1
|
Lew SQ, Chong SY, Lau GW. Modulation of pulmonary immune functions by the Pseudomonas aeruginosa secondary metabolite pyocyanin. Front Immunol 2025; 16:1550724. [PMID: 40196115 PMCID: PMC11973339 DOI: 10.3389/fimmu.2025.1550724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Pseudomonas aeruginosa is a prevalent opportunistic Gram-negative bacterial pathogen. One of its key virulence factors is pyocyanin, a redox-active phenazine secondary metabolite that plays a crucial role in the establishment and persistence of chronic infections. This review provides a synopsis of the mechanisms through which pyocyanin exacerbates pulmonary infections. Pyocyanin induces oxidative stress by generating reactive oxygen and nitrogen species which disrupt essential defense mechanisms in respiratory epithelium. Pyocyanin increases airway barrier permeability and facilitates bacterial invasion. Pyocyanin also impairs mucociliary clearance by damaging ciliary function, resulting in mucus accumulation and airway obstruction. Furthermore, it modulates immune responses by promoting the production of pro-inflammatory cytokines, accelerating neutrophil apoptosis, and inducing excessive neutrophil extracellular trap formation, which exacerbates lung tissue damage. Additionally, pyocyanin disrupts macrophage phagocytic function, hindering the clearance of apoptotic cells and perpetuating inflammation. It also triggers mucus hypersecretion by inactivating the transcription factor FOXA2 and enhancing the IL-4/IL-13-STAT6 and EGFR-AKT/ERK1/2 signaling pathways, leading to goblet cell metaplasia and increased mucin production. Insights into the role of pyocyanin in P. aeruginosa infections may reveal potential therapeutic strategies to alleviate the severity of infections in chronic respiratory diseases including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
| | | | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
2
|
Święciło A, Januś E, Krzepiłko A, Skowrońska M. The effect of DMSO on Saccharomyces cerevisiae yeast with different energy metabolism and antioxidant status. Sci Rep 2024; 14:21974. [PMID: 39304697 DOI: 10.1038/s41598-024-72400-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
We studied the effect of dimethyl sulfoxide (DMSO) on the biochemical and physiological parameters of S. cerevisiae yeast cells with varied energy metabolism and antioxidant status. The wild-type cells of varied genetic backgrounds and their isogenic mutants with impaired antioxidant defences (Δsod mutants) or response to environmental stress (ESR) (Δmsn2, Δmsn4 and double Δmsn2msn4 mutants) were used. Short-term exposure to DMSO even at a wide range of concentrations (2-20%) had little effect on the metabolic activity of the yeast cells and the stability of their cell membranes, but induced free radicals production and clearly altered their proliferative activity. Cells of the Δsod1 mutant showed greater sensitivity to DMSO in these conditions. DMSO at concentrations from 4 to 10-14% (depending on the strain and genetic background) activated the ESR programme. The effects of long-term exposure to DMSO were mainly depended on the type of energy metabolism and antioxidant system efficiency. Yeast cells with reduced antioxidant system efficiency and/or aerobic respiration were more susceptible to the toxic effects of DMSO than cells with a wild-type phenotype and respiro-fermentative or fully fermentative metabolism. These studies suggest a key role of stress response programs in both the processes of cell adaptation to small doses of this xenobiotic and the processes related to its toxicity resulting from large doses or chronic exposure to DMSO.
Collapse
Affiliation(s)
- Agata Święciło
- Department of Environmental Microbiology, University of Life Sciences in Lublin, Leszczyńskiego 7, 20-069, Lublin, Poland.
