1
|
Yu M, Tang Y, Lu L, Kong W, Ye J. CysB Is a Key Regulator of the Antifungal Activity of Burkholderia pyrrocinia JK-SH007. Int J Mol Sci 2023; 24:ijms24098067. [PMID: 37175772 PMCID: PMC10179380 DOI: 10.3390/ijms24098067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Burkholderia pyrrocinia JK-SH007 can effectively control poplar canker caused by pathogenic fungi. Its antifungal mechanism remains to be explored. Here, we characterized the functional role of CysB in B. pyrrocinia JK-SH007. This protein was shown to be responsible for the synthesis of cysteine and the siderophore ornibactin, as well as the antifungal activity of B. pyrrocinia JK-SH007. We found that deletion of the cysB gene reduced the antifungal activity and production of the siderophore ornibactin in B. pyrrocinia JK-SH007. However, supplementation with cysteine largely restored these two abilities in the mutant. Further global transcriptome analysis demonstrated that the amino acid metabolic pathway was significantly affected and that some sRNAs were significantly upregulated and targeted the iron-sulfur metabolic pathway by TargetRNA2 prediction. Therefore, we suggest that, in B. pyrrocinia JK-SH007, CysB can regulate the expression of genes related to Fe-S clusters in the iron-sulfur metabolic pathway to affect the antifungal activity of B. pyrrocinia JK-SH007. These findings provide new insights into the various biological functions regulated by CysB in B. pyrrocinia JK-SH007 and the relationship between iron-sulfur metabolic pathways and fungal inhibitory substances. Additionally, they lay the foundation for further investigation of the main antagonistic substances of B. pyrrocinia JK-SH007.
Collapse
Affiliation(s)
- Meng Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuwei Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Lanxiang Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Weiliang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Kalimuthu P, Harmer JR, Baldauf M, Hassan AH, Kruse T, Bernhardt PV. Catalytic electrochemistry of the bacterial Molybdoenzyme YcbX. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148579. [PMID: 35640667 DOI: 10.1016/j.bbabio.2022.148579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Molybdenum-dependent enzymes that can reduce N-hydroxylated substrates (e.g. N-hydroxyl-purines, amidoximes) are found in bacteria, plants and vertebrates. They are involved in the conversion of a wide range of N-hydroxylated organic compounds into their corresponding amines, and utilize various redox proteins (cytochrome b5, cyt b5 reductase, flavin reductase) to deliver reducing equivalents to the catalytic centre. Here we present catalytic electrochemistry of the bacterial enzyme YcbX from Escherichia coli utilizing the synthetic electron transfer mediator methyl viologen (MV2+). The electrochemically reduced form (MV+.) acts as an effective electron donor for YcbX. To immobilize YcbX on a glassy carbon electrode, a facile protein crosslinking approach was used with the crosslinker glutaraldehyde (GTA). The YcbX-modified electrode showed a catalytic response for the reduction of a broad range of N-hydroxylated substrates. The catalytic activity of YcbX was examined at different pH values exhibiting an optimum at pH 7.5 and a bell-shaped pH profile with deactivation through deprotonation (pKa1 9.1) or protonation (pKa2 6.1). Electrochemical simulation was employed to obtain new biochemical data for YcbX, in its reaction with methyl viologen and the organic substrates 6-N-hydroxylaminopurine (6-HAP) and benzamidoxime (BA).
