1
|
Tan Y, Khan HM, Sheikh BA, Sun H, Zhang H, Chen J, Huang D, Chen X, Zhou C, Sun J. Recent advances in 2D material-based phototherapy. Front Bioeng Biotechnol 2023; 11:1141631. [PMID: 36937746 PMCID: PMC10020212 DOI: 10.3389/fbioe.2023.1141631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Phototherapy, which generally refers to photothermal therapy (PTT) and photodynamic therapy (PDT), has received significant attention over the past few years since it is non-invasive, has effective selectivity, and has few side effects. As a result, it has become a promising alternative to traditional clinical treatments. At present, two-dimensional materials (2D materials) have proven to be at the forefront of the development of advanced nanomaterials due to their ultrathin structures and fascinating optical properties. As a result, much work has been put into developing phototherapy platforms based on 2D materials. This review summarizes the current developments in 2D materials beyond graphene for phototherapy, focusing on the novel approaches of PTT and PDT. New methods are being developed to go above and beyond conventional treatment to fully use the potential of 2D materials. Additionally, the efficacy of cutting-edge phototherapy is assessed, and the existing difficulties and future prospects of 2D materials for phototherapy are covered.
Collapse
Affiliation(s)
- Yi Tan
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Sun
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Hui Zhang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinmei Chen
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changchun Zhou
- National Engineering Research Centre for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Jianxun Sun
- State Key Laboratory of Oral disease, National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Li Z, Mei S, Luo L, Li S, Chen X, Zhang Y, Zhao W, Zhang X, Shi G, He Y, Cui Z, Fu P, Pang X, Liu M. Multiple/Two-Way Shape Memory Poly(urethane-urea-amide) Elastomers. Macromol Rapid Commun 2023; 44:e2200693. [PMID: 36250510 DOI: 10.1002/marc.202200693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Multiple and two-way reversible shape memory polymers (M/2W-SMPs) are highly promising for many fields due to large deformation, lightweight, strong recovery stress, and fast response rates. Herein, a semi-crystalline block poly(urethane-urea-amide) elastomers (PUUAs) are prepared by the copolymerization of isocyanate-terminated polyurethane (OPU) and amino-terminated oligomeric polyamide-1212 (OPA). PUUAs, composed of OPA as stationary phase and PTMEG as reversible phase, exhibit excellent rigidity, flexibility, and resilience, and cPUUA-C7 -S25 exhibits the best tensile property with strength of 10.3 MPa and elongation at break of 360.2%. Besides, all the PUUAs possess two crystallization/melting temperatures and a glass transition temperature, which endow PUUAs with multiple and reversible two-way shape memory effect (M/2W-SME). Physically crosslinked PUUA-C0 -S25 exhibits excellent dual and triple shape memory, and micro chemically crosslinked cPUUA-C7 -S25 further shows quadruple shape memory behavior. Additionally, both PUUA-C0 -S25 and cPUUA-C7 -S25 have 2W-SME. Intriguingly, cPUUA-C7 -S25 can achieve a higher temperature (up to 165 °C) SME, which makes it suitable for more complex and changeable applications. Based on the advantages of M/2W-SME, a temperature-responsive application scenario where PUUAs can transform spontaneously among different shapes is designed. These unique M/2W-SME and high-temperature SME will enable the applications of high-temperature sensors, actuators, and aerospace equipment.
Collapse
Affiliation(s)
- Zhen Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuxiang Mei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Luo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyuan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyin Chen
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuancheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Wei Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Ge Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Yanjie He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Zhe Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Peng Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Minying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Li N, Sun WJ, Wang YY, Yan DX, Li ZM. A programable biomimetic actuator with large and reversible deformation based on commercial poly (ethylene-co-vinyl acetate). POLYMER 2023. [DOI: 10.1016/j.polymer.2022.125591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Hao C, Yue H, Zhou J, He S, Liu H, Huang M, Liu W. Stress‐free two‐way shape memory property and microstructure evolution of single‐phase polymer networks. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaobo Hao
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Huimin Yue
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Junjie Zhou
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Suqin He
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
- Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Hao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Miaoming Huang
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| | - Wentao Liu
- School of Materials Science and Engineering Zhengzhou University Zhengzhou China
| |
Collapse
|
5
|
Zhang C, Gao Y, Gao H, Cao Y, Wang J, Yang Y, Wang W. Combined heat‐ and light‐induced shape memory behavior of
RPVB
/
SMA
/
NRGO
composites by reactive melt blending. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chenchen Zhang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Yuan Gao
