1
|
Zhou Q, Huang C, Lu S, Abushammala H, Gao D, Xu P, Niu D, Yang W, Ma P. Skin-inspired polysaccharide-based hydrogels with tailored properties for information transmission application. Int J Biol Macromol 2025; 306:141354. [PMID: 39986517 DOI: 10.1016/j.ijbiomac.2025.141354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Conductive hydrogels have attracted significant research interest in flexible electronics owing to their intrinsic flexibility and biocompatibility. However, the rapid and sustainable fabrication of green conductive hydrogels with excellent mechanical and conductive properties remains a significant challenge. Inspired by the structure of human skin, modified polysaccharide-reinforced polyvinyl alcohol (PVA) ionic conductive hydrogels with tailored properties were developed through Zn2+ coordination and Hofmeister effect. The results demonstrated that precisely tunable mechanical properties (σ = 0.39-1.93 MPa, ε = 501-1010 %) and conductivity (IC = 0.26-1.10 S/m) were achieved through the regulation of ionic concentrations at relatively low levels. The enhancement in both mechanical and conductive properties arose from multiscale interactions, including the formation of dense nanofibril networks and crystalline domains, alongside multiple metal coordination and hydrogen bonding interactions. Meanwhile, the conductive hydrogel exhibits a low strain detection limit (2 %), highlighting its promising applications in human health monitoring. Crucially, a wireless information transmission system was developed based on this ionic conductive hydrogel, aimed at facilitating information transmission for deaf-mute individuals. This work presents an eco-friendly and biomimetic strategy for fabricating ionic conductive hydrogels with tailored properties, expanding their advanced applications in flexible sensing.
Collapse
Affiliation(s)
- Qi Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chenjing Huang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Shengxu Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hatem Abushammala
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Daqian Gao
- Department of Surgery, School of Medicine, Yale University, New Haven, 06510, USA
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
2
|
Liu L, Zhang D, Bai P, Fang Y, Guo J, Li Q, Ma R. Fatigue-resistant and super-tough thermocells. Nat Commun 2025; 16:1963. [PMID: 40000631 PMCID: PMC11861941 DOI: 10.1038/s41467-025-57233-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Wearable thermocells offer a sustainable energy solution for wearable electronics but are hindered by poor fatigue resistance, low fracture energy, and thermal inefficiencies. In this study, we present a high-strength, fatigue-resistant thermocell with enhanced thermoelectric performance through solvent exchange-assisted annealing and chaotropic effect-enhanced thermoelectric properties. The mechanical strength and toughness are improved by forming macromolecular crystal domains and entangling polymer chains. Guanidine ions, with strong chaotropic properties, optimize the solvation layer of redox ion couple, boosting thermoelectric efficiency. Compared to existing anti-fatigue thermocells, the current design exhibits a 20-fold increase in mechanical toughness (368 kJ m-2) and a 3-fold increase in Seebeck coefficient (5.4 mV K-1). With an ultimate tensile strength of 12 MPa, a fatigue threshold of 4.1 kJ m-2, and a specific output power density of 714 μW m-2 K-2, this thermocell outperforms existing designs, enabling more reliable and efficient wearable electronics and stretchable devices.
Collapse
Affiliation(s)
- Lili Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| | - Peijia Bai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Yanjie Fang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Jiaqi Guo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Qi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| |
Collapse
|
3
|
Dong L, Jia R, Liu Z, Aiyiti W, Shuai C, Li Z, Fu Q, Li X. Tannic acid based multifunctional hydrogels with mechanical stability for wound healing. Colloids Surf B Biointerfaces 2024; 243:114127. [PMID: 39079186 DOI: 10.1016/j.colsurfb.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 09/17/2024]
Abstract
Conventional wound dressings have poor tissue adhesion and mechanical stability, restricting their applications in dynamic motion environments. Tannic acid (TA) was ideal candidates for current dressing materials due to their well-known antioxidant and anti-inflammatory properties. However, the inevitable polymerization problem of TA limited the one-step synthesis of dressings. Herein, we reported a simple one-pot method to prepare double-network hydrogels containing N-acryloyl glycinamide (NAGA), N-hydroxyethyl acrylamide (HEAA) and TA. The resulting NHT hydrogel exhibited excellent tensile properties, fatigue resistance, and notch insensitivity to ensure mechanical stability under large deformation and stress in vitro. The NHT hydrogel also demonstrated room-temperature self-healing, broad adhesion to various substrates, synergistic swelling ability. In addition, catechol and benzene rings from TA helped shield against UV radiation and acted as free radical scavengers to relieve oxidative stress in wound damage. As a result, full-layer wounds in mice treated with NHT patches showed a higher healing rate, in which epithelialization was completed within 14 days. The integrated function enables hydrogel to maintain mechanical stability in dynamic motion environments with high strain and defects, with great potential for future clinical translation.
Collapse
Affiliation(s)
- Lanlan Dong
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China.
| | - Ru Jia
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China
| | - Zhong Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Wurikaixi Aiyiti
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China
| | - Cijun Shuai
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China
| | - Zhongwang Li
- School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| | - Xiang Li
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
4
|
Zhang X, Chen Q, Chen K, Feng H, Feng C, Li X, Zhang D, Ge S. Tough, Slippery, and Low-Permeability Multilayer Hydrogels Modified by Anisotropic Fiber Membrane for Soft Tissue Replacement. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47314-47324. [PMID: 39222480 DOI: 10.1021/acsami.4c11080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Hydrogels with sustained lubrication, high load-bearing capacity, and wear resistance are essential for applications in soft tissue replacements and soft material devices. Traditional tough or lubricious hydrogels fail to balance the lubrication and load-bearing functions. Inspired by the gradient-ordered multilayer structures of natural tissues (such as cartilage and ligaments), a tough, smooth, low-permeability, and low-friction anisotropic layered electrospun fiber membrane-reinforced hydrogel was developed using electrospinning and annealing recrystallization. This hydrogel features a stratified porous network structure of varying sizes with tightly bonded interfaces, achieving an interfacial bonding toughness of 1.6 × 103 J/m2. The anisotropic fiber membranes, mimicking the orderly fiber structures within soft tissues, significantly enhance the mechanical properties of the hydrogel with a fracture strength of 20.95 MPa, a Young's modulus of 29.64 MPa, and a tear toughness of 37.94 kJ/m2 and reduce its permeability coefficient (6.1 × 10-17 m4 N-1 s-1). Meanwhile, the hydrogel demonstrates excellent solid-liquid phase load-bearing characteristics, which can markedly improve the tribological performance. Under a contact load of 4.1 MPa, the anisotropic fiber membrane-reinforced hydrogel achieves a friction coefficient of 0.036, a 219% reduction compared with pure hydrogels. Thus, the superior load-bearing and lubricating properties of this layered hydrogel underscore its potential applications in soft tissue replacements, medical implants, and other biomedical devices.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Materials and Physics, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Qin Chen
- School of Materials and Physics, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Kai Chen
- School of Materials and Physics, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Haiyan Feng
- School of Materials and Physics, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Cunao Feng
- School of Materials and Physics, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiaowei Li
- School of Materials and Physics, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Dekun Zhang
- School of Materials and Physics, School of Chemical Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Shirong Ge
- School of Mechanical Electronic and Information Engineering, China University of Mining and Technology─Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Zhong D, Wang Z, Xu J, Liu J, Xiao R, Qu S, Yang W. A strategy for tough and fatigue-resistant hydrogels via loose cross-linking and dense dehydration-induced entanglements. Nat Commun 2024; 15:5896. [PMID: 39003311 PMCID: PMC11246433 DOI: 10.1038/s41467-024-50364-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/09/2024] [Indexed: 07/15/2024] Open
Abstract
Outstanding overall mechanical properties are essential for the successful utilization of hydrogels in advanced applications such as human-machine interfaces and soft robotics. However, conventional hydrogels suffer from fracture toughness-stiffness conflict and fatigue threshold-stiffness conflict, limiting their applicability. Simultaneously enhancing the fracture toughness, fatigue threshold, and stiffness of hydrogels, especially within a homogeneous single network structure, has proven to be a formidable challenge. In this work, we overcome this challenge through the design of a loosely cross-linked hydrogel with slight dehydration. Experimental results reveal that the slightly-dehydrated, loosely cross-linked polyacrylamide hydrogel, with an original/current water content of 87%/70%, exhibits improved mechanical properties, which is primarily attributed to the synergy between the long-chain structure and the dense dehydration-induced entanglements. Importantly, the creation of these microstructures does not require intricate design or processing. This simple approach holds significant potential for hydrogel applications where excellent anti-fracture and fatigue-resistant properties are necessary.
