Han W, Wang L, Sun J, Shi Y, Cui S, Yang D, Nie J, Ma G. Dual-Drug-Loaded Core-Shell Electrospun Nanofiber Dressing for Deep Burns.
ACS APPLIED BIO MATERIALS 2024;
7:1179-1190. [PMID:
38215047 DOI:
10.1021/acsabm.3c01091]
[Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The epidermis of a deep burn wound is entirely absent and the dermal tissue sustains significant damage, accompanied by a substantial amount of tissue exudate. Due to the excessively humid environment, the formation of a scab on the wound becomes challenging, leaving it highly vulnerable to external bacterial invasion. In this work, a core-shell dual-drug-loaded nanofiber dressing was prepared by electrospinning technology for the synergistic treatment of a deep burn. The shell layer consists of polycaprolactone and chitosan encapsulating asiaticoside, with the core layer comprising the clathrate of 2-hydroxypropyl-β-cyclodextrin and curcumin. Upon application to the wound, the dual-drug-loaded nanofiber dressing exhibited rapid release of asiaticoside, stimulating collagen deposition and promoting tissue repair. The core-shell structure and clathrate configuration ensured sustained release of curcumin, providing antibacterial and anti-inflammatory functions for the wound. The mechanical strength, broad-spectrum antibacterial ability, cell proliferation, and adhesion ability of the nanofiber dressing showed its potential as a medical dressing. This dressing also exhibited excellent wound healing promoting effects in the SD rat burn model. This paper provides a strategy for burn wound healing.
Collapse