1
|
Xing L, Ding J, Gao J, Chen D, Xiong C, Xiong Z. Xanthium-Inspired Microsphere Morphology Depends on the Dual Self-Assembly Behavior of Macromolecules. Macromol Rapid Commun 2025; 46:e2400956. [PMID: 39812319 DOI: 10.1002/marc.202400956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Indexed: 01/16/2025]
Abstract
The self-assembly of macromolecular segments promotes the fabrication of polymer microspheres with multiple morphologies. Inspired by the xanthium shells, A dual-driven self-assembly method have defined that enables the construction of multi-dimensional morphologies on the microsphere surface at emulsion-confined interfaces. The two driving forces are derived from the phase separation caused by the immiscibility of macromolecular segments and the different interactions between chain segments of different hydrophilicity and water molecules. The synergistic effects of these two forces, the xanthium shell structure is constructed on the microsphere surface, enabling the development of increasingly complex superstructure. This scalable approach provides extensive potential for the self-assembly technology of block copolymers with opposite properties.
Collapse
Affiliation(s)
- Luyao Xing
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaqiang Ding
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaqi Gao
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongliang Chen
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chengdong Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zuochun Xiong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610213, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Wilson-Whitford SR, Gao J, Gilchrist JF. Density Matching for Microencapsulation of Field Responsive Suspensions of Non-Brownian Microparticles. J Phys Chem B 2024; 128:6394-6399. [PMID: 38778787 PMCID: PMC11228997 DOI: 10.1021/acs.jpcb.4c02288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
When forming composite microcapsules through the emulsification of a dispersed phase laden with microparticles, one will find that the microparticles become irreversibly embedded in the resulting microcapsule membrane. This phenomenon, known as Pickering stabilization, is detrimental when the end function of the microcapsules relies on the mobility of encapsulated microparticles within the capsule core. In this work, a robust microencapsulation route using density matching of non-Brownian microparticles in a binary solvent is shown to easily and effectively encapsulate particles, with >90% of particles retaining mobility within the microcapsules, without the necessity for prior chemical/physical modifications to the microparticles. This is proposed as a generalized method to be used for all manner of particle chemistries, shapes, and sizes.
Collapse
Affiliation(s)
| | - Jinghui Gao
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - James F Gilchrist
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Jing H, Li R, Zou H. Preparation of Surface-Wrinkled Silica-Polystyrene Colloidal Composite Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11390-11400. [PMID: 38776219 DOI: 10.1021/acs.langmuir.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
In this work, we report a facile emulsion swelling route to prepare surface-wrinkled silica-polystyrene (SiO2-PS) composite particles. Submicrometer-sized, near-spherical SiO2-PS composite particles were first synthesized by dispersion polymerization of styrene in an ethanol/water mixture, and then, surface-wrinkled SiO2-PS particles were obtained by swelling the SiO2-PS particles with a toluene/water emulsion and subsequent drying. It is emphasized that no surface pretreatment on the SiO2-PS composite particles is required for the formation of the wrinkled surface, and the most striking feature is that the surface-wrinkled particle was not deformed from a single near-spherical SiO2-PS composite particle but from many ones. The influence of various swelling parameters including toluene/particle mass ratio, surfactant concentration, stirring rate, swelling temperature, swelling time, and silica size on the morphology of the composite particles was studied. This method represents a new paradigm for the preparation of concave polymer colloids.
Collapse
Affiliation(s)
- Hongyu Jing
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ruisi Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
4
|
Feng Z, Su X, Wang T, Sun X, Yang H, Guo S. The Role of Microsphere Structures in Bottom-Up Bone Tissue Engineering. Pharmaceutics 2023; 15:pharmaceutics15020321. [PMID: 36839645 PMCID: PMC9964570 DOI: 10.3390/pharmaceutics15020321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xin Su
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Ting Wang
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China
- Correspondence: (X.S.); (S.G.)
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No. 77, Puhe Road, Shenyang 110122, China;
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang 110002, China; (Z.F.); (X.S.); (T.W.)
- Correspondence: (X.S.); (S.G.)