Collapse
Affiliation(s)
- Danming Zhong
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Zhicheng Wang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Junwei Xu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Junjie Liu
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Rui Xiao
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Shaoxing Qu
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China.
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Wei Yang
- State Key Laboratory of Fluid Power & Mechatronic System, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Wang S, Lei L, Tian Y, Ning H, Hu N, Wu P, Jiang H, Zhang L, Luo X, Liu F, Zou R, Wen J, Wu X, Xiang C, Liu J. Strong, tough and anisotropic bioinspired hydrogels. MATERIALS HORIZONS 2024; 11:2131-2142. [PMID: 38376175 DOI: 10.1039/d3mh02032k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Soft materials are widely used in tissue engineering, soft robots, wearable electronics, etc. However, it remains a challenge to fabricate soft materials, such as hydrogels, with both high strength and toughness that are comparable to biological tissues. Inspired by the anisotropic structure of biological tissues, a novel solvent-exchange-assisted wet-stretching strategy is proposed to prepare anisotropic polyvinyl alcohol (PVA) hydrogels by tuning the macromolecular chain movement and optimizing the polymer network. The reinforcing and toughening mechanisms are found to be "macromolecule crystallization and nanofibril formation". These hydrogels exhibit excellent mechanical properties, such as extremely high fracture stress (12.8 ± 0.7 MPa) and fracture strain (1719 ± 77%), excellent modulus (4.51 ± 0.76 MPa), high work of fracture (134.47 ± 9.29 MJ m-3), and fracture toughness (305.04 kJ m-2) compared with other strong hydrogels and even natural tendons. In addition, excellent conductivity, strain sensing capability, water retention, freezing resistance, swelling resistance, and biocompatibility can also be achieved. This work provides a new and effective method to fabricate multifunctional anisotropic hydrogels with high tunable strength and toughness with potential applications in the fields of regenerative medicine, flexible sensors, and soft robotics.
Collapse
Affiliation(s)
- Shu Wang
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Ling Lei
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Yuanhao Tian
- Southwest Technology and Engineering Research Institute, Chongqing, 400039, P. R. China
| | - Huiming Ning
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Ning Hu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Hanqing Jiang
- School of Engineering, Westlake University, Hangzhou, 310024, P. R. China
| | - Lidan Zhang
- School of Basic Medicine, Chongqing Medical University, 400042, P. R. China
| | - Xiaolin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Feng Liu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Rui Zou
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jie Wen
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xiaopeng Wu
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Chenxing Xiang
- College of Aerospace Engineering, Chongqing University, 174 Shazheng St, Shapingba District, Chongqing, 400044, P. R. China.
| | - Jie Liu
- State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Changsha, Hunan, 410082, P. R. China.
| |
Collapse
|
7
|
Wang Y, Wei Z, Ji T, Bai R, Zhu H. Highly Ionic Conductive, Stretchable, and Tough Ionogel for Flexible Solid-State Supercapacitor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307019. [PMID: 38111366 DOI: 10.1002/smll.202307019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/17/2023] [Indexed: 12/20/2023]
Abstract
The increasing demand for wearable electronics calls for advanced energy storage solutions that integrate high electrochemical performances and mechanical robustness. Ionogel is a promising candidate due to its stretchability combined with high ionic conductivity. However, simultaneously optimizing both the electrochemical and mechanical performance of ionogels remains a challenge. This paper reports a tough and highly ion-conductive ionogel through ion impregnation and solvent exchange. The fabricated ionogel consists of double interpenetrating networks of long polymer chains that provide high stretchability. The polymer chains are crosslinked by hydrogen bonds that induce large energy dissipation for enhanced toughness. The resultant ionogel possesses mechanical stretchability of 26, tensile strength of 1.34 MPa, and fracture toughness of 4175 J m-2. Meanwhile, due to the high ion concentrations and ion mobility in the gel, a high ionic conductivity of 3.18 S m-1 at room temperature is achieved. A supercapacitor of this ionogel sandwiched with porous fiber electrodes provides remarkable areal capacitance (615 mF cm-2 at 1 mA cm-2), energy density (341.7 µWh cm-2 at 1 mA cm-2), and power density (20 mW cm-2 at 10 mA cm-2), offering significant advantages in applications where high efficiency, compact size, and rapid energy delivery are crucial, such as flexible and wearable electronics.
Collapse
Affiliation(s)
- Ying Wang
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Zhengxuan Wei
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Tongtai Ji
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Ruobing Bai
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| | - Hongli Zhu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Chen Z, Zhang G, Luo Y, Suo Z. Rubber-glass nanocomposites fabricated using mixed emulsions. Proc Natl Acad Sci U S A 2024; 121:e2322684121. [PMID: 38588426 PMCID: PMC11032485 DOI: 10.1073/pnas.2322684121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 04/10/2024] Open
Abstract
Many composites consist of matrices of elastomers and nanoparticles of stiff materials. Such composites often have superior properties and are widely used. Embedding elastomers with nanoparticles commonly necessitates intense shear, using machines like extruders and roll millers, which cut polymer chains and degrade properties. Here, we prepare a rubber-glass nanocomposite by using two aqueous emulsions. Each emulsion is separately prepared with a single species of polymer chains. Each polymer chain is copolymerized with a small amount of silane coupling agent. Upon mixing the two emulsions, as water evaporates, the glassy particles retain the shape, and the rubbery particles change shape to form a continuous matrix. Subsequently, the silane coupling agent condensates, which cross-links the rubbery chains and interlinks the rubbery chains to the glassy particles. The cross-links and interlinks stabilize the nanostructure and lead to superior properties. The nanocomposite simultaneously achieves high modulus (~30 MPa), high toughness (~100 kJ m-2), and high fatigue threshold (~1,000 J m-2). The method of mixed emulsion is environmentally friendly and compatible with various open-air manufacturing processes, such as coat, cast, spray, print, and brush. Additionally, the silane coupling agent can interlink the nanocomposite to other materials. The method of mixed emulsion can be used to fabricate objects of complex shapes, fine features, and prescribed spatial variations of compositions.