Collapse
Affiliation(s)
- Palraj Kalimuthu
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia
| | - Jeffrey R Harmer
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia
| | - Milena Baldauf
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ahmed H Hassan
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- Department of Plant Biology, Technische Universitaet, Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Paul V Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
3
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
4
|
Aunins TR, Eller KA, Courtney CM, Levy M, Goodman SM, Nagpal P, Chatterjee A. Isolating the Escherichia coli Transcriptomic Response to Superoxide Generation from Cadmium Chalcogenide Quantum Dots. ACS Biomater Sci Eng 2019; 5:4206-4218. [PMID: 33417778 DOI: 10.1021/acsbiomaterials.9b01087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanomaterials have been extensively used in the biomedical field and have recently garnered attention as potential antimicrobial agents. Cadmium telluride quantum dots (QDs) with a bandgap of 2.4 eV (CdTe-2.4) were previously shown to inhibit multidrug-resistant clinical isolates of bacterial pathogens via light-activated superoxide generation. Here we investigate the transcriptomic response of Escherichia coli to phototherapeutic CdTe-2.4 QDs both with and without illumination, as well as in comparison with the non-superoxide-generating cadmium selenide QDs (CdSe-2.4) as a negative control. Our analysis sought to separate the transcriptomic response of E. coli to the generation of superoxide by the CdTe-2.4 QDs from the presence of cadmium chalcogenide nanoparticles alone. We used comparisons between illuminated CdTe-2.4 conditions and all others to establish the superoxide generation response and used comparisons between all QD conditions and the no treatment condition to establish the cadmium chalcogenide QD response. In our analysis of the gene expression experiments, we found eight genes to be consistently differentially expressed as a response to superoxide generation, and these genes demonstrate a consistent association with the DNA damage response and deactivation of iron-sulfur clusters. Each of these responses is characteristic of a bacterial superoxide response. We found 18 genes associated with the presence of cadmium chalcogenide QDs but not the generation of superoxide by CdTe-2.4, including several that implicated metabolism of amino acids in the E. coli response. To explore each of these gene sets further, we performed both gene knockout and amino acid supplementation experiments. We identified the importance of leucyl-tRNA downregulation as a cadmium chalcogenide QD response and reinforced the relationship between CdTe-2.4 stress and iron-sulfur clusters through examination of the gene tusA. This study demonstrates the transcriptomic response of E. coli to CdTe-2.4 and CdSe-2.4 QDs and parses the different effects of superoxide versus material effects on the bacteria. Our findings may provide useful information toward the development of QD-based antibacterial therapy in the future.
Collapse
|
5
|
Tanabe TS, Leimkühler S, Dahl C. The functional diversity of the prokaryotic sulfur carrier protein TusA. Adv Microb Physiol 2019; 75:233-277. [PMID: 31655739 DOI: 10.1016/bs.ampbs.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Persulfide groups participate in a wide array of biochemical pathways and are chemically very versatile. The TusA protein has been identified as a central element supplying and transferring sulfur as persulfide to a number of important biosynthetic pathways, like molybdenum cofactor biosynthesis or thiomodifications in nucleosides of tRNAs. In recent years, it has furthermore become obvious that this protein is indispensable for the oxidation of sulfur compounds in the cytoplasm. Phylogenetic analyses revealed that different TusA protein variants exists in certain organisms, that have evolved to pursue specific roles in cellular pathways. The specific TusA-like proteins thereby cannot replace each other in their specific roles and are rather specific to one sulfur transfer pathway or shared between two pathways. While certain bacteria like Escherichia coli contain several copies of TusA-like proteins, in other bacteria like Allochromatium vinosum a single copy of TusA is present with an essential role for this organism. Here, we give an overview on the multiple roles of the various TusA-like proteins in sulfur transfer pathways in different organisms to shed light on the remaining mysteries of this versatile protein.
Collapse
|
6
|
D'Amico K, Filiatrault MJ. The conserved hypothetical protein PSPTO_3957 is essential for virulence in the plant pathogen Pseudomonas syringae pv. tomato DC3000. FEMS Microbiol Lett 2018; 364:fnx004. [PMID: 28073812 DOI: 10.1093/femsle/fnx004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
The plant pathogen Pseudomonas syringae accounts for substantial crop losses and is considered an important agricultural issue. To better manage disease in the field, it is important to have an understanding of the underlying genetic mechanisms that mediate virulence. There are a substantial number of genes in sequenced bacterial genomes, including P. syringae, that encode for conserved hypothetical proteins; some of these have been functionally characterized in other Pseudomonads and have been demonstrated to play important roles in disease. PSPTO_3957 encodes a conserved hypothetical protein of unknown function. To evaluate the role of PSPTO_3957 in P. syringae pv. tomato DC3000, a PSPTO_3957 deletion mutant was constructed. Here, we show that PSPTO_3957 does not influence growth on rich media, motility or biofilm formation but is necessary for nitrate assimilation and full virulence in P. syringae. Our results have revealed an important role for PSPTO_3957 in the biology of P. syringae. Given the conservation of this protein among many bacteria, this protein might serve as an attractive target for disease management of this and other bacterial plant pathogens.
