1
|
Xu D, Wang M, Huang R, Stoddart JF, Wang Y. A Dual-Pathway Responsive Mechanophore for Intelligent Luminescent Polymer Materials. J Am Chem Soc 2025; 147:4450-4458. [PMID: 39849299 DOI: 10.1021/jacs.4c15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Mechanoluminescent units, when integrated into polymer matrices, undergo structural transformations in response to mechanical force, resulting in changes in fluorescence. This phenomenon holds considerable promise for the development of stress-sensing materials. Despite the high demand for robust, tunable mechanoluminescent mechanophores for force assessment and smart force-responsive materials, strategies for their design and synthesis remain underdeveloped. In an attempt to address this challenge, we have introduced a novel dual-pathway responsive mechanophore, bis(2-(2-(tert-butyldimethylsilanyloxy)benzylidene)amino)aryl disulfides (SSTBS), which, when incorporated into polymer chains, exhibits fluorescence upon the combined application of force and chemical stimulus, irrespective of their sequence. This property is facilitated by the disulfide bond's sensitivity to mechanical force and the fluoride anion-induced desilylation and deprotonation. Notably, the force-responsive threshold of the SSTBS mechanophore can be finely tuned by TBAF treatment, as supported by both experimental and computational studies, providing a simple, yet effective means, to regulate polymer force responsiveness on demand. We believe that the strategy developed in this investigation will shed light on the design of mechanophores for the fabrication of intelligent luminescent polymer materials and advance the development of smart force-reporting systems.
Collapse
Affiliation(s)
- Dejing Xu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Maolin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - Ruozhou Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
| | - J Fraser Stoddart
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
- Weinberg College of Arts and Science, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, University of Hong Kong, Kowloon Hong Kong SAR 999077, PR China
- Center for Regenerative Nanomedieine, Northwestern University, Chicago, Illinois 60611, United States
- School of Chemistry, University of New South Wales, Sydney 2052, Australia
| | - Yuping Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, PR China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, PR China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| |
Collapse
|
2
|
Schwarz R, Manor Armon A, Diesendruck CE. Stereochemical Impacts on Acyclic Mechanochemical Carbon-Carbon Bond Activation. Angew Chem Int Ed Engl 2025; 64:e202414849. [PMID: 39467071 PMCID: PMC11720372 DOI: 10.1002/anie.202414849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 10/30/2024]
Abstract
The influence of stereochemistry on the mechanochemistry rate is studied using a new mechanophore based on a benzopinacol (BP) skeleton. Two sets of BP diastereomers, the meso R,S and the R,R/S,S were isolated, incorporated into the center of a poly(methyl acrylate), and their mechanical activation rate was measured in solution. Under mechanical stress, the central C-C bond in BP is cleaved, providing two independent benzophenone molecules with higher UV-absorption coefficient at 254 nm. Monitoring the reaction rate spectroscopically indicates that the chiral R,R/S,S enantiomers react ~1.4 fold faster compared to the meso R,S diastereomer. In-silico modeling indicates that a hydrogen bond between the syn hydroxyls in the R,R diastereomer becomes shorter with stress, reducing the maximal force required for C-C bond scission, while this bond is inexistent in the meso diastereomer, as the hydroxyl are anti to each other. Our results indicate that in polymer where free rotation around bonds is possible, non-covalent interactions between backbone substituents, which are affected by relative stereochemistry, can play a fundamental role in the mechanochemical stability of the polymer.