Collapse
Affiliation(s)
- Zheqi Chen
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310058, China
| | - Guogao Zhang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou310058, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA02138
| |
Collapse
|
9
|
Yuan X, Zhu Z, Xia P, Wang Z, Zhao X, Jiang X, Wang T, Gao Q, Xu J, Shan D, Guo B, Yao Q, He Y. Tough Gelatin Hydrogel for Tissue Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301665. [PMID: 37353916 PMCID: PMC10460895 DOI: 10.1002/advs.202301665] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Indexed: 06/25/2023]
Abstract
Tough hydrogel has attracted considerable interest in various fields, however, due to poor biocompatibility, nondegradation, and pronounced compositional differences from natural tissues, it is difficult to be used for tissue regeneration. Here, a gelatin-based tough hydrogel (GBTH) is proposed to fill this gap. Inspired by human exercise to improve muscle strength, the synergistic effect is utilized to generate highly functional crystalline domains for resisting crack propagation. The GBTH exhibits excellent tensile strength of 6.67 MPa (145-fold that after untreated gelation). Furthermore, it is directly sutured to a ruptured tendon of adult rabbits due to its pronounced toughness and biocompatibility, self-degradability in vivo, and similarity to natural tissue components. Ruptured tendons can compensate for mechanotransduction by GBTH and stimulate tendon differentiation to quickly return to the initial state, that is, within eight weeks. This strategy provides a new avenue for preparation of highly biocompatible tough hydrogel for tissue regeneration.
Collapse
Affiliation(s)
- Ximin Yuan
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001P. R. China
- National Innovation Center for Advanced Medical DevicesShenzhen457001P. R. China
| | - Zhou Zhu
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologyChengdu610041P. R. China
| | - Pengcheng Xia
- Institute of Digital MedicineNanjing First HospitalNanjing Medical UniversityNanjing210006P. R. China
| | - Zhenjia Wang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001P. R. China
- National Innovation Center for Advanced Medical DevicesShenzhen457001P. R. China
| | - Xiao Zhao
- Institute of Digital MedicineNanjing First HospitalNanjing Medical UniversityNanjing210006P. R. China
| | - Xiao Jiang
- Institute of Digital MedicineNanjing First HospitalNanjing Medical UniversityNanjing210006P. R. China
| | - Tianming Wang
- Institute of Digital MedicineNanjing First HospitalNanjing Medical UniversityNanjing210006P. R. China
| | - Qing Gao
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027P. R. China
| | - Jie Xu
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001P. R. China
- National Innovation Center for Advanced Medical DevicesShenzhen457001P. R. China
| | - Debin Shan
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001P. R. China
- National Innovation Center for Advanced Medical DevicesShenzhen457001P. R. China
| | - Bin Guo
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbin150001P. R. China
- National Innovation Center for Advanced Medical DevicesShenzhen457001P. R. China
| | - Qingqiang Yao
- Institute of Digital MedicineNanjing First HospitalNanjing Medical UniversityNanjing210006P. R. China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027P. R. China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceCollege of Mechanical EngineeringZhejiang UniversityHangzhou310027P. R. China
- Cancer CenterZhejiang UniversityHangzhou310058P. R. China
| |
Collapse
|
10
|
Liu L, Zhang D, Bai P, Mao Y, Li Q, Guo J, Fang Y, Ma R. Strong Tough Thermogalvanic Hydrogel Thermocell With Extraordinarily High Thermoelectric Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300696. [PMID: 37222174 DOI: 10.1002/adma.202300696] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Thermocells can continuously convert heat into electricity, and they are widely used to power wearable electronic devices. However, they have a risk of leakage and poor mechanical properties. Although quasi-solid ionic thermocells can overcome the issue of electrolyte leakage, the trade-off between their excellent mechanical properties and high thermopower remains a major challenge. In this study, stretching-induced crystallization and the thermoelectric effect are combined to propose a high-strength quasi-solid stretchable polyvinyl alcohol thermogalvanic thermocell (SPTC) with a large tensile strength of 19 MPa and high thermopower of 6.5 mV K-1 . The SPTC exhibits a high stretchability of 1300%, ultrahigh toughness of 163.4 MJ m-3 , and high specific output power density of 1969 µW m-2 K-2 . These comprehensive properties are superior to those of previously reported quasi-solid stretchable thermogalvanic thermocells. The use of SPTC-based systems in wearable devices for energy-autonomous strain sensors and health monitoring is demonstrated. This can facilitate the rapid implementation of sustainable wearable electronics in the Internet of Things era.
Collapse
Affiliation(s)
- Lili Liu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Ding Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Peijia Bai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Yin Mao
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Qi Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Jiaqi Guo
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Yanjie Fang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Smart Sensing Interdisciplinary Science Center, Nankai University, Tongyan Road 38, Tianjin, 300350, China
| |
Collapse
|
11
|
Tang X, Qin H, Yang J, Zhang X. Transdermal Delivery of Estradiol Simultaneously Possessing Rapid Release and Sustained Release Effect. AAPS PharmSciTech 2023; 24:145. [PMID: 37353673 DOI: 10.1208/s12249-023-02604-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/30/2023] [Indexed: 06/25/2023] Open
Abstract
Dissolving microneedle (DMN) has been researched as a drug delivery technology that improves drug molecule transportation through the skin with little discomfort. However, the sluggish drug absorption, poor skin dissolution, and lengthy time lags of DMN have limited its potential uses. The aim of this study was to design a novel DMN system for the administration of the poorly water-soluble drug, estradiol (E2), with fast skin penetration and a stable release rate for a long time. DMN containing E2 emulsion (E2-EM-DMN) and traditional DMN (T-DMN) were prepared. Rat skin was used for penetration test and guinea pig skin was used for skin irritation experiment. The drug release profiles and stability properties of these two kinds of DMNs were also investigated. High performance liquid chromatography was employed to determine the E2 content in DMN. The E2 concentration in rat plasma was achieved by a newly developed liquid chromatography-mass spectrometry method that was fast, reproducible, and specific. The height of E2-EM-DMN and T-DMN was 600 μm. The drug loading of the E2-EM-DMN and T-DMN was 667.30 ± 7.21 μg/patch and 672.56 ± 6.98 μg/patch. E2-EM-DMN possessed enough mechanical strength to penetrate the skin and caused no irritation to the skin. E2-EM-DMN could release the drug more rapidly and more continuously than T-DMN. E2-EM-DMN had good pharmaceutical stability. In summary, the E2-EM-DMN showed reliable quality and superior release performance. Emulsion-embedded DMN is an ideal transdermal delivery system for drugs.