| | - Ewa Januś
- Department of Cattle Breeding and Genetic Resources Conservation, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland
| | - Anna Krzepiłko
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna 8, 20-704, Lublin, Poland
| | - Monika Skowrońska
- Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| |
Collapse
|
3
|
Secondary Metabolites Produced during Aspergillus fumigatus and Pseudomonas aeruginosa Biofilm Formation. mBio 2022; 13:e0185022. [PMID: 35856657 PMCID: PMC9426470 DOI: 10.1128/mbio.01850-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In cystic fibrosis (CF), mucus plaques are formed in the patient's lungs, creating a hypoxic condition and a propitious environment for colonization and persistence of many microorganisms. There is clinical evidence showing that Aspergillus fumigatus can cocolonize CF patients with Pseudomonas aeruginosa, which has been associated with lung function decline. P. aeruginosa produces several compounds with inhibitory and antibiofilm effects against A. fumigatus in vitro; however, little is known about the fungal compounds produced in counterattack. Here, we annotated fungal and bacterial secondary metabolites (SM) produced in mixed biofilms under normoxia and hypoxia conditions. We detected nine SM produced by P. aeruginosa. Phenazines and different analogs of pyoverdin were the main compounds produced by P. aeruginosa, and their secretion levels were increased by the fungal presence. The roles of the two operons responsible for phenazine production (phzA1 and phzA2) were also investigated, and mutants lacking one of those operons were able to produce partial sets of phenazines. We detected a total of 20 SM secreted by A. fumigatus either in monoculture or in coculture with P. aeruginosa. All these compounds were secreted during biofilm formation in either normoxia or hypoxia. However, only eight compounds (demethoxyfumitremorgin C, fumitremorgin, ferrichrome, ferricrocin, triacetylfusigen, gliotoxin, gliotoxin E, and pyripyropene A) were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa under normoxia and hypoxia conditions. Overall, we showed how diverse SM secretion is during A. fumigatus and P. aeruginosa mixed culture and how this can affect biofilm formation in normoxia and hypoxia. IMPORTANCE The interaction between Pseudomonas aeruginosa and Aspergillus fumigatus has been well characterized in vitro. In this scenario, the bacterium exerts a strong inhibitory effect against the fungus. However, little is known about the metabolites produced by the fungus to counterattack the bacteria. Our work aimed to annotate secondary metabolites (SM) secreted during coculture between P. aeruginosa and A. fumigatus during biofilm formation in both normoxia and hypoxia. The bacterium produces several different types of phenazines and pyoverdins in response to presence of the fungus. In contrast, we were able to annotate 29 metabolites produced during A. fumigatus biofilm formation, but only 8 compounds were detected during biofilm formation by the coculture of A. fumigatus and P. aeruginosa upon either normoxia or hypoxia. In conclusion, we detected many SM secreted during A. fumigatus and P. aeruginosa biofilm formation. This analysis provides several opportunities to understand the interactions between these two species.
Collapse
|
4
|
Yan K, Yin H, Wang J, Cai Y. Subtle relationships between Pseudomonas aeruginosa and fungi in patients with cystic fibrosis. Acta Clin Belg 2022; 77:425-435. [PMID: 33242290 DOI: 10.1080/17843286.2020.1852850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cystic fibrosis (CF) is one of the most common hereditary lung diseases. Pseudomonas aeruginosa (PA), Aspergillus fumigatus (AF) and Candida albicans (CA) are the principal bacterial and fungal pathogens in the airways of CF patients. The interactions of coexisting bacterial-fungal pathogens are of great interest. In the present work, we reviewed the literature of available in vitro and in vivo studies, whereas most of the reports have shown that PA inhibits the growth of fungi through restriction of iron uptake and secretion of toxic substances. Fungi may also affect the growth or virulence of PA through their secreted molecules. To clarify the bacterial-fungal interaction, more in-depth and detailed studies are still needed, which will provide a better understanding of species, microbial population dynamics, and related mechanisms in CF patients.
Collapse
Affiliation(s)
| | | | | | - Yun Cai
- Department of Pharmacy, MedicalSupplies Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Keerthiraju E, Du C, Tucker G, Greetham D. A Role for COX20 in Tolerance to Oxidative Stress and Programmed Cell Death in Saccharomyces cerevisiae. Microorganisms 2019; 7:microorganisms7110575. [PMID: 31752220 PMCID: PMC6920987 DOI: 10.3390/microorganisms7110575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 11/28/2022] Open
Abstract
Industrial production of bioethanol from lignocellulosic materials (LCM′s) is reliant on a microorganism being tolerant to the stresses inherent to fermentation. Previous work has highlighted the importance of a cytochrome oxidase chaperone gene (COX20) in improving yeast tolerance to acetic acid, a common inhibitory compound produced during pre-treatment of LCM’s. The presence of acetic acid has been shown to induce oxidative stress and programmed cell death, so the role of COX20 in oxidative stress was determined. Analysis using flow cytometry revealed that COX20 expression was associated with reduced levels of reactive oxygen species (ROS) in hydrogen peroxide and metal-induced stress, and there was a reduction in apoptotic and necrotic cells when compared with a strain without COX20. Results on the functionality of COX20 have revealed that overexpression of COX20 induced respiratory growth in Δimp1 and Δcox18, two genes whose presence is essential for yeast respiratory growth. COX20 also has a role in protecting the yeast cell against programmed cell death.
Collapse
Affiliation(s)
- Ethiraju Keerthiraju
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
| | - Chenyu Du
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
| | - Gregory Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
| | - Darren Greetham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK; (E.K.); (G.T.)