Collapse
Affiliation(s)
- Rony Schwarz
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for CatalysisTechnion – Israel Institute of TechnologyHaifa3200008Israel
| | - Amit Manor Armon
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for CatalysisTechnion – Israel Institute of TechnologyHaifa3200008Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry and the Resnick Sustainability Center for CatalysisTechnion – Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
3
|
Yuan L, Yang X, Chen S, Yang Q, Fu R, Gu Y, Han L, Yan B. Constructing Strong and Tough Polymer Elastomers via Photoreversible Coumarin Dimer Mechanophores. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2339-2348. [PMID: 39722467 DOI: 10.1021/acsami.4c19537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Advanced elastomers with outstanding strength, toughness, and reusability hold significant potential for diverse applications. Using photochemistry and mechanochemistry to develop such materials has become a very effective strategy. Here, we report that photoreversible coumarin-based mechanophores that can make force-/light-triggered cycloreversion are chemically incorporated into polyurethane elastomers to simultaneously enhance their strength and toughness. Coumarin dimer mechanophore cross-linkers are formed in the polyurethane elastomer after exposure to 365 nm irradiation, leading to networks with dramatically enhanced mechanical properties. The tensile strength of the HNA-PU2000 elastomer with coumarin dimer mechanophore cross-linkers could increase from 13.9 to 26.9 MPa, elongation at break from 726 to 1053%, and toughness from 25.6 to 119.7 MJ·m-3, in contrast to its counterpart HNA-PU2000 elastomer without coumarin dimer mechanophores. Additionally, the polyurethane elastomer exhibits a decent reusable capability via force-/light-triggered cycloreversion of coumarin dimer mechanophores under mechanical stress or 254 nm irradiation. This mechano-/photochemical strategy to improve strength, toughness, and reusable capability of elastomers provides a facile approach for the development of high-performance elastomer materials.
Collapse
Affiliation(s)
- Liubo Yuan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Xuekun Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Runfang Fu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Yingchun Gu
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Linbo Han
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, P.R. China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China
| |
Collapse
|
4
|
Hu H, Zhou Y, Xi B, Li Y. Polymer Mechanochemistry in Confined Spaces. Angew Chem Int Ed Engl 2025; 64:e202417357. [PMID: 39365280 DOI: 10.1002/anie.202417357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024]
Abstract
With the development of mechanophores, polymer mechanochemistry has emerged as a powerful tool for creating force-responsive materials with a variety of desired functions, ranging from color change to molecular release. However, it remains challenging to improve the efficiency of mechanochemical activation, especially for mechanophores embedded within polymer networks, which has profound implications for translating mechanochemical responses into materials-centered applications. The physical and chemical conditions under spatial confinement differ significantly from those in the surrounding bulk environment, offering opportunities to facilitate mechanochemical activation. In this Minireview, we discuss and summarize recent progress in polymer mechanochemistry within confined spaces including surfaces/interfaces, polymer assemblies, and other nanostructures, specifically focusing on the effects of spatial confinement on the enhancement of mechanophore activation. We envision that combining confinement effects with advances in molecular and materials engineering will further improve the activation efficiency, capitalizing more fully on the potential of mechanophores toward practical applications.
Collapse
Affiliation(s)
- Hui Hu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yang Zhou
- School of Textile Science and Engineering, State Key Laboratory of New Textile Materials and Advanced Processing Technology, Wuhan Textile University, Wuhan, 430200, China
| | - Bin Xi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
5
|
Chakraborty S, Choudhury S, Singha NK. A New Class of Mechano-Responsive Polyurethane Via Anthracene -TAD Diels-Alder (DA) Click Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406866. [PMID: 39258360 PMCID: PMC11600686 DOI: 10.1002/smll.202406866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 09/12/2024]
Abstract
Smart or stimuli-responsive polymers have garnered significant interest in the scientific community due to their response to different stimuli like pH, temperature, light, mechanical force, etc. Mechanophoric polymer is an intriguing class of smart polymers that respond to external mechanical force by producing fluorescent moieties and can be utilized for damage detection and stress-sensing assessment. In recent reports on mechanophoric polymers, different mechanophoric motifs such as spiropyran, rhodamine, coumarin, etc. are explored. This investigation reports a new kind of mechanophoric polyurethane (PU) adduct based on Diels-Alder (DA) click chemistry. Here, an anthracene(An)-end capped tri-armed urethane system is synthesized, followed by a DA reaction using bis-(1,2,4-triazoline-3,5-dione) (bis-TAD) derivative. The incorporation of bis-TAD in the urethane system renders the anthracene inactive ("turn-off") by dismantling its conjugation as a result of a successful DA reaction. The soft PU translated into a harder material through bis-TAD linkages between polymer chains as evident from nanoindentation (NINT) analysis. The resulting material reverts back to its fluorescent "turned-on" mode owing to a force-accelerated retro-Diels-Alder (r-DA) reaction. Besides the mechanophoric attributes, the material demonstrates self-healing behavior examined by microscopic investigations. This innovative approach can be a potential route to design responsive polymers with dynamic functionalities for advanced material applications.