Collapse
Affiliation(s)
- XiaoFei Tang
- School of Pharmacy, Lanzhou University, No.199, Donggang West Road, Lanzhou, 730000, China
| | - Huaiying Qin
- School of Pharmacy, Lanzhou University, No.199, Donggang West Road, Lanzhou, 730000, China
| | - Jianhua Yang
- School of Pharmacy, Lanzhou University, No.199, Donggang West Road, Lanzhou, 730000, China
| | - XiaoYun Zhang
- School of Pharmacy, Lanzhou University, No.199, Donggang West Road, Lanzhou, 730000, China.
| |
Collapse
|
12
|
Wancura M, Nkansah A, Chwatko M, Robinson A, Fairley A, Cosgriff-Hernandez E. Interpenetrating network design of bioactive hydrogel coatings with enhanced damage resistance. J Mater Chem B 2023; 11:5416-5428. [PMID: 36825927 PMCID: PMC10682960 DOI: 10.1039/d2tb02825e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/20/2023] [Indexed: 02/22/2023]
Abstract
Bioactive hydrogel coatings offer a promising route to introduce sustained thromboresistance to cardiovascular devices without compromising bulk mechanical properties. Poly(ethylene glycol)-based hydrogels provide antifouling properties to limit acute thromobosis and incorporation of adhesive ligands can be used to promote endothelialization. However, conventional PEG-based hydrogels at stiffnesses that promote cell attachment can be brittle and prone to damage in a surgical setting, limiting their utility in clinical applications. In this work, we developed a durable hydrogel coating using interpenetrating networks of polyether urethane diacrylamide (PEUDAm) and poly(N-acryloyl glycinamide) (pNAGA). First, diffusion-mediated redox initiation of PEUDAm was used to coat electrospun polyurethane fiber meshes with coating thickness controlled by the immersion time. The second network of pNAGA was then introduced to enhance damage resistance of the hydrogel coating. The durability, thromboresistance, and bioactivity of the resulting multilayer grafts were then assessed. The IPN hydrogel coatings displayed resistance to surgically-associated damage mechanisms and retained the anti-fouling nature of PEG-based hydrogels as indicated by reduced protein adsorption and platelet attachment. Moreover, incorporation of functionalized collagen into the IPN hydrogel coating conferred bioactivity that supported endothelial cell adhesion. Overall, this conformable and durable hydrogel coating provides an improved approach for cardiovascular device fabrication with targeted biological activity.
Collapse
Affiliation(s)
- Megan Wancura
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | - Abbey Nkansah
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Andrew Robinson
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ashauntee Fairley
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|
13
|
Zeng X, Xia X, Fan J, Sun R, Zeng X. How chemical cross-linking and entanglements in polybutadiene elastomers cope with tearing. Phys Chem Chem Phys 2023; 25:14463-14470. [PMID: 37184830 DOI: 10.1039/d3cp01398g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
New applications of elastomers, such as flexible electronics and soft robotics, have brought great attention to tear resistance since elastomers are prone to shear failure. Most elastomers contain chemical cross-links and entanglements. The effects of both on their mechanical properties have been intensively studied, while how they cope with tearing remains elusive. Here, in polybutadiene elastomers, we find that the energy release rate of tearing (Gtearing), often employed as a measure of tear resistance, is influenced synergistically by chemical cross-linking and entanglements, while its threshold (G0) is only related to the chemical cross-linking. At a low tear speed, the polybutadiene elastomers with low cross-linking density have Gtearing up to 4 times higher than their G0 compared to highly cross-linked ones. Different from conventional reinforcement due to volume dissipation of a polymer network, enhancement of Gtearing significantly depends on the degree of cross-linking. The enhancement of Gtearing at low cross-linking degrees may be related to a novel mechanism, the friction-strengthening phenomenon, which was possibly caused by the pull-out of the chains at a high degree of orientation.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, China.
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha 410082, China.
| | - JianFeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
14
|
Zeng X, Xu L, Xia X, Bai X, Zhong C, Fan J, Ren L, Sun R, Zeng X. The Synergy of Hydrogen Bond and Entanglement of Elastomer Captures Unprecedented Flaw Insensitivity Rate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207409. [PMID: 36683211 DOI: 10.1002/smll.202207409] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Elastomers are regarded as one of the best candidates for the matrix material of soft electronics, yet they are susceptible to fracture due to the inevitable flaws generated during applications. Introducing microstructures, sacrificial bonds, and sliding cross-linking has been recognized as an effective way to improve the flaw insensitivity rate (Rinsen ). However, these elastomers still prone to failure under tensile loads with the presence of even small flaws. Here, this work reports a polybutadiene elastomer with unprecedented Rinsen via the synergy of hydrogen bond and entanglement. The resulting polybutadiene elastomer exhibits a Rinsen ≈1.075, which is much higher than those of reported elastomers. By molecular chain interaction and molecular chain conformation analysis, this work demonstrates that the synergistic effect of hydrogen bond dissociation and entanglement slip in the polybutadiene elastomers during stretching leads to the high Rinsen . Using polybutadiene elastomer as matrix of thermal interface materials, this work demonstrates effective heat transfer for strain sensor and electronic devices. In addition, cytocompatibility of the elastomers is verified by cell proliferation and live/dead viability assays. The combination of outstanding biocompatible and excellent mechanical properties of the elastomers creates new opportunities for their applications in electronic skin.
Collapse
Affiliation(s)
- Xiangliang Zeng
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Lu Xu
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Xueyuan AVE 1098, Shenzhen, 518000, China
| | - Xinnian Xia
- College of Chemistry and Chemical Engineering, Hunan University, Lushan South Road, Yuelu District, Changsha, 410082, China
| | - Xue Bai
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Cheng Zhong
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jianfeng Fan
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Linlin Ren
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rong Sun
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xiaoliang Zeng
- Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
15
|
Guo R, Yu D, Wang S, Fu L, Lin Y. Nanosheet-hydrogel composites: from preparation and fundamental properties to their promising applications. SOFT MATTER 2023; 19:1465-1481. [PMID: 36752168 DOI: 10.1039/d2sm01471h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydrogels are an important class of soft materials with elastic and intelligent properties. Nevertheless, these traditional hydrogels usually possess poor mechanical properties and limited functions, which greatly restrict their further applications. With the rapid development of nanotechnology, there have been significant advances in the design and fabrication of functional nanocomposite hydrogels with unique properties and functions. Among various materials, nanosheets with planar topography, large specific surface areas, and versatile physicochemical properties have attracted intense research interest. Herein, this review summarises the synthesis mechanisms, fundamental properties, and promising applications of nanosheet-incorporated hydrogels. In particular, how the nanosheet structure is applied to improve the overall performance of the hydrogel in each application is emphasized. Additionally, the current challenges and prospects are briefly discussed in this area. We expect that the combination of nanosheets and hydrogels can attract more researchers' interest and bring new opportunities in the future.
Collapse
Affiliation(s)
- Rongrong Guo
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Deshuai Yu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Sen Wang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Lianlian Fu
- College of Material Science and Engineering, Huaqiao University, Xiamen 361021, P. R. China.
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
16
|
Chen Q, Yan X, Chen K, Feng C, Wang D, Li X, Zhao X, Chai Z, Wang Q, Zhang D, Zeng H. Electrospun fibrous membrane reinforced hydrogels with preferable mechanical and tribological performance as cartilage substitutes. J Mater Chem B 2023; 11:1713-1724. [PMID: 36723224 DOI: 10.1039/d2tb02511f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Hydrogels have attracted much attention as cartilage substitutes due to their human tissue-like characteristics. However, developing cartilage substitutes require the combination of high mechanical strength and low friction. Despite great success in tough hydrogels, this combination was hardly realized. Inspired by the natural cartilage, electrospun fibrous membrane reinforced hydrogels with superior mechanical properties and low friction coefficient were designed using electrospinning, freeze-thawing, and annealing techniques. An ordered fibrous membrane was first constructed by electrospinning, in which the tensile strength and modulus have been improved successfully. Then the PVA/PAA/GO hydrogel was modified layer-by-layer by the multilayer ordered electrospun membrane of PVA/PAA/GO. The ordered fibrous membrane significantly enhanced the mechanical strength and friction properties in a manner that mimicked the collagen fibrils in the cartilage. When the number of the membranes was 4, the mechanical properties of the fibrous membrane reinforced hydrogel is maximized, which can be compared to natural cartilage, which can achieve a tensile strength of 13.7 ± 1.5 MPa, tensile modulus of 27.5 ± 3.2 MPa, compressive strength of 12.32 ± 1.35 MPa, compressive modulus of 20.35 ± 2.50 MPa. The ordered fibrous membrane endows the hydrogel with a higher tearing energy of 39.16 ± 4.05 KJ m-2, which is the 5 times that of pure hydrogel (7.74 ± 0.86 KJ m-2). In addition, the friction coefficient of the fibrous membrane reinforced hydrogel is as low as 0.039, 2 times smaller than that of the hydrogel without addition of the fibrous membrane. Therefore, such hydrogels had excellent mechanical properties and tribological properties, which could be widely used in tissue engineering such as in cartilage replacement.
