1
|
Qiu F, Gong J, Tong G, Han S, Zhuang X, Zhu X. Near-infrared Light-Induced Polymerizations: Mechanisms and Applications. Chempluschem 2024; 89:e202300782. [PMID: 38345544 DOI: 10.1002/cplu.202300782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/12/2024] [Indexed: 03/13/2024]
Abstract
Photopolymerizations have garnered significant attention in polymer science due to their low polymerization temperature, high production efficiency, environmental friendliness, and spatial controllability. Despite these merits, the poor penetration and severe chemical damage from ultraviolet/visible (UV/Vis) light resources pose significant barriers to their success in conventional photopolymerizations. A recent breakthrough involving the utilization of near-infrared (NIR) laser with long wavelength has been exploited for diverse applications. With the combination of a NIR photosensitizer (PS), NIR-induced photopolymerizations have been successfully developed to alleviate the challenges in conventional methods. The enhancement of penetration depth and safety of NIR-induced photopolymerizations can contribute significantly to improving the efficiency of polymerization for production of intricate structures across various scales. In this concept, the typical types of PSs and polymerization mechanisms (PMs) within the NIR-induced photopolymerization systems have been classified in detail. Additionally, the applications of various polymers achieved by NIR-induced photopolymerizations are summarized. Furthermore, research directions and future challenges of this field are also discussed comprehensively.
Collapse
Affiliation(s)
- Feng Qiu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Jiao Gong
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Gangsheng Tong
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiaodong Zhuang
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xinyuan Zhu
- State Key Laboratory of Metal Matrix Composites & Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Zhang Z, Chen K, Ameduri B, Chen M. Fluoropolymer Nanoparticles Synthesized via Reversible-Deactivation Radical Polymerizations and Their Applications. Chem Rev 2023; 123:12431-12470. [PMID: 37906708 DOI: 10.1021/acs.chemrev.3c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Fluorinated polymeric nanoparticles (FPNPs) combine unique properties of fluorocarbon and polymeric nanoparticles, which has stimulated massive interest for decades. However, fluoropolymers are not readily available from nature, resulting in synthetic developments to obtain FPNPs via free radical polymerizations. Recently, while increasing cutting-edge directions demand tailored FPNPs, such materials have been difficult to access via conventional approaches. Reversible-deactivation radical polymerizations (RDRPs) are powerful methods to afford well-defined polymers. Researchers have applied RDRPs to the fabrication of FPNPs, enabling the construction of particles with improved complexity in terms of structure, composition, morphology, and functionality. Related examples can be classified into three categories. First, well-defined fluoropolymers synthesized via RDRPs have been utilized as precursors to form FPNPs through self-folding and solution self-assembly. Second, thermally and photoinitiated RDRPs have been explored to realize in situ preparations of FPNPs with varied morphologies via polymerization-induced self-assembly and cross-linking copolymerization. Third, grafting from inorganic nanoparticles has been investigated based on RDRPs. Importantly, those advancements have promoted studies toward promising applications, including magnetic resonance imaging, biomedical delivery, energy storage, adsorption of perfluorinated alkyl substances, photosensitizers, and so on. This Review should present useful knowledge to researchers in polymer science and nanomaterials and inspire innovative ideas for the synthesis and applications of FPNPs.
Collapse
Affiliation(s)
- Zexi Zhang
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Kaixuan Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Bruno Ameduri
- Institute Charles Gerhardt of Montpellier (ICGM), CNRS, University of Montpellier, ENSCM, Montpellier 34296, France
| | - Mao Chen
- Department of Macromolecular Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Wu Z, Boyer C. Near-Infrared Light-Induced Reversible Deactivation Radical Polymerization: Expanding Frontiers in Photopolymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304942. [PMID: 37750445 PMCID: PMC10667859 DOI: 10.1002/advs.202304942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/08/2023] [Indexed: 09/27/2023]
Abstract
Photoinduced reversible deactivation radical polymerization (photo-RDRP) or photoinduced controlled/living radical polymerization has emerged as a versatile and powerful technique for preparing functional and advanced polymer materials under mild conditions by harnessing light energy. While UV and visible light (λ = 400-700 nm) are extensively employed in photo-RDRP, the utilization of near-infrared (NIR) wavelengths (λ = 700-2500 nm) beyond the visible region remains relatively unexplored. NIR light possesses unique properties, including enhanced light penetration, reduced light scattering, and low biomolecule absorption, thereby providing opportunities for applying photo-RDRP in the fields of manufacturing and medicine. This comprehensive review categorizes all known NIR light-induced RDRP (NIR-RDRP) systems into four mechanism-based types: mediation by upconversion nanoparticles, mediation by photocatalysts, photothermal conversion, and two-photon absorption. The distinct photoinitiation pathways associated with each mechanism are discussed. Furthermore, this review highlights the diverse applications of NIR-RDRP reported to date, including 3D printing, polymer brush fabrication, drug delivery, nanoparticle synthesis, and hydrogel formation. By presenting these applications, the review underscores the exceptional capabilities of NIR-RDRP and offers guidance for developing high-performance and versatile photopolymerization systems. Exploiting the unique properties of NIR light unlocks new opportunities for synthesizing functional and advanced polymer materials.