Collapse
Affiliation(s)
| | | | - Nikhil K. Singha
- Rubber Technology CentreIndian Institute of TechnologyKharagpur721302India
| |
Collapse
|
6
|
Nazeri MT, Nasiriani T, Torabi S, Shaabani A. Isocyanide-based multicomponent reactions for the synthesis of benzopyran derivatives with biological scaffolds. Org Biomol Chem 2024; 22:1102-1134. [PMID: 38251960 DOI: 10.1039/d3ob01671d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Benzopyrans (BZPs) are among the most privileged and influential small O-heterocycles that form the core of many natural compounds, commercial drugs, biological compositions, agrochemicals, and functional materials. BZPs are divided into six general categories including coumarins, chromans, 2H-chromenes, 4H-chromenes, chromones, and 4-chromanones, each of which is abundant in many plants and foods. These oxygenated heterocyclic compounds are fascinating motifs and have extensive applications in biology and materials science. Hence, numerous efforts have been made to develop innovative approaches for their extraction and synthesis. However, most of them are step-by-step or multi-step strategies that suffer from waste material generation and a tedious extraction process. Isocyanide-based multicomponent reactions (I-MCRs) offer a highly efficient method for overcoming these problems. The I-MCR is a simple and environmentally friendly one-pot domino procedure that does not require intermediate isolation or workup and is generally more efficient in material usage. This review covers all research articles related to I-MCRs for synthesizing BZP derivatives from the beginning to the middle of the year 2023. This strategy will be useful for organic and pharmaceutical chemists to design new drugs and optimize the synthesis steps of biological compounds and commercial drugs with benzopyran cores.
Collapse
Affiliation(s)
- Mohammad Taghi Nazeri
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Tahereh Nasiriani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Saeed Torabi
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G. C., P. O. Box 19396-4716, Tehran, Iran.
- Peoples' Friendship University of Russia (RUDN University), 6, Miklukho-Maklaya Street, Moscow, 117198, Russian Federation
| |
Collapse
|
7
|
He X, Tian Y, O’Neill RT, Xu Y, Lin Y, Weng W, Boulatov R. Coumarin Dimer Is an Effective Photomechanochemical AND Gate for Small-Molecule Release. J Am Chem Soc 2023; 145:23214-23226. [PMID: 37821455 PMCID: PMC10603814 DOI: 10.1021/jacs.3c07883] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Indexed: 10/13/2023]
Abstract
Stimulus-responsive gating of chemical reactions is of considerable practical and conceptual interest. For example, photocleavable protective groups and gating mechanophores allow the kinetics of purely thermally activated reactions to be controlled optically or by mechanical load by inducing the release of small-molecule reactants. Such release only in response to a sequential application of both stimuli (photomechanochemical gating) has not been demonstrated despite its unique expected benefits. Here, we describe computational and experimental evidence that coumarin dimers are highly promising moieties for realizing photomechanochemical control of small-molecule release. Such dimers are transparent and photochemically inert at wavelengths >300 nm but can be made to dissociate rapidly under tensile force. The resulting coumarins are mechanochemically and thermally stable, but rapidly release their payload upon irradiation. Our DFT calculations reveal that both strain-free and mechanochemical kinetics of dimer dissociation are highly tunable over an unusually broad range of rates by simple substitution. In head-to-head dimers, the phenyl groups act as molecular levers to allow systematic and predictable variation in the force sensitivity of the dissociation barriers by choice of the pulling axis. As a proof-of-concept, we synthesized and characterized the reactivity of one such dimer for photomechanochemically controlled release of aniline and its application for controlling bulk gelation.