Collapse
Affiliation(s)
- Qin Chen
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Xiaodong Yan
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Kai Chen
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China. .,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.,State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Cunao Feng
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Dagang Wang
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Xiaowei Li
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Xiaoduo Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhimin Chai
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Qingliang Wang
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Dekun Zhang
- School of Chemical Engineering and Technology, School of Materials Science and Physics, School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
17
|
Guo X, Dong X, Zou G, Gao H, Zhai W. Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms. SCIENCE ADVANCES 2023; 9:eadf7075. [PMID: 36630512 PMCID: PMC9833652 DOI: 10.1126/sciadv.adf7075] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/01/2023]
Abstract
Tough natural materials such as nacre, bone, and silk exhibit multiscale hierarchical structures where distinct toughening mechanisms occur at each level of the hierarchy, ranging from molecular uncoiling to microscale fibrillar sliding to macroscale crack deflection. An open question is whether and how the multiscale design motifs of natural materials can be translated to the development of next-generation biomimetic hydrogels. To address this challenge, we fabricate strong and tough hydrogel with architected multiscale hierarchical structures using a freeze-casting-assisted solution substitution strategy. The underlying multiscale multimechanisms are attributed to the gel's hierarchical structures, including microscale anisotropic honeycomb-structured fiber walls and matrix, with a modulus of 8.96 and 0.73 MPa, respectively; hydrogen bond-enhanced fibers with nanocrystalline domains; and cross-linked strong polyvinyl alcohol chains with chain-connecting ionic bonds. This study establishes a blueprint of structure-performance mechanisms in tough hierarchically structured hydrogels and can inspire advanced design strategies for other promising hierarchical materials.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Guijin Zou
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, College of Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| |
Collapse
|
18
|
Sun D, Gao Y, Zhou Y, Yang M, Hu J, Lu T, Wang T. Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49389-49397. [PMID: 36273343 DOI: 10.1021/acsami.2c16273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Biological tissues, such as heart valve, tendon, etc., possess excellent mechanical properties, which arises from their inherent anisotropic arrangement of soft and hard phases. Inspired by the anisotropic structures, many methods have been developed to synthesize hydrogels that can achieve mechanical properties comparable to biological tissues. Here, we describe a new method to enhance fracture toughness and fatigue resistance of hydrogels by introducing nanofibers which can reversibly align with elastic deformation to form an anisotropic structure. As a demonstration, we introduce stiff, rod-like cellulose nanocrystals (CNCs) into a polyacrylamide (PAAm) network. CNCs aggregate into clusters to form hard phases and entangle with the PAAm network. The CNC/PAAm composite hydrogel is initially isotropic, becomes anisotropic upon loading, and recovers to be isotropic upon unloading. During the deformation, the aligned CNC clusters at the crack tip can transmit the stress over the size of the cluster, effectively resisting crack growth. We use photoelasticity and small-angle X-ray scattering (SAXS) tests to observe the change of microstructures associated with deformation. The fracture toughness of CNC/PAAm hydrogels with different sizes of CNCs can reach 1000 J/m2. The fatigue threshold is about 100 J/m2, an order of magnitude higher than that of PAAm hydrogel. This work provides a simple and general method to strengthen hydrogels under both monotonic and cyclic loads.
Collapse
Affiliation(s)
- Danqi Sun
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yang Gao
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yifan Zhou
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meng Yang
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Hu
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tongqing Lu
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tiejun Wang
- State Key Lab for Strength and Vibration of Mechanical Structures, Soft Machines Lab, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
19
|
Zhao Y, Cui J, Qiu X, Yan Y, Zhang Z, Fang K, Yang Y, Zhang X, Huang J. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces. Adv Colloid Interface Sci 2022; 308:102749. [PMID: 36007285 DOI: 10.1016/j.cis.2022.102749] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Living bodies are made of numerous bio-sensors and actuators for perceiving external stimuli and making movement. Hydrogels have been considered as ideal candidates for manufacturing bio-sensors and actuators because of their excellent biocompatibility, similar mechanical and electrical properties to that of living organs. The key point of manufacturing hydrogel sensors/actuators is that the materials should not only possess excellent mechanical and electrical properties but also form effective interfacial connections with various substrates. Traditional hydrogel normally shows high electrical resistance (~ MΩ•cm) with limited mechanical strength (<1 MPa), and it is prone to fatigue fracture during continuous loading-unloading cycles. Just like iron should be toughened and hardened into steel, manufacturing and post-treatment processes are necessary for modifying hydrogels. Besides, advanced design and manufacturing strategies can build effective interfaces between sensors/actuators and other substrates, thus enhancing the desired mechanical and electrical performances. Although various literatures have reviewed the manufacture or modification of hydrogels, the summary regarding the post-treatment strategies and the creation of effective electrical and mechanically sustainable interfaces are still lacking. This paper aims at providing an overview of the following topics: (i) the manufacturing and post-engineering treatment of hydrogel sensors and actuators; (ii) the processes of creating sensor(actuator)-substrate interfaces; (iii) the development and innovation of hydrogel manufacturing and interface creation. In the first section, the manufacturing processes and the principles for post-engineering treatments are discussed, and some typical examples are also presented. In the second section, the studies of interfaces between hydrogels and various substrates are reviewed. Lastly, we summarize the current manufacturing processes of hydrogels, and provide potential perspectives for hydrogel manufacturing and post-treatment methods.
Collapse
Affiliation(s)
- Yiming Zhao
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jiuyu Cui
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiaoyong Qiu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yonggan Yan
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Zekai Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Kezhong Fang
- Lunan Pharmaceutical Group Co., LTD, Linyi 276005, China
| | - Yu Yang
- National Engineering and Technology Research Center of Chirality Pharmaceutical, Linyi 276005, China
| | - Xiaolai Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, National Demonstration Center for Experimental Mechanical Engineering Education, School of Mechanical Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
20
|
Huang Y, Yu D, Fu C, Guo R, Wu C, Lin Y. Recent advances in multi-mechanism design of crack-resistant hydrogels. SOFT MATTER 2022; 18:5153-5165. [PMID: 35788619 DOI: 10.1039/d2sm00632d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
For conventional hydrogels, the phenomenon of crack generation and propagation caused by high-stress concentration is ubiquitous. However, this phenomenon is unfavorable in many applications, such as wearable electronics, tissue engineering, and tunable adhesion. Fortunately, many hydrogels that can suppress crack growth during deformation and maintain the original mechanical properties during deformation, called crack-resistant hydrogels, have been published. Herein, the state-of-the-art of crack-resistant hydrogels is comprehensively reviewed. Starting from the principle of designing a crack-resistant hydrogel, we first survey the relevant crack-resistant strategies. The latest crack-resistant hydrogels are then categorized according to their crack-resistant mechanisms (including energy dissipation at the molecular level, multiscale structure, crack pinning, crack deflection, and sliding of chain), and their crack-resistant processes are described in detail. Furthermore, we summarize the current challenges and make an outlook for crack-resistant hydrogels, which might lead to substantial progress in the future design and development of these high-performance materials.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Deshuai Yu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Cong Fu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Rongrong Guo
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Chenxu Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
| | - Youhui Lin
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, P. R. China.
