34220 Istanbul, Turkey
| | | | | | - Serap Erdem Kuruca
- Istanbul University, Faculty of Medicine, Department of Physiology, 34093 Istanbul, Turkey
| | - Nergis Arsu
- Yildiz Technical University, Davutpasa Campus, Department of Chemistry, 34220 Istanbul, Turkey.
| |
Collapse
|
5
|
Toksöz YS, Özyiğit İE, Bilen Ç, Arsu N, Karakuş E. Development of a fluorometric measurement system used in biological samples upon the determination of iron (II) metal ion. Prep Biochem Biotechnol 2020; 51:361-374. [PMID: 32935651 DOI: 10.1080/10826068.2020.1818257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
2-thioxanthone thioacetic acid (TXSCH2COOH, T), which has a fluorometric character, was used for new fluorometric system upon Fe(II) analysis in biological samples as the main target. T-BSA binary complex was firstly consisted with non-covalent interactions between T and BSA at the equilibrium concentration as 1.77 × 10-4.M. T-BSA binary complex emission was increased at the ratio of 24.40% due to stabilization property of BSA (pH:7), compared with T emission intensity. Fluorescence emission spectroscopy was used for the all measurements because of an economic, a sensitive and a practical method compared with other spectroscopic analysis. T-BSA-Fe(II) triple complex was also obtained by adding Fe(II) ion to T-BSA binary complex solution. Its characterization was performed to be investigated with optimum excitation wavelength, buffer concentration, pH and temperature as 297 nm, 10-3 M Tris HCl (10-2M NaCI), pH:7.2 at 25 °C, respectively. The results of Fe(II) analysis in serum showed a certain response in fluorometric T-BSA-Fe(II) triple complex measurement system as 50.42 ± 5.8 µg/dL. The analyses of our fluorometric triple complex system were compared with the reference electrochemiluminescence method and similar results were obtained. Fluorometric measurements of T-BSA-Fe(II) triple complex, its characterization and Fe(II) analysis in this system have not been investigated in literature gives originality to our study.
Collapse
Affiliation(s)
- Yavuz Selim Toksöz
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | | | - Çiğdem Bilen
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Nergis Arsu
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| | - Emine Karakuş
- Department of Chemistry, Yildiz Technical University, Esenler, Istanbul, Turkey
| |
Collapse
|
6
|
Shi S, Vissapragada R, Abi Jaoude J, Huang C, Mittal A, Liu E, Zhong J, Kumar V. Evolving role of biomaterials in diagnostic and therapeutic radiation oncology. Bioact Mater 2020; 5:233-240. [PMID: 32123777 PMCID: PMC7036731 DOI: 10.1016/j.bioactmat.2020.01.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/11/2023] Open
Abstract
Radiation therapy to treat cancer has evolved significantly since the discovery of x-rays. Yet, radiation therapy still has room for improvement in reducing side effects and improving control of cancer. Safer and more effective delivery of radiation has led us to novel techniques and use of biomaterials. Biomaterials in combination with radiation and chemotherapy have started to appear in pre-clinical explorations and clinical applications, with many more on the horizon. Biomaterials have revolutionized the field of diagnostic imaging, and now are being cultivated into the field of theranostics, combination therapy, and tissue protection. This review summarizes recent development of biomaterials in radiation therapy in several application areas.