Collapse
Affiliation(s)
- Xiaojun He
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yancong Tian
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Robert T. O’Neill
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| | - Yuanze Xu
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yangju Lin
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wengui Weng
- Department
of Chemistry, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Roman Boulatov
- Department
of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
8
|
Huang Y, Huang S, Li Q. Mechanochromic Polymers Based on Mechanophores. Chempluschem 2023; 88:e202300213. [PMID: 37325947 DOI: 10.1002/cplu.202300213] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/17/2023]
Abstract
In recent years, diverse stimuli-responsive allochroic materials have rapidly been developed, and smart materials with mechanochromic properties in particular have received increasing attention. This is because force fields have the advantage of being large and controllable compared to other stimulation modalities. Mechanochromic polymers mainly convert mechanical force signals into optical signals, which makes them suitable for applications in bionic actuators, encryption, and signal sensing. In this review, we summarize recent research progress in the design and development of mechanochromic polymers that are classified into two categories. The first category comprises those based on mechanophores that are physically dispersed in polymer matrices in the form of supramolecular aggregates. The second category comprises those based on mechanophores that are covalently linked to polymer networks. We focus on the working mechanisms of the mechanophores and their potential applications, which include damage monitoring and signal sensing.
Collapse
Affiliation(s)
- Yinliang Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shuai Huang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
9
|
Huo Z, Arora S, Kong VA, Myrga BJ, Statt A, Laaser JE. Effect of Polymer Composition and Morphology on Mechanochemical Activation in Nanostructured Triblock Copolymers. Macromolecules 2023; 56:1845-1854. [PMID: 36938512 PMCID: PMC10018773 DOI: 10.1021/acs.macromol.2c02475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/07/2023] [Indexed: 03/06/2023]
Abstract
The effect of composition and morphology on mechanochemical activation in nanostructured block copolymers was investigated in a series of poly(methyl methacrylate)-block-poly(n-butyl acrylate)-block-poly(methyl methacrylate) (PMMA-b-PnBA-b-PMMA) triblock copolymers containing a force-responsive spiropyran unit in the center of the rubbery PnBA midblock. Triblock copolymers with identical PnBA midblocks and varying lengths of PMMA end-blocks were synthesized from a spiropyran-containing macroinitiatior via atom transfer radical polymerization, yielding polymers with volume fractions of PMMA ranging from 0.21 to 0.50. Characterization by transmission electron microscopy revealed that the polymers self-assembled into spherical and cylindrical nanostructures. Simultaneous tensile tests and optical measurements revealed that mechanochemical activation is strongly correlated to the chemical composition and morphologies of the triblock copolymers. As the glassy (PMMA) block content is increased, the overall activation increases, and the onset of activation occurs at lower strain but higher stress, which agrees with predictions from our previous computational work. These results suggest that the self-assembly of nanostructured morphologies can play an important role in controlling mechanochemical activation in polymeric materials and provide insights into how polymer composition and morphology impact molecular-scale force distributions.
Collapse
Affiliation(s)
- Zijian Huo
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Swati Arora
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Victoria A. Kong
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Brandon J. Myrga
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| | - Antonia Statt
- Materials
Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana−Champaign, Illinois 61801, United States
| | - Jennifer E. Laaser
- Department
of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
Phosphorescent extensophores expose elastic nonuniformity in polymer networks. Nat Commun 2023; 14:537. [PMID: 36725874 PMCID: PMC9892573 DOI: 10.1038/s41467-023-36249-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023] Open
Abstract
Networks and gels are soft elastic solids of tremendous technological importance that consist of cross-linked polymers whose structure and connectivity at the molecular level are fundamentally nonuniform. Pre-failure local mechanical responses are not understood at the level of individual crosslinks, despite the enormous attention given to their macroscopic mechanical responses and to developing optical probes to detect their loci of mechanical failure. Here, introducing the extensophore concept to measure nondestructive forces using an optical probe with continuous force readout proportional to deformation, we show that the crosslinks in an elastic polymer network extend, fluctuate, and deform with a wide range of molecular individuality. Requiring little specialized equipment, this foundational single-molecule phosphorescence approach, applied here to polymer science and engineering, can be useful to a broad science and engineering community.