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen 361102, P. R. China
| |
Collapse
|
21
|
Wu Y, Nie Y, Long Z, Si P, Zhang D. Coacervation-Based Method for Constructing a Multifunctional Strain-Stiffening Crystalline Polyvinylamine Hydrogel. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31354-31362. [PMID: 35771154 DOI: 10.1021/acsami.2c08838] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strain-stiffening hydrogels are essential in the development of ionic skin, as human skin possesses a strain-stiffening property for self-protection. Semicrystalline polymers such as poly(vinyl alcohol) (PVA) have been widely investigated to fabricate strain-stiffening hydrogels via freeze-thaw cycling or chemical cross-linking but with limited adjustable properties. Compared with PVA, polyvinylamine (PVAm) has a higher reactive activity, making it easier to achieve multifunctionalities including strain-stiffening in a PVAm hydrogel. However, the amine moieties in the backbone tend to be ionized and form strong ionic hydrogen bonds with water, resulting in difficulties in forming crystalline hydrogels by conventional methods. Herein, a one-pot method to induce crystallinity and achieve multifunctional hydrogel is devised via coacervation of PVAm. Different from a published coacervation method to fabricate hydrogels with various properties via noncovalent interactions between different chemicals, coacervation occurs between PVAm to form aggregated and loose PVAm in our devised system. Such a strategy lowers the amine-water binding energy in the polymer-dense phase to achieve crystallinity and subsequently the strain-stiffening property; meanwhile, self-healability, self-adhesion, and ionic conductivity can be realized in the polymer-loose phase. The obtained hydrogel integrates stretchability (∼1300% elongation), toughness (227 kPa), the strain-stiffening property (∼10 times increase), self-adhesion (90 J m-2), self-healability (∼80% healing efficiency in toughness), and ionic conductivity (0.22 mS m-1). This convenient strategy will open a new horizon to design multifunctional skin-mimic materials.
Collapse
Affiliation(s)
- Yun Wu
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Yiping Nie
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Zhu Long
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Pengxiang Si
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| | - Dan Zhang
- College of Textile Science and Engineering Jiangnan University ,1800 Lihu Avenue, Wuxi 214222, China
| |
Collapse
|
22
|
Wang Y, Li J, Muhammad N, Wang Z, Wu D. Hierarchical networks of anisotropic hydrogels based on cross-linked Poly(vinyl alcohol)/Poly(vinylpyrrolidone). POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Ding Q, Wu Z, Tao K, Wei Y, Wang W, Yang BR, Xie X, Wu J. Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. MATERIALS HORIZONS 2022; 9:1356-1386. [PMID: 35156986 DOI: 10.1039/d1mh01871j] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple stretchable materials have been successively developed and applied to wearable devices, soft robotics, and tissue engineering. Organohydrogels are currently being widely studied and formed by dispersing immiscible hydrophilic/hydrophobic polymer networks or only hydrophilic polymer networks in an organic/water solvent system. In particular, they can not only inherit and carry forward the merits of hydrogels, but also have some unique advantageous features, such as anti-freezing and water retention abilities, solvent resistance, adjustable surface wettability, and shape memory effect, which are conducive to the wide environmental adaptability and intelligent applications. This review first summarizes the structure, preparation strategy, and unique advantages of the reported organohydrogels. Furthermore, organohydrogels can be optimized for electro-mechanical properties or endowed with various functionalities by adding or modifying various functional components owing to their modifiability. Correspondingly, different optimization strategies, mechanisms, and advanced developments are described in detail, mainly involving the mechanical properties, conductivity, adhesion, self-healing properties, and antibacterial properties of organohydrogels. Moreover, the applications of organohydrogels in flexible sensors, energy storage devices, nanogenerators, and biomedicine have been summarized, confirming their unlimited potential in future development. Finally, the existing challenges and future prospects of organohydrogels are provided.
Collapse
Affiliation(s)
- Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Weiyan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
24
|
High Mechanical Properties of Stretching Oriented Poly(butylene succinate) with Two-Step Chain Extension. Polymers (Basel) 2022; 14:polym14091876. [PMID: 35567046 PMCID: PMC9099698 DOI: 10.3390/polym14091876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The structure, morphology, fracture toughness and flaw sensitivity length scale of chain-extended poly(butylene succinate) with various pre-stretch ratios were studied. PBS modification adopted from a multifunctional, commercially available chain-extension containing nine epoxy groups (ADR9) as the first step chain extension and hydroxyl addition modified dioxazoline (BOZ) as the second step. Time-temperature superposition (TTS) studies show that the viscosity increased sharply and the degree of molecular branching increased. Fourier transform infrared spectroscopy (FT-IR) confirm successful chain extension reactions. The orientation of the polymer in the pre-stretch state is such that spherulites deformation along the stretching direction was observed by polarized light optical microscopy (PLOM). The fracture toughness of sample (λfix = 5) is Γ ≈ 106 J m-2 and its critical flaw sensitivity length scale is Γ/Wc ≈ 0.01 m, approximately 5 times higher than PBS without chain-extension (Γ ≈ 2 × 105 J m-2 and Γ/Wc ≈ 0.002 m, respectively). The notch sensitivity of chain-extended PBS is significantly reduced, which is due to the orientation of spherulites more effectively preventing crack propagation. The principle can be generalized to other high toughness material systems.
Collapse
|
25
|
Yan G, He S, Chen G, Ma S, Zeng A, Chen B, Yang S, Tang X, Sun Y, Xu F, Lin L, Zeng X. Highly Flexible and Broad-Range Mechanically Tunable All-Wood Hydrogels with Nanoscale Channels via the Hofmeister Effect for Human Motion Monitoring. NANO-MICRO LETTERS 2022; 14:84. [PMID: 35348885 PMCID: PMC8964865 DOI: 10.1007/s40820-022-00827-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 02/22/2022] [Indexed: 05/12/2023]
Abstract
Wood-based hydrogel with a unique anisotropic structure is an attractive soft material, but the presence of rigid crystalline cellulose in natural wood makes the hydrogel less flexible. In this study, an all-wood hydrogel was constructed by cross-linking cellulose fibers, polyvinyl alcohol (PVA) chains, and lignin molecules through the Hofmeister effect. The all-wood hydrogel shows a high tensile strength of 36.5 MPa and a strain up to ~ 438% in the longitudinal direction, which is much higher than its tensile strength (~ 2.6 MPa) and strain (~ 198%) in the radial direction, respectively. The high mechanical strength of all-wood hydrogels is mainly attributed to the strong hydrogen bonding, physical entanglement, and van der Waals forces between lignin molecules, cellulose nanofibers, and PVA chains. Thanks to its excellent flexibility, good conductivity, and sensitivity, the all-wood hydrogel can accurately distinguish diverse macroscale or subtle human movements, including finger flexion, pulse, and swallowing behavior. In particular, when "An Qi" was called four times within 15 s, two variations of the pronunciation could be identified. With recyclable, biodegradable, and adjustable mechanical properties, the all-wood hydrogel is a multifunctional soft material with promising applications, such as human motion monitoring, tissue engineering, and robotics materials.
