1
|
Sultana T, Siddique N, Rahaman M, Rahman MM, Rahman ANMA, Talukder AK, Das ZC, Hoque MN. Draft genome sequencing of multidrug-resistant Pseudomonas asiatica strains isolated from dairy cows with clinical mastitis and their farm environment. Microbiol Resour Announc 2024; 13:e0090724. [PMID: 39404440 PMCID: PMC11556121 DOI: 10.1128/mra.00907-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/30/2024] [Indexed: 11/14/2024] Open
Abstract
We report, for the first time, the draft genomes of four multidrug-resistant Pseudomonas asiatica strains isolated from milk (2M1), feces (2F1 and 2F2), and farm soil (2S1) samples of dairy cows with clinical mastitis. The assembled genomes of these strains were 5.7 Mbp, 62.8% G + C content, and 50× genome coverage.
Collapse
Affiliation(s)
- Taniya Sultana
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Naim Siddique
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Monira Rahaman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Md. Morshedur Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - ANM Aminoor Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Anup Kumar Talukder
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| |
Collapse
|
2
|
Mallick TT, Siddique N, Rahman MM, Shuvo KH, Das ZC, Hoque MN. Draft genome sequencing of multidrug-resistant Pseudomonas putida strains, isolated from dairy cows with clinical mastitis and their farm environment. Microbiol Resour Announc 2024; 13:e0088624. [PMID: 39404441 PMCID: PMC11556003 DOI: 10.1128/mra.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/30/2024] [Indexed: 11/14/2024] Open
Abstract
We sequenced the genomes of three multidrug-resistant Pseudomonas putida strains namely 11CM-M1, 11CM-F1, and 11CM-S1, isolated from milk, feces, and farm soil samples collected from dairy cows with clinical mastitis. The assembled draft genomes of these P. putida strains were approximately 5.6 Mbp, with a GC content of 62.4%.
Collapse
Affiliation(s)
- Tima Tisa Mallick
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Naim Siddique
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Md. Morshedur Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Khaled Hassan Shuvo
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| |
Collapse
|
3
|
Peoples LM, Isanta-Navarro J, Bras B, Hand BK, Rosenzweig F, Elser JJ, Church MJ. Physiology, fast and slow: bacterial response to variable resource stoichiometry and dilution rate. mSystems 2024; 9:e0077024. [PMID: 38980051 PMCID: PMC11334502 DOI: 10.1128/msystems.00770-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024] Open
Abstract
Microorganisms grow despite imbalances in the availability of nutrients and energy. The biochemical and elemental adjustments that bacteria employ to sustain growth when these resources are suboptimal are not well understood. We assessed how Pseudomonas putida KT2440 adjusts its physiology at differing dilution rates (to approximate growth rates) in response to carbon (C), nitrogen (N), and phosphorus (P) stress using chemostats. Cellular elemental and biomolecular pools were variable in response to different limiting resources at a slow dilution rate of 0.12 h-1, but these pools were more similar across treatments at a faster rate of 0.48 h-1. At slow dilution rates, limitation by P and C appeared to alter cell growth efficiencies as reflected by changes in cellular C quotas and rates of oxygen consumption, both of which were highest under P- and lowest under C- stress. Underlying these phenotypic changes was differential gene expression of terminal oxidases used for ATP generation that allows for increased energy generation efficiency. In all treatments under fast dilution rates, KT2440 formed aggregates and biofilms, a physiological response that hindered an accurate assessment of growth rate, but which could serve as a mechanism that allows cells to remain in conditions where growth is favorable. Our findings highlight the ways that microorganisms dynamically adjust their physiology under different resource supply conditions, with distinct mechanisms depending on the limiting resource at slow growth and convergence toward an aggregative phenotype with similar compositions under conditions that attempt to force fast growth. IMPORTANCE All organisms experience suboptimal growth conditions due to low nutrient and energy availability. Their ability to survive and reproduce under such conditions determines their evolutionary fitness. By imposing suboptimal resource ratios under different dilution rates on the model organism Pseudomonas putida KT2440, we show that this bacterium dynamically adjusts its elemental composition, morphology, pools of biomolecules, and levels of gene expression. By examining the ability of bacteria to respond to C:N:P imbalance, we can begin to understand how stoichiometric flexibility manifests at the cellular level and impacts the flow of energy and elements through ecosystems.
Collapse
Affiliation(s)
- Logan M. Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Brian K. Hand
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - James J. Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J. Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
4
|
Hueso-Gil A, Calles B, de Lorenzo V. In Vivo Sampling of Intracellular Heterogeneity of Pseudomonas putida Enables Multiobjective Optimization of Genetic Devices. ACS Synth Biol 2023; 12:1667-1676. [PMID: 37196337 PMCID: PMC10278179 DOI: 10.1021/acssynbio.3c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 05/19/2023]
Abstract
The inner physicochemical heterogeneity of bacterial cells generates three-dimensional (3D)-dependent variations of resources for effective expression of given chromosomally located genes. This fact has been exploited for adjusting the most favorable parameters for implanting a complex device for optogenetic control of biofilm formation in the soil bacterium Pseudomonas putida. To this end, a DNA segment encoding a superactive variant of the Caulobacter crescendus diguanylate cyclase PleD expressed under the control of the cyanobacterial light-responsive CcaSR system was placed in a mini-Tn5 transposon vector and randomly inserted through the chromosome of wild-type and biofilm-deficient variants of P. putida lacking the wsp gene cluster. This operation delivered a collection of clones covering a whole range of biofilm-building capacities and dynamic ranges in response to green light. Since the phenotypic output of the device depends on a large number of parameters (multiple promoters, RNA stability, translational efficacy, metabolic precursors, protein folding, etc.), we argue that random chromosomal insertions enable sampling the intracellular milieu for an optimal set of resources that deliver a preset phenotypic specification. Results thus support the notion that the context dependency can be exploited as a tool for multiobjective optimization, rather than a foe to be suppressed in Synthetic Biology constructs.