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Huajie Gao
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Yanxia Cao
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Jianfeng Wang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Yanyu Yang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| | - Wanjie Wang
- College of Materials Science and Engineering, Henan Key Laboratory of Advanced Nylon Materials and Application Zhengzhou University Zhengzhou China
| |
Collapse
|
6
|
Zhao G, Ling Y, Su Y, Chen Z, Mathai CJ, Emeje O, Brown A, Alla DR, Huang J, Kim C, Chen Q, He X, Stalla D, Xu Y, Chen Z, Chen PY, Gangopadhyay S, Xie J, Yan Z. Laser-scribed conductive, photoactive transition metal oxide on soft elastomers for Janus on-skin electronics and soft actuators. SCIENCE ADVANCES 2022; 8:eabp9734. [PMID: 35731865 PMCID: PMC9216520 DOI: 10.1126/sciadv.abp9734] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/05/2022] [Indexed: 05/06/2023]
Abstract
Laser-assisted fabrication of conductive materials on flexible substrates has attracted intense interests because of its simplicity, easy customization, and broad applications. However, it remains challenging to achieve laser scribing of conductive materials on tissue-like soft elastomers, which can serve as the basis to construct bioelectronics and soft actuators. Here, we report laser scribing of metallic conductive, photoactive transition metal oxide (molybdenum dioxide) on soft elastomers, coated with molybdenum chloride precursors, under ambient conditions. Laser-scribed molybdenum dioxide (LSM) exhibits high electrical conductivity, biocompatibility, chemical stability, and compatibility with magnetic resonance imaging. In addition, LSM can be made on various substrates (polyimide, glass, and hair), showing high generality. Furthermore, LSM-based Janus on-skin electronics are developed to record information from human skin, human breath, and environments. Taking advantage of its outstanding photothermal effect, LSM-based soft actuators are developed to build light-driven reconfigurable three-dimensional architectures, reshapable airflow sensors, and smart robotic worms with bioelectronic sensors.
Collapse
Affiliation(s)
- Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Yun Ling
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Yajuan Su
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zanyu Chen
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
| | - Cherian J. Mathai
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Ogheneobarome Emeje
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Alexander Brown
- Cognitive Neuroscience Systems Core, University of Missouri, Columbia, MO, USA
| | - Dinesh Reddy Alla
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Jie Huang
- Department of Electrical and Computer Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Chansong Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Xiaoqing He
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
- Electron Microscopy Core, University of Missouri, Columbia, MO, USA
| | - David Stalla
- Electron Microscopy Core, University of Missouri, Columbia, MO, USA
| | - Yadong Xu
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Zehua Chen
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA
| | - Pai-Yen Chen
- Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Shubhra Gangopadhyay
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
| | - Zheng Yan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Shi H, Ruan H, Chen Z, Zhang Y, Zou C, Zhang X, Liu B, Xu M, Li B. Shape memory, thermal conductivity, and mechanical property of polylactic acid and natural rubber composites reinforced by an inorganic thermal conductive network. J Appl Polym Sci 2022. [DOI: 10.1002/app.52668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui‐Hong Shi
- College of Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Hui‐Xian Ruan
- College of Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Zong‐Ju Chen
- College of Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Yi Zhang
- College of Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Cheng‐Long Zou
- College of Chemical Engineering and Resource Utilization Northeast Forestry University Harbin China
| | - Xiu‐Cheng Zhang
- College of Chemical Engineering and Resource Utilization, Key Laboratory for Molecular Design and preparation of flame retardant materials in Heilongjiang Northeast Forestry University Harbin China
| | - Bing Liu
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry Shaanxi University of Science and Technology Xi'an Shaanxi Province China
| | - Miao‐Jun Xu
- College of Chemical Engineering and Resource Utilization, Key Laboratory for Molecular Design and preparation of flame retardant materials in Heilongjiang Northeast Forestry University Harbin China
| | - Bin Li
- College of Chemical Engineering and Resource Utilization, Key Laboratory for Molecular Design and preparation of flame retardant materials in Heilongjiang Northeast Forestry University Harbin China
| |
Collapse
|
8
|
Zou Y, Wang P, Fang S, Li H, Yu Y, Liu Y, Zhang H, Guo J. Near-infrared light-responsive shape memory hydrogels with remolding and excellent mechanical performance. NEW J CHEM 2022. [DOI: 10.1039/d2nj00056c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT: In recent years, intelligent shape memory hydrogels (SMHs) have received extensive attention. However, due to the limitations of poor mechanical properties and the single functionality of soft materials, the...