Collapse
Affiliation(s)
- Guihua Yan
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shuaiming He
- State Key Laboratory of Pulp and Paper-Making Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| | - Gaofeng Chen
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Sen Ma
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Anqi Zeng
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Binglin Chen
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Shuliang Yang
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Xing Tang
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35, Tsinghua East Road, Haidian, Beijing, 100083, People's Republic of China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China.
| | - Xianhai Zeng
- College of Energy, Xiamen University, Xiamen, 361102, People's Republic of China.
| |
Collapse
|
26
|
Yu C, Cui K, Guo H, Ye YN, Li X, Gong JP. Structure Frustration Enables Thermal History-Dependent Responsive Behavior in Self-Healing Hydrogels. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chengtao Yu
- Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Kunpeng Cui
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Honglei Guo
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Ya Nan Ye
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Xueyu Li
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
27
|
Xing W, Tang Y. On mechanical properties of nanocomposite hydrogels: Searching for superior properties. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Hua M, Wu S, Jin Y, Zhao Y, Yao B, He X. Tough-Hydrogel Reinforced Low-Tortuosity Conductive Networks for Stretchable and High-Performance Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100983. [PMID: 34060153 DOI: 10.1002/adma.202100983] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/31/2021] [Indexed: 05/26/2023]
Abstract
All-solid-state supercapacitors are seeing emerging applications in flexible and stretchable electronics. Supercapacitors with high capacitance, high power density, simple form factor, and good mechanical robustness are highly desired, which demands electrode materials with high surface area, high mass loading, good conductivity, larger thickness, low tortuosity, and high toughness. However, it has been challenging to simultaneously realize them in a single material. By compositing a superficial layer of tough hydrogel on conductive and low tortuous foams, a thick capacitor electrode with large capacitance (5.25 F cm-2 ), high power density (41.28 mW cm-2 ), and good mechanical robustness (ε = 140%, Γ = 1000 J m-2 ) is achieved. The tough hydrogel serves as both a load-bearing layer to maintain structural integrity during deformation and a permeable binder to allow interaction between the conductive electrode and electrolyte. It is shown that the tough hydrogel reinforcement is beneficial for both electrical and mechanical stability. With a simple design and facile fabrication, this strategy is generalizable for various conductive materials.
Collapse
Affiliation(s)
- Mutian Hua
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yin Jin
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yusen Zhao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bowen Yao
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Ximin He
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
29
|
Fan P, Xue C, Zhou X, Yang Z, Ji H. Dynamic Covalent Bonds of Si-OR and Si-OSi Enabled A Stiff Polymer to Heal and Recycle at Room Temperature. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2680. [PMID: 34065375 PMCID: PMC8160654 DOI: 10.3390/ma14102680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 11/16/2022]
Abstract
As stiff polymers are difficult to self-heal, the balance between polymers' self-healing ability and mechanical properties is always a big challenge. Herein, we have developed a novel healable stiff polymer based on the Si-OR and Si-OSi dynamic covalent bonds. The self-healing mechanism was tested and proved by the small molecule model experiments and the contrast experiments of polymers. This polymer possesses excellent tensile, bending properties as well as room temperature self-healing abilities. Moreover, due to the sticky and shapeable properties under wetting conditions, the polymer could be used as an adhesive. Besides, even after four cycles of recycling, the polymer maintains its original properties, which meets the requirements of recyclable materials. It was demonstrated that the polymer exhibits potential application in some fields, such as recyclable materials and healable adhesives.
Collapse
Affiliation(s)
- Ping Fan
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Xiantai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Zujin Yang
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China;
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; (X.Z.); (Z.Y.)
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| |
Collapse
|
30
|
Chen G, Zhang Q, Ma L, Zhao Y, Ran J. Rational Design of a High‐Strength Tough Hydrogel from Fundamental Principles. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Genxin Chen
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 China
| | - Qiong Zhang
- Jingzhou Preservation Centre of Cultural Relics Jingzhou 434020 China
| | - Liya Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine College of Chemistry and Molecular Sciences Ministry of Education Wuhan University Wuhan 430072 China
| | - Yang Zhao
- Jingzhou Preservation Centre of Cultural Relics Jingzhou 434020 China
| | - Jiabing Ran
- College of Biological and Pharmaceutical Sciences China Three Gorges University Yichang 443002 China
- Ming Wai Lau Centre for Reparative Medicine Karolinska Institute Hong Kong 999077 China
| |
Collapse
|
31
|
Zhao X, Chen X, Yuk H, Lin S, Liu X, Parada G. Soft Materials by Design: Unconventional Polymer Networks Give Extreme Properties. Chem Rev 2021; 121:4309-4372. [PMID: 33844906 DOI: 10.1021/acs.chemrev.0c01088] [Citation(s) in RCA: 417] [Impact Index Per Article: 104.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hydrogels are polymer networks infiltrated with water. Many biological hydrogels in animal bodies such as muscles, heart valves, cartilages, and tendons possess extreme mechanical properties including being extremely tough, strong, resilient, adhesive, and fatigue-resistant. These mechanical properties are also critical for hydrogels' diverse applications ranging from drug delivery, tissue engineering, medical implants, wound dressings, and contact lenses to sensors, actuators, electronic devices, optical devices, batteries, water harvesters, and soft robots. Whereas numerous hydrogels have been developed over the last few decades, a set of general principles that can rationally guide the design of hydrogels using different materials and fabrication methods for various applications remain a central need in the field of soft materials. This review is aimed at synergistically reporting: (i) general design principles for hydrogels to achieve extreme mechanical and physical properties, (ii) implementation strategies for the design principles using unconventional polymer networks, and (iii) future directions for the orthogonal design of hydrogels to achieve multiple combined mechanical, physical, chemical, and biological properties. Because these design principles and implementation strategies are based on generic polymer networks, they are also applicable to other soft materials including elastomers and organogels. Overall, the review will not only provide comprehensive and systematic guidelines on the rational design of soft materials, but also provoke interdisciplinary discussions on a fundamental question: why does nature select soft materials with unconventional polymer networks to constitute the major parts of animal bodies?
Collapse
Affiliation(s)
- Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyu Chen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hyunwoo Yuk
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - German Parada
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Hua M, Wu D, Wu S, Ma Y, Alsaid Y, He X. 4D Printable Tough and Thermoresponsive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12689-12697. [PMID: 33263991 DOI: 10.1021/acsami.0c17532] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels with attractive stimuli-responsive volume changing abilities are seeing emerging applications as soft actuators and robots. However, many hydrogels are intrinsically soft and fragile for tolerating mechanical damage in real world applications and could not deliver high actuation force because of the mechanical weakness of the porous polymer network. Conventional tough hydrogels, fabricated by forming double networks, dual cross-linking, and compositing, could not satisfy both high toughness and high stimuli responsiveness. Herein, we present a material design of combining responsive and tough components in a single hydrogel network, which enables the synergistic realization of high toughness and actuation performance. We showcased this material design in an exemplary tough and thermally responsive hydrogel based on PVA/(PVA-MA)-g-PNIPAM, which achieved 100 times higher toughness (∼10 MJ/m3) and 20 times higher actuation stress (∼10 kPa) compared to conventional PNIPAM hydrogels, and a contraction ratio of up to 50% simultaneously. The effects of salt concentration, polymer ratio, and structural design on the mechanical and actuation properties have been systematically investigated. Utilizing 4D printing, actuators of various geometries were fabricated, as well as lattice-architected hydrogels with macro-voids, presenting 4 times faster actuation speed compared to bulk hydrogel, in addition to the high toughness, actuation force, and contraction ratio.
