1
|
Kwant AN, Es Sayed JS, Kamperman M, Burgess JK, Slebos D, Pouwels SD. Sticky Science: Using Complex Coacervate Adhesives for Biomedical Applications. Adv Healthc Mater 2025; 14:e2402340. [PMID: 39352099 PMCID: PMC11730373 DOI: 10.1002/adhm.202402340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/05/2024] [Indexed: 01/15/2025]
Abstract
Tissue adhesives are used for various medical applications, including wound closure, bleeding control, and bone healing. Currently available options often show weak adhesion or cause adverse effects. Recently, there has been an increasing interest in complex coacervates as medical adhesives. Complex coacervates are formed by mixing oppositely charged macromolecules that associate and undergo liquid-liquid phase separation, in which the dense bottom phase is the complex coacervate. Complex coacervates are strong and often biocompatible, and show strong underwater adhesion. The properties of the resulting materials are tunable by intrinsic factors such as polymer chemistry, molecular weight, charge density, and topology of the macromolecules, as well as extrinsic factors such as temperature, pH, and salt concentration. Therefore, complex coacervates are interesting new candidates for medical adhesives. In this review, it is described how complex coacervates form and how different factors influence their behavior. Next, an overview of recent studies on complex coacervates in the context of medical adhesives is presented. The application of complex coacervates as hemostatic or embolic agents, skin or bone repair adhesives, and soft tissue sealants is discussed. Lastly, additional possibilities for utilizing these materials in the future are discussed.
Collapse
Affiliation(s)
- Ayla N. Kwant
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Julien S. Es Sayed
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
| | - Marleen Kamperman
- Polymer ScienceZernike Institute for Advanced Materials (ZIAM)University of GroningenNijenborgh 3Groningen9747AGThe Netherlands
| | - Janette K. Burgess
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Dirk‐Jan Slebos
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| | - Simon D. Pouwels
- Department of Pulmonary DiseasesUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Department of Pathology and Medical BiologyUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
- Groningen Research Institute for Asthma and COPDUniversity Medical Center GroningenHanzeplein 1Groningen9713GZThe Netherlands
| |
Collapse
|
2
|
Mckeating S, Penrhyn-Lowe OB, Flynn S, Cassin SR, Lomas S, Fidge C, Price P, Wright S, Chambon P, Rannard SP. Controlling enzyme hydrolysis of branched polymers synthesised using transfer-dominated branching radical telomerisation via telogen and taxogen selection. Commun Chem 2024; 7:197. [PMID: 39227738 PMCID: PMC11372115 DOI: 10.1038/s42004-024-01283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024] Open
Abstract
With the ever-growing reliance on polymeric materials for numerous applications, new avenues to induce, design and control degradation are clearly important. Here, we describe a previously unreported approach to controlling enzymatic hydrolysis of high molecular weight branched polymers formed from the new free-radical polymer synthesis strategy transfer-dominated branching radical telomerisation (TBRT). Modifying the chemical nature of TBRT polymers may be accomplished through telogen selection and multi-vinyl taxogen (MVT) design, and we show telogen-driven control of enzyme-catalysed hydrolysis and the impact of careful placement of hydrolytically susceptible groups within readily synthesised MVTs. Our results indicate that utilising conventional free-radical chemistries and unsaturated monomers as feedstocks for highly branched polymer architectures has considerable potential for the design of future materials that degrade into very low molecular weight byproducts at variable and controllable rates.
Collapse
Affiliation(s)
- Samuel Mckeating
- Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Oliver B Penrhyn-Lowe
- Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Sean Flynn
- Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Savannah R Cassin
- Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Sarah Lomas
- Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Christopher Fidge
- Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, CH63, 3JW, UK
| | - Paul Price
- Unilever R&D, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral, CH63, 3JW, UK
| | - Stephen Wright
- Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Pierre Chambon
- Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK
| | - Steve P Rannard
- Department of Chemistry & Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool, L69 7ZD, UK.