Collapse
|
11
|
Gao W, Xiang S, Bai M, Ruan Y, Zheng J, Cao X, Xu Y, Chen Y, Weng W. Carbon dot crosslinking towards mechanochemically and photochemically induced fluorescence resonance energy transfer. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Inacker S, Fanelli J, Ivlev SI, Hampp NA. Intramolecular Coumarin-Dimer Containing Polyurethanes: Optical Tuning via Single- and Two-Photon Absorption Processes. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Inacker
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| | - Julian Fanelli
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| | - Sergei I. Ivlev
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| | - Norbert A. Hampp
- Department of Chemistry, University of Marburg, Hans-Meerwein-Straße 4, D-35032 Marburg, Germany
| |
Collapse
|
13
|
Tan M, Wang X, Xie T, Zhang Z, Shi Y, Li Y, Chen Y. Fluorogenic Mechanophore Based on Dithiomaleimide with Dual Responsiveness. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Min Tan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiaoying Wang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Tong Xie
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhen Zhang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
14
|
Wang W, Tasset A, Pyatnitskiy I, Mohamed HG, Taniguchi R, Zhou R, Rana M, Lin P, Capocyan SLC, Bellamkonda A, Chase Sanders W, Wang H. Ultrasound triggered organic mechanoluminescence materials. Adv Drug Deliv Rev 2022; 186:114343. [PMID: 35580814 PMCID: PMC10202817 DOI: 10.1016/j.addr.2022.114343] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/05/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Ultrasound induced organic mechanoluminescence materials have become one of the focal topics in wireless light sources since they exhibit high spatiotemporal resolution, biocompatibility and excellent tissue penetration depth. These properties promote great potential in ultrahigh sensitive bioimaging with no background noise and noninvasive nanodevices. Recent advances in chemistry, nanotechnology and biomedical research are revolutionizing ultrasound induced organic mechanoluminescence. Herein, we try to summarize some recent researches in ultrasound induced mechanoluminescence that use various materials design strategies based on the molecular conformational changes and cycloreversion reaction. Practical applications, like noninvasive bioimaging and noninvasive optogenetics, are also presented and prospected.
Collapse
Affiliation(s)
- Wenliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Aaron Tasset
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Ilya Pyatnitskiy
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Heba G Mohamed
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Rayna Taniguchi
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Richard Zhou
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Manini Rana
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Peter Lin
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Sam Lander C Capocyan
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Arjun Bellamkonda
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - W Chase Sanders
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA
| | - Huiliang Wang
- Biomedical Engineering Cockrell School of Engineering, the University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Wang X, Cao Y, Peng Y, Wang L, Hou W, Zhou Y, Shi Y, Huang H, Chen Y, Li Y. Concurrent and Mechanochemical Activation of Two Distinct and Latent Fluorophores via Retro-Diels-Alder Reaction of an Anthracene-Aminomaleimide Adduct. ACS Macro Lett 2022; 11:310-316. [PMID: 35575364 DOI: 10.1021/acsmacrolett.2c00036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generally, a typical mechanochromophore produces color change through chemical transformation into one or two identical new chromophores/fluorophores under applied mechanical force. Herein, we introduce a novel mechanophore based on an anthracene-aminomaleimide Diels-Alder (DA) adduct featuring two distinct and latent fluorophores. This nonfluorescent mechanophore undergoes retro-DA reaction upon mechanochemical activation in solution and the solid state, generating the respective anthracene and aminomaleimide fragments simultaneously, both of which are highly emissive with different fluorescent colors. In addition, the aminomaleimide fluorophore exhibits sensitive fluorescence on-off response to protic solvents or polar solvents, which enables dual-color mechanochromism from this single mechanophore.
