1
|
Álvarez-Bermúdez O, Adam-Cervera I, Landfester K, Muñoz-Espí R. Morphology Control of Polymer-Inorganic Hybrid Nanomaterials Prepared in Miniemulsion: From Solid Particles to Capsules. Polymers (Basel) 2024; 16:2997. [PMID: 39518208 PMCID: PMC11548365 DOI: 10.3390/polym16212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
The preparation of so-called hybrid nanomaterials has been widely developed in terms of functional and morphological complexity. However, the specific control of the arrangement of organic and inorganic species, which determines the properties of the final material, still remains a challenge. This article offers a review of the strategies that have been used for the preparation of polymer-inorganic hybrid nanoparticles and nanocapsules via processes involving miniemulsions. Different polymer-inorganic nanostructures are classified into four main groups according to the sequential order followed between the synthesis of the polymer and the inorganic species, and the presence or not of their counterpart precursors. The minimization of the energy of the system governs the self-assembly of the different material components and can be addressed by the miniemulsion formulation to reduce the interfacial tensions between the phases involved. The state of the art in the preparation of hybrid nanoparticles is reviewed, offering insight into the structural possibilities allowed by miniemulsion as a versatile synthetic technique.
Collapse
Affiliation(s)
- Olaia Álvarez-Bermúdez
- Institute of Materials Science (ICMUV), Universitat de València, c/Catedràtic José Beltrán 2, 46980 Paterna, Spain
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Inés Adam-Cervera
- Institute of Materials Science (ICMUV), Universitat de València, c/Catedràtic José Beltrán 2, 46980 Paterna, Spain
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rafael Muñoz-Espí
- Institute of Materials Science (ICMUV), Universitat de València, c/Catedràtic José Beltrán 2, 46980 Paterna, Spain
| |
Collapse
|
2
|
Song Z, Chen P, Teng L, Wang W, Zhu W. Copper Nanodrugs with Controlled Morphologies through Aqueous Atom Transfer Radical Polymerization. Biomacromolecules 2024; 25:4545-4556. [PMID: 38902858 DOI: 10.1021/acs.biomac.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Copper (Cu) nanodrugs can be facilely prepared through atom transfer radical polymerization (ATRP) in an aqueous medium. However, it is difficult to control the morphology of Cu nanodrugs and thereby optimize their anticancer activity. In this work, aqueous ATRP was combined with polymerization-induced self-assembly (PISA) to prepare Cu nanodrugs with various morphologies. We mapped the relationship between polymerization condition and product morphology in which each morphology shows a wide preparation window. Decreasing the reaction temperature and feeding more Cu catalysts can improve the mobility of chains, facilitating the morphology evolution from sphere to other high-order morphologies. The resultant Cu nanodrugs with high monomer conversion and high Cu loading efficiency could be easily taken by cancer cells, showing excellent anticancer efficacy in vitro. This work proposed a potential strategy to prepare Cu nanodrugs with a specific morphology in batches, providing the method to optimize the anticancer efficacy through morphology control.
Collapse
Affiliation(s)
- Ziyan Song
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Peng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weibin Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Weipu Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
3
|
Ding Y, Zhao T, Fang J, Song J, Dong H, Liu J, Li S, Zhao M. Recent developments in the use of nanocrystals to improve bioavailability of APIs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1958. [PMID: 38629192 DOI: 10.1002/wnan.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Nanocrystals refer to materials with at least one dimension smaller than 100 nm, composing of atoms arranged in single crystals or polycrystals. Nanocrystals have significant research value as they offer unique advantages over conventional pharmaceutical formulations, such as high bioavailability, enhanced targeting selectivity and controlled release ability and are therefore suitable for the delivery of a wide range of drugs such as insoluble drugs, antitumor drugs and genetic drugs with broad application prospects. In recent years, research on nanocrystals has been progressively refined and new products have been launched or entered the clinical phase of studies. However, issues such as safety and stability still stand that need to be addressed for further development of nanocrystal formulations, and significant gaps do exist in research in various fields in this pharmaceutical arena. This paper presents a systematic overview of the advanced development of nanocrystals, ranging from the preparation approaches of nanocrystals with which the bioavailability of poorly water-soluble drugs is improved, critical properties of nanocrystals and associated characterization techniques, the recent development of nanocrystals with different administration routes, the advantages and associated limitations of nanocrystal formulations, the mechanisms of physical instability, and the enhanced dissolution performance, to the future perspectives, with a final view to shed more light on the future development of nanocrystals as a means of optimizing the bioavailability of drug candidates. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yidan Ding
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Tongyi Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jianing Fang
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiexin Song
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Haobo Dong
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiarui Liu
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Sijin Li
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Min Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Yu Q, Ji Y. A novel approach to graft silicones onto waterborne polyacrylate for synthesizing anti‐graffiti coatings by polydimethylsiloxane‐functionalized
RAFT
agent. J Appl Polym Sci 2022. [DOI: 10.1002/app.53393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Qiwei Yu
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Yongxin Ji
- College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|
5
|
Ma H, Xia S, Li N, Wang T, Zheng W, Yu T, Shu Q, Han Y. Emulsifying stability and viscosity reduction for heavy crude oil in surfactant-polymer composite system. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Kitayama Y, Sadakane M, Harada A. Reversible chain transfer catalyzed polymerization in miniemulsion systems with tetraiodomethane as a catalyst. Polym Chem 2022. [DOI: 10.1039/d2py01019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tetraiodomethane (CI4) is an effective catalyst in reversible chain transfer catalyzed polymerization (RTCP) of methacrylate monomers in miniemulsion polymerization systems (miniemulsion RTCP).
Collapse
Affiliation(s)
- Yukiya Kitayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Masaya Sadakane
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
7
|
Kadirkhanov J, Zhong F, Zhang W, Hong C. Preparation of Multi-chambered Vesicles by Polymerization-induced Self-assembly and the Influence of Solvophilic Fragments in the Core-forming Blocks. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22030128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|