| |
Collapse
|
3
|
Ju Y, Wang J, Lei Y, Wang Y. A dry double-sided tape post-treated with tannic acid for long-term adhesion in a wet environment. J Mater Chem B 2024; 12:8142-8152. [PMID: 39058226 DOI: 10.1039/d4tb01111b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Medical adhesives have been used for wound closure with many advantages over sutures, but the wet environment in the human body poses a big challenge for its application. The currently used dry double-sided tape (DST) can remove the water barrier by water absorption, but its over-swelling makes it difficult to achieve long-term adhesion. In this study, a dry double-sided tape post-treated with tannic acid (DST-TA) was developed. A double network adhesive composed of polyacrylic acid and gelatin was first prepared by free radical photocrosslinking, and was post-treated in acidic (pH = 2) tannic acid solution. Tannic acid was immobilized in the DST through the catecholyl group, which could form hydrogen bonds with the DST, or react with the amino group on the gelatin by oxidizing to quinone. In vivo and in vitro studies demonstrated that DST-TA had significantly higher swelling resistance and tensile strength than DST. The introduced catecholyl group could reduce over-swelling of the DST, and improve short-term and long-term adhesion in a wet environment. We also demonstrated that the DST-TA had good hemocompatibility, biodegradability, and no cytotoxicity, offering a potential option for long-term medical adhesive in a wet environment.
Collapse
Affiliation(s)
- Yi Ju
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610065, China.
| | - Junjie Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610065, China.
| | - Yang Lei
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610065, China.
- The First Affliated Hospital, Jiangxi Medical College, Nanchang University, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials and College of Biomedical Engineering, Sichuan University, No. 29 Wangjiang Road, Chengdu 610065, China.
| |
Collapse
|
4
|
Mubayi V, Ahern CB, Calusinska M, O’Malley MA. Toward a Circular Bioeconomy: Designing Microbes and Polymers for Biodegradation. ACS Synth Biol 2024; 13:1978-1993. [PMID: 38918080 PMCID: PMC11264326 DOI: 10.1021/acssynbio.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Polymer production is rapidly increasing, but there are no large-scale technologies available to effectively mitigate the massive accumulation of these recalcitrant materials. One potential solution is the development of a carbon-neutral polymer life cycle, where microorganisms convert plant biomass to chemicals, which are used to synthesize biodegradable materials that ultimately contribute to the growth of new plants. Realizing a circular carbon life cycle requires the integration of knowledge across microbiology, bioengineering, materials science, and organic chemistry, which itself has hindered large-scale industrial advances. This review addresses the biodegradation status of common synthetic polymers, identifying novel microbes and enzymes capable of metabolizing these recalcitrant materials and engineering approaches to enhance their biodegradation pathways. Design considerations for the next generation of biodegradable polymers are also reviewed, and finally, opportunities to apply findings from lignocellulosic biodegradation to the design and biodegradation of similarly recalcitrant synthetic polymers are discussed.
Collapse
Affiliation(s)
- Vikram Mubayi
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Colleen B. Ahern
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
| | - Magdalena Calusinska
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Environmental
Research and Innovation Department, Luxembourg
Institute of Science and Technology, L-4422 Belvaux, Luxembourg
| | - Michelle A. O’Malley
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Department
of Bioengineering, University of California, Santa Barbara, California 93106, United States
- Joint
BioEnergy Institute (JBEI), Emeryville, California 94608, United States
| |
Collapse
|
5
|
Lundberg DJ, Ko K, Kilgallon LJ, Johnson JA. Defining Reactivity-Deconstructability Relationships for Copolymerizations Involving Cleavable Comonomer Additives. ACS Macro Lett 2024; 13:521-527. [PMID: 38626454 DOI: 10.1021/acsmacrolett.4c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The incorporation of cleavable comonomers as additives into polymers can imbue traditional polymers with controlled deconstructability and expanded end-of-life options. The efficiency with which cleavable comonomer additives (CCAs) can enable deconstruction is sensitive to their local distribution within a copolymer backbone, which is dictated by their copolymerization behavior. While qualitative heuristics exist that describe deconstructability, comprehensive quantitative connections between CCA loadings, reactivity ratios, polymerization mechanisms, and deconstruction reactions on the deconstruction efficiency of copolymers containing CCAs have not been established. Here, we broadly define these relationships using stochastic simulations characterizing various polymerization mechanisms (e.g., coltrolled/living, free-radical, and reversible ring-opening polymerizations), reactivity ratio pairs (spanning 2 orders of magnitude between 0.01 and 100), CCA loadings (2.5% to 20%), and deconstruction reactions (e.g., comonomer sequence-dependent deconstruction behavior). We show general agreement between simulated and experimentally observed deconstruction fragment sizes from the literature, demonstrating the predictive power of the methods used herein. These results will guide the development of more efficient CCAs and inform the formulation of deconstructable materials.