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK;
- Correspondence: ; Tel.: +44-1484-472378
| |
Collapse
|
6
|
Meirelles LA, Newman DK. Both toxic and beneficial effects of pyocyanin contribute to the lifecycle of Pseudomonas aeruginosa. Mol Microbiol 2018; 110:995-1010. [PMID: 30230061 DOI: 10.1111/mmi.14132] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Pseudomonas aeruginosa, an opportunistic pathogen, produces redox-active pigments called phenazines. Pyocyanin (PYO, the blue phenazine) plays an important role during biofilm development. Paradoxically, PYO auto-poisoning can stimulate cell death and release of extracellular DNA (eDNA), yet PYO can also promote survival within biofilms when cells are oxidant-limited. Here, we identify the environmental and physiological conditions in planktonic culture that promote PYO-mediated cell death. We demonstrate that PYO auto-poisoning is enhanced when cells are starved for carbon. In the presence of PYO, cells activate a set of genes involved in energy-dependent defenses, including: (i) the oxidative stress response, (ii) RND efflux systems and (iii) iron-sulfur cluster biogenesis factors. P. aeruginosa can avoid PYO poisoning when reduced carbon is available, but blockage of adenosine triphosphate (ATP) synthesis either through carbon limitation or direct inhibition of the F0 F1 -ATP synthase triggers death and eDNA release. Finally, even though PYO is toxic to the majority of the population when cells are nutrient limited, a subset of cells is intrinsically PYO resistant. The effect of PYO on the producer population thus appears to be dynamic, playing dramatically different yet predictable roles throughout distinct stages of growth, helping rationalize its multifaceted contributions to biofilm development.
Collapse
Affiliation(s)
- Lucas A Meirelles
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Dianne K Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.,Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
7
|
Papsdorf K, Kaiser CJO, Drazic A, Grötzinger SW, Haeßner C, Eisenreich W, Richter K. Polyglutamine toxicity in yeast induces metabolic alterations and mitochondrial defects. BMC Genomics 2015; 16:662. [PMID: 26335097 PMCID: PMC4558792 DOI: 10.1186/s12864-015-1831-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/07/2015] [Indexed: 11/14/2022] Open
Abstract
Background Protein aggregation and its pathological effects are the major cause of several neurodegenerative diseases. In Huntington’s disease an elongated stretch of polyglutamines within the protein Huntingtin leads to increased aggregation propensity. This induces cellular defects, culminating in neuronal loss, but the connection between aggregation and toxicity remains to be established. Results To uncover cellular pathways relevant for intoxication we used genome-wide analyses in a yeast model system and identify fourteen genes that, if deleted, result in higher polyglutamine toxicity. Several of these genes, like UGO1, ATP15 and NFU1 encode mitochondrial proteins, implying that a challenged mitochondrial system may become dysfunctional during polyglutamine intoxication. We further employed microarrays to decipher the transcriptional response upon polyglutamine intoxication, which exposes an upregulation of genes involved in sulfur and iron metabolism and mitochondrial Fe-S cluster formation. Indeed, we find that in vivo iron concentrations are misbalanced and observe a reduction in the activity of the prominent Fe-S cluster containing protein aconitase. Like in other yeast strains with impaired mitochondria, non-fermentative growth is impossible after intoxication with the polyglutamine protein. NMR-based metabolic analyses reveal that mitochondrial metabolism is reduced, leading to accumulation of metabolic intermediates in polyglutamine-intoxicated cells. Conclusion These data show that damages to the mitochondrial system occur in polyglutamine intoxicated yeast cells and suggest an intricate connection between polyglutamine-induced toxicity, mitochondrial functionality and iron homeostasis in this model system. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1831-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katharina Papsdorf
- Department Chemie, Lehrstuhl für Biotechnologie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Christoph J O Kaiser
- Department Chemie, Fachgebiet Elektronenmikroskopie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Adrian Drazic
- Department Chemie, Lehrstuhl für Biotechnologie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Stefan W Grötzinger
- Biological and Organometallic Laboratories, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| | - Carmen Haeßner
- Department Chemie, Fachgebiet Anorganische Chemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Wolfgang Eisenreich
- Department Chemie, Lehrstuhl für Biochemie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| | - Klaus Richter
- Department Chemie, Lehrstuhl für Biotechnologie, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany.
| |
Collapse
|
8
|
Liochev SI. Reflections on the Theories of Aging, of Oxidative Stress, and of Science in General. Is It Time to Abandon the Free Radical (Oxidative Stress) Theory of Aging? Antioxid Redox Signal 2015; 23:187-207. [PMID: 24949668 DOI: 10.1089/ars.2014.5928] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SIGNIFICANCE Aging and oxidative stress are complex phenomena, and their understanding is of enormous theoretical and practical significance. RECENT ADVANCES Numerous hypotheses and theories that attempt to explain these phenomena have been developed. These hypotheses and theories compete with each other, with each claiming to be the correct one, while significantly contradicting each other. CRITICAL ISSUES It is important to develop a maximally correct theory that may then trigger significant practical breakthroughs. FUTURE DIRECTIONS None of these theories is entirely correct or close enough to the truth. However, most of them contain many correct elements (CE). Finding these CE is possible by analysis of these theories. Once the CE are found, they can be merged by synthesis in a better new theory. An analysis of some of the theories of aging followed by synthesis is attempted.
