1
|
Jazani AM, Schild DJ, Sobieski J, Hu X, Matyjaszewski K. Visible Light-ATRP Driven by Tris(2-Pyridylmethyl)Amine (TPMA) Impurities in the Open Air. Macromol Rapid Commun 2023; 44:e2200855. [PMID: 36471106 DOI: 10.1002/marc.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Atom transfer radical polymerization (ATRP) of oligo(ethylene oxide) monomethyl ether methacrylate (OEOMA500 ) in water is enabled using CuBr2 with tris(2-pyridylmethyl)amine (TPMA) as a ligand under blue or green-light irradiation without requiring any additional reagent, such as a photo-reductant, or the need for prior deoxygenation. Polymers with low dispersity (Đ = 1.18-1.25) are synthesized at high conversion (>95%) using TPMA from three different suppliers, while no polymerization occurred with TPMA is synthesized and purified in the laboratory. Based on spectroscopic studies, it is proposed that TPMA impurities (i.e., imine and nitrone dipyridine), which absorb blue and green light, can act as photosensitive co-catalyst(s) in a light region where neither pure TPMA nor [(TPMA)CuBr]+ absorbs light.
Collapse
Affiliation(s)
- Arman Moini Jazani
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Dirk J Schild
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Julian Sobieski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Xiaolei Hu
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
2
|
An ZW, Xue R, Ye K, Zhao H, Liu Y, Li P, Chen ZM, Huang CX, Hu GH. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods. NANOSCALE 2023; 15:6505-6520. [PMID: 36883369 DOI: 10.1039/d2nr07110j] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To meet more application requirements, improving mechanical properties and self-healing efficiency has become the focus of current research on self-healing PU. The competitive relationship between self-healing ability and mechanical properties cannot be avoided by a single self-healing method. To address this problem, a growing number of studies have combined dynamic covalent bonding with other self-healing methods to construct the PU structure. This review summarizes recent studies on PU materials that combine typical dynamic covalent bonds with other self-healing methods. It mainly includes four parts: hydrogen bonding, metal coordination bonding, nanofillers combined with dynamic covalent bonding and multiple dynamic covalent bond bonding. The advantages and disadvantages of different self-healing methods and their significant role in improving self-healing ability and mechanical properties in PU networks are analyzed. At the same time, the possible challenges and research directions of self-healing PU materials in the future are discussed.
Collapse
Affiliation(s)
- Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Rui Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
- Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Zhen-Ming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Chong-Xing Huang
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering, CNRS-University of Lorraine, Nancy 54001, France
| |
Collapse
|
3
|
Self J, Reynolds VG, Blankenship J, Mee E, Guo J, Albanese K, Xie R, Hawker CJ, de Alaniz JR, Chabinyc ML, Bates CM. Carbon Nanotube Composites with Bottlebrush Elastomers for Compliant Electrodes. ACS POLYMERS AU 2022; 2:27-34. [PMID: 36855747 PMCID: PMC9954388 DOI: 10.1021/acspolymersau.1c00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Wearable electronics and biointerfacing technology require materials that are both compliant and conductive. The typical design strategy exploits polymer composites containing conductive particles, but the addition of a hard filler generally leads to a substantial increase in modulus that is not well-matched to biological tissue. Here, we report a new class of supersoft, conductive composites comprising carbon nanotubes (CNT) embedded in bottlebrush polymer networks. By virtue of the bottlebrush polymer architecture, these materials are several orders of magnitude softer than comparable composites in the literature involving linear polymer networks. For example, a CNT content of 0.25 wt % yields a shear modulus of 66 kPa while maintaining a typical conductivity for a CNT composite (ca. 10-2 S/m). An added benefit of this bottlebrush matrix chemistry is the presence of dynamic polyester bonds that facilitate thermal (re)processing. This unique strategy of designing soft composites provides new opportunities to tailor the structure and properties of sustainable advanced materials.
Collapse
Affiliation(s)
- Jeffrey
L. Self
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Veronica G. Reynolds
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Jacob Blankenship
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Erin Mee
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Jiaqi Guo
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Kaitlin Albanese
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Renxuan Xie
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Craig J. Hawker
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Javier Read de Alaniz
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
| | - Michael L. Chabinyc
- Materials
Department, University of California, Santa Barbara, California 93106, United States
| | - Christopher M. Bates
- Department
of Chemistry & Biochemistry, University
of California, Santa
Barbara, California 93106, United States
- Materials
Department, University of California, Santa Barbara, California 93106, United States
- Materials
Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
4
|
Nellepalli P, Patel T, Oh JK. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol Rapid Commun 2021; 42:e2100391. [PMID: 34418209 DOI: 10.1002/marc.202100391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PU) has not only been widely used in the daily lives, but also extensively explored as an important class of the essential polymers for various applications. In recent years, significant efforts have been made on the development of self-healable PU materials that possess high performance, extended lifetime, great reliability, and recyclability. A promising approach is the incorporation of covalent dynamic bonds into the design of PU covalently crosslinked polymers and thermoplastic elastomers that can dissociate and reform indefinitely in response to external stimuli or autonomously. This review summarizes various strategies to synthesize self-healable, reprocessable, and recyclable PU materials integrated with dynamic (reversible) Diels-Alder cycloadduct, disulfide, diselenide, imine, boronic ester, and hindered urea bond. Furthermore, various approaches utilizing the combination of dynamic covalent chemistries with nanofiller surface chemistries are described for the fabrication of dynamic heterogeneous PU composites.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|