Collapse
Affiliation(s)
- Xiaoying Wang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yifeng Cao
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanling Peng
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lewen Wang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Wangmeng Hou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yecheng Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Huahua Huang
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
16
|
Stratigaki M, Baumann C, Göstl R. Confocal Microscopy Visualizes Particle–Crack Interactions in Epoxy Composites with Optical Force Probe-Cross-Linked Rubber Particles. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Stratigaki
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Christoph Baumann
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Robert Göstl
- DWI─Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| |
Collapse
|
17
|
Kim G, Wu Q, Chu JL, Smith EJ, Oelze ML, Moore JS, Li KC. Ultrasound controlled mechanophore activation in hydrogels for cancer therapy. Proc Natl Acad Sci U S A 2022; 119:e2109791119. [PMID: 35046028 PMCID: PMC8795563 DOI: 10.1073/pnas.2109791119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023] Open
Abstract
Mechanophores are molecular motifs that respond to mechanical perturbance with targeted chemical reactions toward desirable changes in material properties. A large variety of mechanophores have been investigated, with applications focusing on functional materials, such as strain/stress sensors, nanolithography, and self-healing polymers, among others. The responses of engineered mechanophores, such as light emittance, change in fluorescence, and generation of free radicals (FRs), have potential for bioimaging and therapy. However, the biomedical applications of mechanophores are not well explored. Herein, we report an in vitro demonstration of an FR-generating mechanophore embedded in biocompatible hydrogels for noninvasive cancer therapy. Controlled by high-intensity focused ultrasound (HIFU), a clinically proven therapeutic technique, mechanophores were activated with spatiotemporal precision to generate FRs that converted to reactive oxygen species (ROS) to effectively kill tumor cells. The mechanophore hydrogels exhibited no cytotoxicity under physiological conditions. Upon activation with HIFU sonication, the therapeutic efficacies in killing in vitro murine melanoma and breast cancer tumor cells were comparable with lethal doses of H2O2 This process demonstrated the potential for mechanophore-integrated HIFU combination as a noninvasive cancer treatment platform, named "mechanochemical dynamic therapy" (MDT). MDT has two distinct advantages over other noninvasive cancer treatments, such as photodynamic therapy (PDT) and sonodynamic therapy (SDT). 1) MDT is ultrasound based, with larger penetration depth than PDT. 2) MDT does not rely on sonosensitizers or the acoustic cavitation effect, both of which are necessary for SDT. Taking advantage of the strengths of mechanophores and HIFU, MDT can provide noninvasive treatments for diverse cancer types.
Collapse
Affiliation(s)
- Gun Kim
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Qiong Wu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - James L Chu
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
| | - Emily J Smith
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
| | - Michael L Oelze
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - King C Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801;
- Carle Illinois College of Medicine, University of Illinois at Urbana Urbana-Champaign, Urbana, IL 61820
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
18
|
Tan M, Hu Z, Dai Y, Peng Y, Zhou Y, Shi Y, Li Y, Chen Y. A Simple Mechanochromic Mechanophore Based on Aminothiomaleimide. ACS Macro Lett 2021; 10:1423-1428. [PMID: 35549011 DOI: 10.1021/acsmacrolett.1c00543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanochromic mechanophores have promising applications in stress sensing and damage detection. Here we report a simple mechanofluorochromic mechanophore based on aminothiomaleimide (ATM). Poly(methyl acrylate) containing this mechanophore (ATM-PMA) was synthesized by atom transfer radical polymerization (ATRP) using an ATM-derived difunctional initiator. To investigate its mechanofluorochromism, the solution of ATM-PMA was subjected to ultrasonication, and size exclusion chromatography (SEC) and fluorescence spectroscopy were employed to monitor the changes in molecular weight and fluorescence emission. The results showed that the molecular weight of ATM-PMA decreased upon ultrasonication, accompanied by a shift of fluorescence emission from bright yellow to light blue. This mechanophore of a simple functional group of ATM has great potential to be used in mechanochromic polymer materials.