| |
Collapse
|
5
|
Lv Y, Suo H, Zou H. An emulsion swelling route to surface-wrinkled polystyrene-silica colloidal nanocomposite particles. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Zou H, Lv Y. Synthetic Strategies for Polymer Particles with Surface Concavities. Macromol Rapid Commun 2022; 43:e2200072. [PMID: 35322491 DOI: 10.1002/marc.202200072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/15/2022] [Indexed: 11/06/2022]
Abstract
Over the past decade or so, there has been increasing interest in the synthesis of polymer particles with surface concavities, which mainly include golf ball-like, dimpled and surface-wrinkled polymer particles. Such syntheses generally can be classified into direct polymerization and post-treatment on preformed polymer particles. This review aims to provide an overview of the synthetic strategies of such particles. Some selected examples are given to present the formation mechanisms of the surface concavities. The applications and future development of these concave polymer particles are also briefly discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Yongliang Lv
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| |
Collapse
|
7
|
Zhang Y, Ren J, Yang Z, Ma Y, Zhang Q, Zhang B. Fabrication of Surface-Imprinted Magnetic Wrinkled Microspheres and Their Specific Adsorption of BSA. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yunfei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Xi’an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi’an 710129, China
| | - Jianquan Ren
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zuoting Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Yiran Ma
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710129, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Xi’an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi’an 710129, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi’an 710072, China
| |
Collapse
|
8
|
Xu J, Liu Z, Li Q, Wang Y, Shah T, Ahmad M, Zhang Q, Zhang B. Wrinkled Fe 3O 4@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance. J Colloid Interface Sci 2021; 601:397-410. [PMID: 34090022 DOI: 10.1016/j.jcis.2021.05.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/28/2022]
Abstract
In this work, we develop a novel synthetic strategy for wrinkled magnetic composite microspheres (Fe3O4@C). Firstly, hydrophobic oleic acid modified Fe3O4 (OA-Fe3O4) nanoparticles acted as the magnetic component are prepared by synchronous modification coprecipitation method. The macromolecular emulsifier with initiating activity is obtained by means of soap-free emulsion polymerization under the presence of 1,1-diphenylethylene (DPE). Then, interfacial polymerization is employed to synthesis Fe3O4@polymethylglycidyl ester/divinylbenzene composite microspheres (Fe3O4@PGMA/DVB). Fe3O4@C composite microspheres are obtained by vacuum carbonization of the microspheres. The effect of magnetic content on the microwave absorbing properties of Fe3O4@C composite microspheres is explored. The results show that Fe3O4@C composite microspheres exhibit the excellent application performance at the Fe3O4 content of 0.15 g. The reflection loss can reach -53.7 dB at only thickness of 1.7 mm. The Maximum effective absorption bandwidth is up to 5.26 GHz with a thickness of 1.9 mm. The microwave attenuation mechanism of Fe3O4@C composite microspheres is revealed. The excellent absorbing performance is attributed to the enhanced interfacial polarization ability, the surface wrinkled structure and the good synergy between dielectric and magnetic losses. This work provides an effective strategy for the design and preparation of new magnetic composite materials.
Collapse
Affiliation(s)
- Jia Xu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zihao Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yabin Wang
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| | - Tariq Shah
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mudasir Ahmad
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710129, China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China; Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|
9
|
Zhang L, Ma J, Lyu B, Zhang Y, Gao D, Liu C, Li X. Mitochondrial structure-inspired high specific surface area polymer microspheres by encapsulating modified graphene oxide nanosheets. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
10
|
Ahmad M, Zhang B, Wang J, Xu J, Manzoor K, Ahmad S, Ikram S. New method for hydrogel synthesis from diphenylcarbazide chitosan for selective copper removal. Int J Biol Macromol 2019; 136:189-198. [DOI: 10.1016/j.ijbiomac.2019.06.084] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/30/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
|
11
|
Shi Y, Yin Y, Zhang Y, Hu Y, Liu W. Preparation and Microwave Absorption Properties of C@Fe 3O 4 Magnetic Composite Microspheres. MATERIALS 2019; 12:ma12152404. [PMID: 31357688 PMCID: PMC6696389 DOI: 10.3390/ma12152404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/18/2019] [Accepted: 07/24/2019] [Indexed: 01/09/2023]
Abstract
In this work, C@Fe3O4 magnetic microspheres were designed and prepared by a novel strategy, and the microwave absorption properties of the materials were investigated. Four kinds of monodisperse P(MAA/St) microspheres with different carboxyl content were synthesized via facile dispersion polymerization. The Fe3O4 nanoparticles were grown on the surface of P(MAA/St) to obtain P(MAA/St)@Fe3O4 microspheres. Using P(MAA/St)@Fe3O4 as the precursors, after vacuum carbonization, C@Fe3O4 were obtained. It was observed that the carboxyl content on the microspheres’ surface increased with the increasing of MAA, which made the magnetic content and maximum specific saturation magnetization of P(MAA/St)@Fe3O4 and C@Fe3O4 increase. The obtained four kinds of C@Fe3O4 microspheres had a particle size range of 4–6 μm. The microwave absorption properties indicated that the magnetic content made a difference to the microwave absorption properties of C@Fe3O4 magnetic microspheres. The microwave absorption properties of materials were determined by controlling dielectric loss, magnetic loss and impedance matching. C@Fe3O4 microspheres exhibited excellent microwave absorption properties. The maximum reflection loss could reach −45.6 dB at 12.8 GHz with 3 mm in thickness. The effective bandwidth was 5.9 GHz with RL < −10 dB. Therefore, C@Fe3O4 microspheres were lightweight and efficient microwave absorption materials.
Collapse
Affiliation(s)
- Youqiang Shi
- Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China.
| | - Yanan Yin
- Capital Aerospace Machinery Corporation Limited, Beijing 100076, China
| | - Yi Zhang
- Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China
| | - Yue Hu
- Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China
| | - Weifeng Liu
- Aviation Key Laboratory of Science and Technology on Stealth Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China
| |
Collapse
|