Collapse
|
9
|
Managò A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, Edwards MJ, Grassmé H, Szabò I, Gulbins E. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid Redox Signal 2015; 22:1097-110. [PMID: 25686490 PMCID: PMC4403017 DOI: 10.1089/ars.2014.5979] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. RESULTS Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. INNOVATION These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. CONCLUSION These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions.
Collapse
|
10
|
Briard B, Bomme P, Lechner BE, Mislin GLA, Lair V, Prévost MC, Latgé JP, Haas H, Beauvais A. Pseudomonas aeruginosa manipulates redox and iron homeostasis of its microbiota partner Aspergillus fumigatus via phenazines. Sci Rep 2015; 5:8220. [PMID: 25665925 PMCID: PMC5389140 DOI: 10.1038/srep08220] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/05/2015] [Indexed: 11/18/2022] Open
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus is increasingly found as a coinfecting agent along with Pseudomonas aeruginosa in cystic fibrosis patients. Amongst the numerous molecules secreted by P. aeruginosa during its growth, phenazines constitute a major class. P. aeruginosa usually secreted four phenazines, pyocyanin (PYO), phenazine-1-carboxamide (PCN), 1-hydroxyphenazine (1-HP) and phenazine-1-carboxylic acid (PCA). These phenazines inhibited the growth of A. fumigatus but the underlying mechanisms and the impact of these four phenazines on A. fumigatus biology were not known. In the present study, we analyzed the functions of the four phenazines and their mode of action on A. fumigatus. All four phenazines showed A. fumigatus growth inhibitory effects by inducing production of reactive oxygen species (ROS), specifically O2(·-), and reactive nitrogen species (RNS), ONOO(-). A. fumigatus Sod2p was the major factor involved in resistance against the ROS and RNS induced by phenazines. Sub-inhibitory concentrations of PYO, PCA and PCN promote A. fumigatus growth by an independent iron-uptake acquisition. Of the four phenazines 1-HP had a redox-independent function; being able to chelate metal ions 1-HP induced A. fumigatus iron starvation. Our data show the fine-interactions existing between A. fumigatus and P. aeruginosa, which can lead to stimulatory or antagonistic effects.
Collapse
Affiliation(s)
- Benoit Briard
- Unité des Aspergillus Institut Pasteur, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Perrine Bomme
- Plateforme de microscopie ultrastructurale, Institut Pasteur, Paris, France
| | - Beatrix E. Lechner
- Biocenter-Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Gaëtan L. A. Mislin
- UMR 7242 Biotechnologie et Signalisation Cellulaire, Université de Strasbourg-CNRS, France
| | - Virginie Lair
- PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005, Paris, France
| | | | | | - Hubertus Haas
- Biocenter-Division of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Anne Beauvais
- Unité des Aspergillus Institut Pasteur, Paris, France
| |
Collapse
|
11
|
Ray A, Rentas C, Caldwell GA, Caldwell KA. Phenazine derivatives cause proteotoxicity and stress in C. elegans. Neurosci Lett 2014; 584:23-7. [PMID: 25304539 DOI: 10.1016/j.neulet.2014.09.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 08/06/2014] [Accepted: 09/30/2014] [Indexed: 12/21/2022]
Abstract
It is widely recognized that bacterial metabolites have toxic effects in animal systems. Phenazines are a common bacterial metabolite within the redox-active exotoxin class. These compounds have been shown to be toxic to the soil invertebrate Caenorhabditis elegans with the capability of causing oxidative stress and lethality. Here we report that chronic, low-level exposure to three separate phenazine molecules (phenazine-1-carboxylic acid, pyocyanin and 1-hydroxyphenazine) upregulated ER stress response and enhanced expression of a superoxide dismutase reporter in vivo. Exposure to these molecules also increased protein misfolding of polyglutamine and α-synuclein in the bodywall muscle cells of C. elegans. Exposure of worms to these phenazines caused additional sensitivity in dopamine neurons expressing wild-type α-synuclein, indicating a possible defect in protein homeostasis. The addition of an anti-oxidant failed to rescue the neurotoxic and protein aggregation phenotypes caused by these compounds. Thus, increased production of superoxide radicals that occurs in whole animals in response to these phenazines appears independent from the toxicity phenotype observed. Collectively, these data provide cause for further consideration of the neurodegenerative impact of phenazines.
Collapse
Affiliation(s)
- Arpita Ray
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, United States
| | - Courtney Rentas
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, United States
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, United States
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487-0344, United States.
| |
Collapse
|