Collapse
Affiliation(s)
- Min Tan
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhitao Hu
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yunkai Dai
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yanling Peng
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yecheng Zhou
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yi Shi
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yuanchao Li
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yongming Chen
- School of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Research Center for Functional Biomaterials Engineering and Technology Guangdong, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
19
|
Kida J, Aoki D, Otsuka H. Self-Strengthening of Cross-Linked Elastomers via the Use of Dynamic Covalent Macrocyclic Mechanophores. ACS Macro Lett 2021; 10:558-563. [PMID: 35570767 DOI: 10.1021/acsmacrolett.1c00124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The creation of polymeric materials that self-strengthen in response to a mechanical force is an important objective in the field of polymer chemistry. Here, the mechanochemical strengthening of cross-linked elastomers using macrocyclic mechanophores that contain a dynamic covalent disulfide bond is reported. Cross-linked poly(hexyl methacrylate) (CPHMA) polymers with macrocyclic mechanophores inserted at the cross-linking points were synthesized via free radical polymerization. Tensile and swelling tests showed that the addition of the macrocyclic mechanophores to the CPHMA polymers successfully impart them with self-strengthening functionality following compression, without the need for any additives such as monomers and modifiers, or any other stimuli.
Collapse
|
20
|
Affiliation(s)
- Yulan Chen
- Department of Chemistry, Tianjin University, Yaguan Road No. 135, Jinnan District, Tianjin, 300354, P. R. China
| | - Michael Sommer
- Institut für Chemie, Technische Universität Chemnitz, Professur Polymerchemie, Straße der Nationen 62, Chemnitz, 09111, Germany
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|
21
|
Chen Y, Mellot G, van Luijk D, Creton C, Sijbesma RP. Mechanochemical tools for polymer materials. Chem Soc Rev 2021; 50:4100-4140. [DOI: 10.1039/d0cs00940g] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review aims to provide a field guide for the implementation of mechanochemistry in synthetic polymers by summarizing the molecules, materials, and methods that have been developed in this field.
Collapse
Affiliation(s)
- Yinjun Chen
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Gaëlle Mellot
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Diederik van Luijk
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Costantino Creton
- Laboratoire Sciences et Ingénierie de la Matière Molle
- ESPCI Paris
- PSL University
- Sorbonne Université
- CNRS
| | - Rint P. Sijbesma
- Department of Chemical Engineering & Chemistry and Institute for Complex Molecular Systems
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
22
|
Martínez‐Tong DE, Pomposo JA, Verde‐Sesto E. Triggering Forces at the Nanoscale: Technologies for Single‐Chain Mechanical Activation and Manipulation. Macromol Rapid Commun 2020; 42:e2000654. [DOI: 10.1002/marc.202000654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/14/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Daniel E. Martínez‐Tong
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología University of the Basque Country (UPV/EHU) P. Manuel Lardizábal 3 Donostia‐San Sebastián 20018 Spain
- Centro de Física de Materiales (UPV/EHU‐CSIC) P. Manuel Lardizábal 5 San Sebastián 20018 Spain
| | - José A. Pomposo
- Departamento de Polímeros y Materiales Avanzados: Física, Química y Tecnología University of the Basque Country (UPV/EHU) P. Manuel Lardizábal 3 Donostia‐San Sebastián 20018 Spain
- Centro de Física de Materiales (CFM) (CSIC‐UPV/EHU)—Materials Physics Center (MPC) Paseo Manuel de Lardizábal 5 Donostia‐San Sebastián 20018 Spain
- IKERBASQUE—Basque Foundation for Science Plaza Euskadi 5 Bilbao 48009 Spain
| | - Ester Verde‐Sesto
- Centro de Física de Materiales (CFM) (CSIC‐UPV/EHU)—Materials Physics Center (MPC) Paseo Manuel de Lardizábal 5 Donostia‐San Sebastián 20018 Spain
| |
Collapse
|
23
|
Klein IM, Husic CC, Kovács DP, Choquette NJ, Robb MJ. Validation of the CoGEF Method as a Predictive Tool for Polymer Mechanochemistry. J Am Chem Soc 2020; 142:16364-16381. [DOI: 10.1021/jacs.0c06868] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Isabel M. Klein
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Corey C. Husic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Dávid P. Kovács
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Nicolas J. Choquette
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Maxwell J. Robb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|