Collapse
Affiliation(s)
- Mutian Hua
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Dong Wu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Shuwang Wu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Yanfei Ma
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yousif Alsaid
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Ximin He
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 United States
| |
Collapse
|
33
|
Chen K, Lin Q, Wang L, Zhuang Z, Zhang Y, Huang D, Wang H. An All-in-One Tannic Acid-Containing Hydrogel Adhesive with High Toughness, Notch Insensitivity, Self-Healability, Tailorable Topography, and Strong, Instant, and On-Demand Underwater Adhesion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9748-9761. [PMID: 33591721 DOI: 10.1021/acsami.1c00637] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrogels that are mechanically tough and capable of strong underwater adhesion can lead to a paradigm shift in the design of adhesives for a variety of biomedical applications. We hereby innovatively develop a facile but efficient strategy to prepare hydrogel adhesives with strong and instant underwater adhesion, on-demand detachment, high toughness, notch-insensitivity, self-healability, low swelling index, and tailorable surface topography. Specifically, a polymerization lyophilization conjugation fabrication method was proposed to introduce tannic acid (TA) into the covalent network consisting of polyethylene glycol diacrylate (PEGDA) of substantially high molecular weight. The presence of TA facilitated wet adhesion to various substrates by forming collectively strong noncovalent bonds and offering hydrophobicity to allow water repellence and also provided a reversible cross-link within the binary network to improve the mechanical performance of the gels. The long-chain PEGDA enhanced the efficacy and stability of TA conjugation and contributed to gel mechanics and adhesion by allowing chain diffusion and entanglement formation. Moreover, PEGDA/TA hydrogels were demonstrated to be biocompatible and capable of accelerating wound healing in a skin wound animal model as compared to commercial tissue adhesives and can be applied for the treatment of both epidermal and intracorporeal wounds. Our study provides new, critical insight into the design principle of all-in-one hydrogels with outstanding mechanical and adhesive properties and can potentially enhance the efficacy of hydrogel adhesives for wound healing.
Collapse
Affiliation(s)
- Kaiwen Chen
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian 116024, P.R. China
| | - Qiaoxia Lin
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Libin Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian 116024, P.R. China
| | - Zhumei Zhuang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian 116024, P.R. China
| | - Yang Zhang
- Laboratory of Regenerative Biomaterials, Department of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518037, P.R. China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Huanan Wang
- Key State Laboratory of Fine Chemicals, School of Bioengineering, Dalian University of Technology, No.2 Linggong Road, High-tech District, Dalian 116024, P.R. China
| |
Collapse
|
34
|
Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 2021; 590:594-599. [DOI: 10.1038/s41586-021-03212-z] [Citation(s) in RCA: 533] [Impact Index Per Article: 133.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 01/08/2021] [Indexed: 01/22/2023]
|
35
|
Liu J, Qu S, Suo Z, Yang W. Functional hydrogel coatings. Natl Sci Rev 2020; 8:nwaa254. [PMID: 34691578 PMCID: PMC8288423 DOI: 10.1093/nsr/nwaa254] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels—natural or synthetic polymer networks that swell in water—can be made mechanically, chemically and electrically compatible with living tissues. There has been intense research and development of hydrogels for medical applications since the invention of hydrogel contact lenses in 1960. More recently, functional hydrogel coatings with controlled thickness and tough adhesion have been achieved on various substrates. Hydrogel-coated substrates combine the advantages of hydrogels, such as lubricity, biocompatibility and anti-biofouling properties, with the advantages of substrates, such as stiffness, toughness and strength. In this review, we focus on three aspects of functional hydrogel coatings: (i) applications and functions enabled by hydrogel coatings, (ii) methods of coating various substrates with different functional hydrogels with tough adhesion, and (iii) tests to evaluate the adhesion between functional hydrogel coatings and substrates. Conclusions and outlook are given at the end of this review.
Collapse
Affiliation(s)
- Junjie Liu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
- Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaoxing Qu
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic System, Zhejiang University, Hangzhou 310027, China
| | - Zhigang Suo
- John A. Paulson School of Engineering and Applied Sciences, Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138, USA
| | - Wei Yang
- Center for X-Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province and Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
36
|
Xu Z, Wu M, Gao W, Bai H. A Transparent, Skin-Inspired Composite Film with Outstanding Tear Resistance Based on Flat Silk Cocoon. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002695. [PMID: 32686143 DOI: 10.1002/adma.202002695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Flexible and transparent substrates play a fundamental role as a mechanical support in advanced electronic devices. However, commonly used polymer films, such as polydimethylsiloxane, show low tear resistance because of their crack sensitivity. Herein, inspired by the excellent mechanical robustness of the skin and its fibrous structure, an epoxy-resin-based composite with a flat silk cocoon as a reinforcing fiber network is fabricated. With only 1 wt% of silk fiber, the tensile strength and modulus of the as-prepared composite film are considerably increased by 300% and 612% compared to those of pure resin, while still maintaining flexibility and transparency. More importantly, the composite shows remarkable tear resistance: without fracture after ≈30 000 tensile cycles. The potential application of such transparent composite films as mechanically robust substrates for flexible electronics is also demonstrated. In addition, this study represents a bioinspired strategy to construct high-performance functional composite materials.
Collapse
Affiliation(s)
- Zongpu Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mingrui Wu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Weiwei Gao
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
37
|
Lv R, Bei Z, Huang Y, Chen Y, Zheng Z, You Q, Zhu C, Cao Y. Mussel‐Inspired Flexible, Wearable, and Self‐Adhesive Conductive Hydrogels for Strain Sensors. Macromol Rapid Commun 2019; 41:e1900450. [DOI: 10.1002/marc.201900450] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/21/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Rui Lv
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 China
| | - Zhongwu Bei
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 China
| | - Yuan Huang
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 China
| | - Yangwei Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 China
| | - Zhiqiang Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 China
| | - Qingliang You
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 China
| | - Chao Zhu
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 China
| | - Yiping Cao
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of EducationJianghan University Wuhan 430056 China
| |
Collapse
|
38
|
Lin S, Liu J, Liu X, Zhao X. Muscle-like fatigue-resistant hydrogels by mechanical training. Proc Natl Acad Sci U S A 2019; 116:10244-10249. [PMID: 31068458 PMCID: PMC6535018 DOI: 10.1073/pnas.1903019116] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skeletal muscles possess the combinational properties of high fatigue resistance (1,000 J/m2), high strength (1 MPa), low Young's modulus (100 kPa), and high water content (70 to 80 wt %), which have not been achieved in synthetic hydrogels. The muscle-like properties are highly desirable for hydrogels' nascent applications in load-bearing artificial tissues and soft devices. Here, we propose a strategy of mechanical training to achieve the aligned nanofibrillar architectures of skeletal muscles in synthetic hydrogels, resulting in the combinational muscle-like properties. These properties are obtained through the training-induced alignment of nanofibrils, without additional chemical modifications or additives. In situ confocal microscopy of the hydrogels' fracturing processes reveals that the fatigue resistance results from the crack pinning by the aligned nanofibrils, which require much higher energy to fracture than the corresponding amorphous polymer chains. This strategy is particularly applicable for 3D-printed microstructures of hydrogels, in which we can achieve isotropically fatigue-resistant, strong yet compliant properties.
Collapse
Affiliation(s)
- Shaoting Lin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ji Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Xuanhe Zhao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|