Collapse
Affiliation(s)
- Zilong Wu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicineSchool of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicineSchool of Chemical EngineeringThe University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
4
|
Chen M, Hao J, Zhang W, Shi G, Zhang X, Cui Z, Fu P, Liu M, Qiao X, He Y, Pang X. Highly Efficient Near-Infrared Photoinduced Electron/Energy Transfer-Reversible Addition–Fragmentation Chain Transfer Polymerization via the Energy Transfer Upconversion Mechanism. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meng Chen
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jingyi Hao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Wenjie Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ge Shi
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaomeng Zhang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- College of Materials Engineering; Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, P. R. China
| | - Yanjie He
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, He-nan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
5
|
Wu Z, Fang W, Wu C, Corrigan N, Zhang T, Xu S, Boyer C. An aqueous photo-controlled polymerization under NIR wavelengths: synthesis of polymeric nanoparticles through thick barriers. Chem Sci 2022; 13:11519-11532. [PMID: 36320386 PMCID: PMC9555728 DOI: 10.1039/d2sc03952d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 09/19/2023] Open
Abstract
We report an aqueous and near-infrared (NIR) light mediated photoinduced reversible addition-fragmentation chain transfer (photo-RAFT) polymerization system using tetrasulfonated zinc phthalocyanine (ZnPcS4 -) as a photocatalyst. Owing to the high catalytic efficiency and excellent oxygen tolerance of this system, well-controlled polyacrylamides, polyacrylates, and polymethacrylates were synthesized at fast rates without requiring deoxygenation. Notably, NIR wavelengths possess enhanced light penetration through non-transparent barriers compared to UV and visible light, allowing high polymerization rates through barriers. Using 6.0 mm pig skin as a barrier, the polymerization rate was only reduced from 0.36 to 0.21 h-1, indicating potential for biomedical applications. Furthermore, longer wavelengths (higher λ) can be considered an ideal light source for dispersion photopolymerization, especially for the synthesis of large diameter (d) nanoparticles, as light scattering is proportional to d 6/λ 4. Therefore, this aqueous photo-RAFT system was applied to photoinduced polymerization-induced self-assembly (photo-PISA), enabling the synthesis of polymeric nanoparticles with various morphologies, including spheres, worms, and vesicles. Taking advantage of high penetration and reduced light scattering of NIR wavelengths, we demonstrate the first syntheses of polymeric nanoparticles with consistent morphologies through thick barriers.
Collapse
Affiliation(s)
- Zilong Wu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Wenbo Fang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Chenyu Wu
- Qingdao Institute for Theoretical and Computational Sciences, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 Shandong P. R. China
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Tong Zhang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Sihao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
6
|
Yang Y, Yuan Z, Yan Y, Zhang D, Luo X, Liu G. RAFT polymerization-induced self-assembly of semifluorinated liquid-crystalline block copolymers. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
It is a major challenge to prepare commercially viable scale semifluorinated liquid-crystalline block copolymers (SEFL-BCPs) using solution processing techniques. The technology of selectively solvating one block in a suitable solvent to realize self-assembly provides a promising route for the preparation of core-corona block polymer materials with extensive potential applications. However, considerable limitations have been discovered after much practice. BCP assemblies often require a separate synthesis step and are performed at high dilution. Herein, a one-pot approach combining polymerization-induced and crystallization-driven self-assembly (PISA-CDSA) was used to obtain well-defined, precise compositions of SEFL-BCPs. It is first synthesized via reversible addition-fragmentation chain transfer ethanol dispersion polymerization between 1H,1H,2H,2H-heptadecafluorodecyl acrylate and poly(N,N-dimethylacrylamide) at a concentration up to 20% v/v. Various morphologies, including 1D fiber-like micelles, 2D lamellar structures, and fusion structures, were first observed via transmission electron microscopy. This scalable PISA-CDSA strategy is greatly expanding the morphology scope and applicability of the polymer liquid crystal materials science field.
Collapse
Affiliation(s)
- Yongqi Yang
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Zhilong Yuan
- Weifang Traditional Chinese Medicine Hospital , Weifang 261041 , China
| | - Youjun Yan
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Daixin Zhang
- Shandong Engineering Laboratory for Clean Utilization of Chemical Resources, Weifang University of Science and Technology , Weifang 262700 , China
| | - Xin Luo
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University , Dezhou 253023 , China
| | - Guangyao Liu
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai An , Shandong 271016 , China
| |
Collapse
|