Collapse
Affiliation(s)
- Katherine D'Amico
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Ithaca, NY 14853, USA
| | - Melanie J Filiatrault
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, Agricultural Research Service, US Department of Agriculture, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Wang CH, Zhang C, Xing XH. Metabolic engineering of Escherichia coli cell factory for highly active xanthine dehydrogenase production. BIORESOURCE TECHNOLOGY 2017; 245:1782-1789. [PMID: 28610971 DOI: 10.1016/j.biortech.2017.05.144] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/21/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
The aim of this work was to demonstrate the first proof-of-concept for the use of ab initio-aided assembly strategy intensifying in vivo biosynthesis process to construct Escherichia coli cell factory overproducing highly active xanthine dehydrogenase (XDH). Three global regulator (IscS, TusA and NarJ) and four chaperone proteins (DsbA, DsbB, NifS and XdhC) were overexpressed to aid the formation and ordered assembly of three redox center cofactors of Rhodobacter capsulatus XDH in E. coli. The NifS, IscS and DsbB enhanced the specific activity of RcXDH by 30%, 94% and 49%, respectively. The combinatorial expression of NarJ and IscS synergistically increased the specific activity by 129% and enhanced the total enzyme activity by a remarkable 3.9-fold. The crude enzyme showed nearly the same coupling efficiency of electron transfer and product formation as previously purified XDHs, indicating an integrity and efficient assembly of highly active XDH.
Collapse
Affiliation(s)
- Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, People's Republic of China; Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Chong Zhang
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xin-Hui Xing
- Key Laboratory for Industrial Biocatalysis, Ministry of Education of China, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|
8
|
Zheng C, Black KA, Dos Santos PC. Diverse Mechanisms of Sulfur Decoration in Bacterial tRNA and Their Cellular Functions. Biomolecules 2017; 7:biom7010033. [PMID: 28327539 PMCID: PMC5372745 DOI: 10.3390/biom7010033] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/10/2017] [Accepted: 03/16/2017] [Indexed: 01/01/2023] Open
Abstract
Sulfur-containing transfer ribonucleic acids (tRNAs) are ubiquitous biomolecules found in all organisms that possess a variety of functions. For decades, their roles in processes such as translation, structural stability, and cellular protection have been elucidated and appreciated. These thionucleosides are found in all types of bacteria; however, their biosynthetic pathways are distinct among different groups of bacteria. Considering that many of the thio-tRNA biosynthetic enzymes are absent in Gram-positive bacteria, recent studies have addressed how sulfur trafficking is regulated in these prokaryotic species. Interestingly, a novel proposal has been given for interplay among thionucleosides and the biosynthesis of other thiocofactors, through participation of shared-enzyme intermediates, the functions of which are impacted by the availability of substrate as well as metabolic demand of thiocofactors. This review describes the occurrence of thio-modifications in bacterial tRNA and current methods for detection of these modifications that have enabled studies on the biosynthesis and functions of S-containing tRNA across bacteria. It provides insight into potential modes of regulation and potential evolutionary events responsible for divergence in sulfur metabolism among prokaryotes.
Collapse
Affiliation(s)
- Chenkang Zheng
- Department of Chemistry, Wake Forest University, Winston-Salem, NC 27101, USA.
| | | | | |
Collapse
|
9
|
Shigi N. Biosynthesis and functions of sulfur modifications in tRNA. Front Genet 2014; 5:67. [PMID: 24765101 PMCID: PMC3980101 DOI: 10.3389/fgene.2014.00067] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/17/2014] [Indexed: 12/19/2022] Open
Abstract
Sulfur is an essential element for a variety of cellular constituents in all living organisms. In tRNA molecules, there are many sulfur-containing nucleosides, such as the derivatives of 2-thiouridine (s2U), 4-thiouridine (s4U), 2-thiocytidine (s2C), and 2-methylthioadenosine (ms2A). Earlier studies established the functions of these modifications for accurate and efficient translation, including proper recognition of the codons in mRNA or stabilization of tRNA structure. In many cases, the biosynthesis of these sulfur modifications starts with cysteine desulfurases, which catalyze the generation of persulfide (an activated form of sulfur) from cysteine. Many sulfur-carrier proteins are responsible for delivering this activated sulfur to each biosynthesis pathway. Finally, specific “modification enzymes” activate target tRNAs and then incorporate sulfur atoms. Intriguingly, the biosynthesis of 2-thiouridine in all domains of life is functionally and evolutionarily related to the ubiquitin-like post-translational modification system of cellular proteins in eukaryotes. This review summarizes the recent characterization of the biosynthesis of sulfur modifications in tRNA and the novel roles of this modification in cellular functions in various model organisms, with a special emphasis on 2-thiouridine derivatives. Each biosynthesis pathway of sulfur-containing molecules is mutually modulated via sulfur trafficking, and 2-thiouridine and codon usage bias have been proposed to control the translation of specific genes.
Collapse
Affiliation(s)
- Naoki Shigi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology Tokyo, Japan
| |
Collapse
|