Collapse
|
9
|
Qiu N, Yang X, Zhang Y, Zhang J, Ji J, Zhang Y, Kong X, Xi Y, Liu D, Ye L, Zhai G. A molybdenum oxide-based degradable nanosheet for combined chemo-photothermal therapy to improve tumor immunosuppression and suppress distant tumors and lung metastases. J Nanobiotechnology 2021; 19:428. [PMID: 34923976 PMCID: PMC8684628 DOI: 10.1186/s12951-021-01162-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Molybdenum oxide (MoOx) nanosheets have drawn increasing attention for minimally invasive cancer treatments but still face great challenges, including complex modifications and the lack of efficient accumulation in tumor. In this work, a novel multifunctional degradable FA-BSA-PEG/MoOx nanosheet was fabricated (LA-PEG and FA-BSA dual modified MoOx): the synergistic effect of PEG and BSA endows the nanosheet with excellent stability and compatibility; the FA, a targeting ligand, facilitates the accumulation of nanosheets in the tumor. In addition, DTX, a model drug for breast cancer treatment, was loaded (76.49%, 1.5 times the carrier weight) in the nanosheets for in vitro and in vivo antitumor evaluation. The results revealed that the FA-BSA-PEG/MoOx@DTX nanosheets combined photothermal and chemotherapy could not only inhibit the primary tumor growth but also suppress the distant tumor growth (inhibition rate: 51.7%) and lung metastasis (inhibition rate: 93.6%), which is far more effective compared to the commercial Taxotere®. Exploration of the molecular mechanism showed that in vivo immune response induced an increase in positive immune responders, suppressed negative immune suppressors, and established an inflammatory tumor immune environment, which co-contributes towards effective suppression of tumor and lung metastasis. Our experiments demonstrated that this novel multifunctional nanosheet is a promising platform for combined chemo-photothermal therapy. ![]()
Collapse
Affiliation(s)
- Na Qiu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Yanan Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Yu Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Xinru Kong
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Yanwei Xi
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Dongzhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan, 250012, People's Republic of China.
| |
Collapse
|
10
|
Zhou J, Yue H, Huang M, Hao C, He S, Liu H, Liu W, Zhu C, Dong X, Wang D. Arbitrarily Reconfigurable and Thermadapt Reversible Two-Way Shape Memory Poly(thiourethane) Accomplished by Multiple Dynamic Covalent Bonds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43426-43437. [PMID: 34491715 DOI: 10.1021/acsami.1c13057] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The fabrication of a single polymer network that exhibits a good reversible two-way shape memory effect (2W-SME), can be formed into arbitrarily complex three-dimensional (3D) shapes, and is recyclable remains a challenge. Herein, we design and fabricate poly(thiourethane) (PTU) networks with an excellent thermadapt reversible 2W-SME, arbitrary reconfigurability, and good recyclability via the synergistic effects of multiple dynamic covalent bonds (i.e., ester, urethane, and thiourethane bonds). The PTU samples with good mechanical performance simultaneously demonstrate a maximum tensile stress of 29.7 ± 1.1 MPa and a high strain of 474.8 ± 7.5%. In addition, the fraction of reversible strain of the PTU with 20 wt % hard segment reaches 22.4% during the reversible 2W-SME, where the fraction of reversible strain is enhanced by self-nucleated crystallization of the PTU. A sample with arbitrarily complex permanent 3D shapes can be realized via the solid-state plasticity, and that sample also exhibits excellent reversible 2W-SME. A smart light-responsive actuator with a double control switch is fabricated using a reversible two-way shape memory PTU/MXene film. In addition, the PTU networks are de-cross-linked by alcohol solvolysis, enabling the recovery of monomers and the realization of recyclability. Therefore, the present study involving the design and fabrication of a PTU network for potential applications in intelligent actuators and multifunctional shape-shifting devices provides a new strategy for the development of thermadapt reversible two-way shape memory polymers.
Collapse
Affiliation(s)
- Junjie Zhou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Huimin Yue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Miaoming Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chaobo Hao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Suqin He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Hao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wentao Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chengshen Zhu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xia Dong
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dujin Wang
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
11
|
Sun WJ, Guan Y, Wang YY, Wang T, Xu YT, Kong WW, Jia LC, Yan DX, Li ZM. Low-Voltage Actuator with Bilayer Structure for Various Biomimetic Locomotions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43449-43457. [PMID: 34472846 DOI: 10.1021/acsami.1c14030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Composites based on a shape-memory polymer doped with conductive particles are considered as soft actuators for artificial muscles and robots. Low-voltage actuating is expected to reduce equipment requirement and safety hazards, which requires a highly conductive particle content but weakens the reversible deformation. The spatial distribution of the conductive particle is key to decreasing the actuating voltage and maintaining the reversible deformation. Herein, an approach of fabricating a low-voltage actuator that can perform various biomimetic locomotions by spraying and hot pressing is reported. Carbon nanotubes (CNTs) are enriched inside the surface layer of poly(ethylene-co-vinyl acetate) (EVA) to form a high-density conductive network without degradation of the reversible deformation. The bilayer CNT/EVA actuator exhibits a reversible transformation of more than 10% even with 100 cycles, which requires an applied voltage of just 15 V. Taking advantage of the reprogrammability of the CNT/EVA actuator and reversible shift between the different shapes, different biomimetic locomotions (sample actuator, gripper, and walking robot) are demonstrated without any additional mechanical components. A scheme combining the electrical properties and the shape-memory effect provides a versatile strategy to fabricate low-voltage-actuated polymeric actuators, providing inspiration in the development of electrical soft actuators and biomimetic devices.
Collapse
Affiliation(s)
- Wen-Jin Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Guan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yue-Yi Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ying-Te Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei-Wei Kong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|