Collapse
Affiliation(s)
- David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Kwangwook Ko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Landon J Kilgallon
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Fiandra EF, Shaw L, Starck M, McGurk CJ, Mahon CS. Designing biodegradable alternatives to commodity polymers. Chem Soc Rev 2023; 52:8085-8105. [PMID: 37885416 DOI: 10.1039/d3cs00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The development and widespread adoption of commodity polymers changed societal landscapes on a global scale. Without the everyday materials used in packaging, textiles, construction and medicine, our lives would be unrecognisable. Through decades of use, however, the environmental impact of waste plastics has become grimly apparent, leading to sustained pressure from environmentalists, consumers and scientists to deliver replacement materials. The need to reduce the environmental impact of commodity polymers is beyond question, yet the reality of replacing these ubiquitous materials with sustainable alternatives is complex. In this tutorial review, we will explore the concepts of sustainable design and biodegradability, as applied to the design of synthetic polymers intended for use at scale. We will provide an overview of the potential biodegradation pathways available to polymers in different environments, and highlight the importance of considering these pathways when designing new materials. We will identify gaps in our collective understanding of the production, use and fate of biodegradable polymers: from identifying appropriate feedstock materials, to considering changes needed to production and recycling practices, and to improving our understanding of the environmental fate of the materials we produce. We will discuss the current standard methods for the determination of biodegradability, where lengthy experimental timescales often frustrate the development of new materials, and highlight the need to develop better tools and models to assess the degradation rate of polymers in different environments.
Collapse
Affiliation(s)
- Emanuella F Fiandra
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Lloyd Shaw
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | - Clare S Mahon
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
7
|
Backer SA, Leal L. Biodegradability as an Off-Ramp for the Circular Economy: Investigations into Biodegradable Polymers for Home and Personal Care. Acc Chem Res 2022; 55:2011-2018. [PMID: 35839333 DOI: 10.1021/acs.accounts.2c00336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusConsumer pressure for globe-conscious products is pushing brand-owners big and small to provide transparency on the origin and fate of their ingredients. One such market where sustainable product growth has outpaced market growth is in home and personal care. Products in this space clean or care for our bodies, our homes, our environments, and the materials we encounter every day. Many of these materials are used and then washed down the drain, making the fate of these products a tangible end point for the consumer. Life cycle assessment (LCA) is a well-established methodology for determining potential environmental impacts of products and can be used to quantify the overall carbon footprint of the raw materials, the process to manufacture, and the transportation of the product around the globe. LCAs are calibrated to one metric, often kilograms of carbon dioxide (CO2) equivalents, to capture the overall carbon footprint. One aspect notably absent from many LCAs is the end of life for the product. Interestingly, consumers are driving a push for biodegradable materials that would not persist in the environment, but as materials biodegrade, they release carbon dioxide to the atmosphere. This release of CO2 places the benefits of biodegradation on the ultimate fate of raw materials in contradiction with carbon reduction methods such as carbon capture and carbon recycling that improve the LCA of a given product. In this Account, we describe the impact of biodegradation on the circular economy and discuss the development of natural, modified natural, and synthetic polymers to provide biodegradable alternatives to less degradable materials in the home and personal care markets. Building a chemical toolbox which can meet the functional and economical requirements of products on the market today while improving their sustainability profile is a huge challenge, which will not have a single answer. Among many current internal research initiatives, one vignette will be highlighted to showcase the research on a synthetic polymer with improved biodegradability for the dish care market. This novel polyelectrolyte, a copolymer of itaconic acid, acrylic acid, and vinyl acetate, was designed to break down into digestible daughter products in a wastewater treatment plant while demonstrating stability both on the shelf and in the dishwasher.
Collapse
Affiliation(s)
- Scott A Backer
- Home and Personal Care, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Lyndsay Leal
- Home and Personal Care, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| |
Collapse
|