Collapse
Affiliation(s)
- Siyu Shi
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Ravi Vissapragada
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | | | - Caroline Huang
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Anmol Mittal
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, 07102, USA
| | - Elisa Liu
- Department of Medicine, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Jim Zhong
- Department of Radiation Oncology, Emory University, Atlanta, GA, 30332, USA
| | - Vivek Kumar
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, 07102, USA
| |
Collapse
|
7
|
Synthesis of novel thioxanthone-containing macromolecular photosensitizer and its photocatalytic property. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.04.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Kaya K, Kreutzer J, Yagci Y. A Charge‐Transfer Complex of Thioxanthonephenacyl Sulfonium Salt as a Visible‐Light Photoinitiator for Free Radical and Cationic Polymerizations. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800217] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kerem Kaya
- Department of Chemistry Faculty of Science and LiteratureIstanbul Technical University Maslak, Ayazaga Campus Istanbul 34469 Turkey
| | - Johannes Kreutzer
- Department of Chemistry Faculty of Science and LiteratureIstanbul Technical University Maslak, Ayazaga Campus Istanbul 34469 Turkey
| | - Yusuf Yagci
- Department of Chemistry Faculty of Science and LiteratureIstanbul Technical University Maslak, Ayazaga Campus Istanbul 34469 Turkey
- Chemistry Department, Faculty of ScienceKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
9
|
In–situ formation of self-assembled Ag nanoclusters on ct-DNA in the presence of 2-mercaptothioxanthone by using UV–vis light irradiation. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.12.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Poly(propylene oxide)-thioxanthone as one-component Type II polymeric photoinitiator for free radical polymerization with low migration behavior. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.07.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
One-component, double-chromophoric thioxanthone photoinitiators for free radical polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Allushi A, Kutahya C, Aydogan C, Kreutzer J, Yilmaz G, Yagci Y. Conventional Type II photoinitiators as activators for photoinduced metal-free atom transfer radical polymerization. Polym Chem 2017. [DOI: 10.1039/c7py00114b] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel methodology for photoinduced metal-free Atom Transfer Radical Polymerization (ATRP) by using conventional Type II photoinitiators such as benzophenone, thioxanthone, isopropyl thioxanthone and camphorquinone as sensitizers is presented.
Collapse
Affiliation(s)
- Andrit Allushi
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Ceren Kutahya
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Cansu Aydogan
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Johannes Kreutzer
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Gorkem Yilmaz
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| | - Yusuf Yagci
- Department of Chemistry
- Istanbul Technical University
- 34469 Maslak
- Turkey
| |
Collapse
|
13
|
Geyik C, Guler E, Gumus ZP, Barlas FB, Akbulut H, Demirkol DO, Timur S, Yagci Y. Bioconjugation and Applications of Amino Functional Fluorescence Polymers. Macromol Biosci 2016; 17. [PMID: 27689764 DOI: 10.1002/mabi.201600232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Indexed: 12/11/2022]
Abstract
Synthesis and novel applications of biofunctional polymers for diagnosis and therapy are promising area involving various research domains. Herein, three fluorescent polymers, poly(p-phenylene-co-thiophene), poly(p-phenylene), and polythiophene with amino groups (PPT-NH2 , PPP-NH2 , and PT-NH2 , respectively) are synthesized and investigated for cancer cell targeted imaging, drug delivery, and radiotherapy. Polymers are conjugated to anti-HER2 antibody for targeted imaging studies in nontoxic concentrations. Three cell lines (A549, Vero, and HeLa) with different expression levels of HER2 are used. In a model of HER2 expressing cell line (A549), radiotherapy experiments are carried out and results show that all three polymers increase the efficacy of radiotherapy. This effect is even more increased when conjugated to anti-HER2. In the second part of this work, one of the selected polymers (PT-NH2 ) is conjugated with a drug model; methotrexate via pH responsive hydrazone linkage and a drug carrier property of PT-NH2 is demonstrated on neuroblastoma (SH-SY5Y) cell model. Our results indicate that, PPT-NH2 , PPP-NH2 , and PT-NH2 have a great potential as biomaterials for various bioapplications in cancer research.
Collapse
Affiliation(s)
- Caner Geyik
- Ege University Institute on Drug Abuse, Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Emine Guler
- Ege University Institute on Drug Abuse, Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey.,Ege University, Faculty of Science Department of Biochemistry, 35100, Bornova, Izmir, Turkey
| | - Zinar Pinar Gumus
- Ege University Institute on Drug Abuse, Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey
| | - Firat Baris Barlas
- Ege University, Faculty of Science Department of Biochemistry, 35100, Bornova, Izmir, Turkey
| | - Huseyin Akbulut
- Istanbul Technical University, Department of Chemistry, Faculty of Science and Letters, 34469, Istanbul, Turkey
| | - Dilek Odaci Demirkol
- Ege University, Faculty of Science Department of Biochemistry, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Ege University Institute on Drug Abuse, Toxicology & Pharmaceutical Sciences, 35100, Bornova, Izmir, Turkey.,Ege University, Faculty of Science Department of Biochemistry, 35100, Bornova, Izmir, Turkey
| | - Yusuf Yagci
- Istanbul Technical University, Department of Chemistry, Faculty of Science and Letters, 34469, Istanbul, Turkey.,Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|