Collapse
Affiliation(s)
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus
de Cantoblanco, Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus
de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
5
|
Agles AA, Bourg IC. Structure-Thermodynamic Relationship of a Polysaccharide Gel (Alginate) as a Function of Water Content and Counterion Type (Na vs Ca). J Phys Chem B 2023; 127:1828-1841. [PMID: 36791328 PMCID: PMC10159261 DOI: 10.1021/acs.jpcb.2c07129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/31/2023] [Indexed: 02/17/2023]
Abstract
Biofilms are the predominant mode of microbial life on Earth, and so a deep understanding of microbial communities─and their impacts on environmental processes─requires a firm understanding of biofilm properties. Because of the importance of biofilms to their microbial inhabitants, microbes have evolved different ways of engineering and reconfiguring the matrix of extracellular polymeric substances (EPS) that constitute the main non-living component of biofilms. This ability makes it difficult to distinguish between the biotic and abiotic origins of biofilm properties. An important route toward establishing this distinction has been the study of simplified models of the EPS matrix. This study builds on such efforts by using atomistic simulations to predict the nanoscale (≤10 nm scale) structure of a model EPS matrix and the sensitivity of this structure to interpolymer interactions and water content. To accomplish this, we use replica exchange molecular dynamics (REMD) simulations to generate all-atom configurations of ten 3.4 kDa alginate polymers at a range of water contents and Ca-Na ratios. Simulated systems are solvated with explicitly modeled water molecules, which allows us to capture the discrete structure of the hydrating water and to examine the thermodynamic stability of water in the gels as they are progressively dehydrated. Our primary findings are that (i) the structure of the hydrogels is highly sensitive to the identity of the charge-compensating cations, (ii) the thermodynamics of water within the gels (specific enthalpy and free energy) are, surprisingly, only weakly sensitive to cation identity, and (iii) predictions of the differential enthalpy and free energy of hydration include a short-ranged enthalpic term that promotes hydration and a longer-ranged (presumably entropic) term that promotes dehydration, where short and long ranges refer to distances shorter or longer than ∼0.6 nm between alginate strands.
Collapse
Affiliation(s)
- Avery A. Agles
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C. Bourg
- Department
of Civil and Environmental Engineering and High Meadows Environmental
Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
β-oxidation-polyhydroxyalkanoates synthesis relationship in Pseudomonas putida KT2440 revisited. Appl Microbiol Biotechnol 2023; 107:1863-1874. [PMID: 36763117 PMCID: PMC10006253 DOI: 10.1007/s00253-023-12413-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Pseudomonas putida KT2440 is a well-known model organism for the medium-chain-length (mcl) polyhydroxyalkanoate (PHA) accumulation. (R)-Specific enoyl-coenzyme A hydratase (PhaJ) was considered to be the main supplier of monomers for PHA synthesis by converting the β-oxidation intermediate, trans-2-enoyl-CoA to (R)-3-hydroxyacyl-CoA when fatty acids (FA) are used. Three PhaJ homologues, PhaJ1, PhaJ4 and MaoC, are annotated in P. putida KT2440. To investigate the relationship of fatty acids-PHA metabolism and the role of each PhaJ in PHA biosynthesis in P. putida KT2440, a series of P. putida KT2440 knockouts was obtained. PHA content and monomer composition in wild type (WT) and mutants under different growth conditions were analysed. PhaJ4 was the main monomer supplier for PHA synthesis with FA as sole carbon and energy source, with preference towards C8 and C10 substrate, whereas PhaJ1 showed preference for the C6 substrate. However, when all three PhaJ homologues were deleted, the mutant still accumulated PHA up to 10.7% of the cell dry weight (CDW). The deletion of (R)-3-hydroxydecanoyl-ACP:CoA transacylase (PhaG), which connects de novo FA and PHA synthesis pathways, while causing a further 1.8-fold decrease in PHA content, did not abolish PHA accumulation. Further proteome analysis revealed quinoprotein alcohol dehydrogenases PedE and PedH as potential monomer suppliers, but when these were deleted, the PHA level remained at 2.2-14.8% CDW depending on the fatty acid used and whether nitrogen limitation was applied. Therefore, it is likely that some other non-specific dehydrogenases supply monomers for PHA synthesis, demonstrating the redundancy of PHA metabolism. KEY POINTS: • β-oxidation intermediates are converted to PHA monomers by hydratases PhaJ1, PhaJ4 and MaoC in Pseudomonas putida KT2440. • When these are deleted, the PHA level decreases, but it is not abolished. • PHA non-specific enzyme(s) also contributes to PHA metabolism in KT2440.
Collapse
|
7
|
Rashid U, Yasmin H, Hassan MN, Naz R, Nosheen A, Sajjad M, Ilyas N, Keyani R, Jabeen Z, Mumtaz S, Alyemeni MN, Ahmad P. Drought-tolerant Bacillus megaterium isolated from semi-arid conditions induces systemic tolerance of wheat under drought conditions. PLANT CELL REPORTS 2022; 41:549-569. [PMID: 33410927 DOI: 10.1007/s00299-020-02640-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 05/02/2023]
Abstract
A detailed study of the response of wheat plants, inoculated with drought-tolerant PGPR is studied which would be beneficial to achieve genetic improvement of wheat for drought tolerance. Drought stress, a major challenge under current climatic conditions, adversely affects wheat productivity. In the current study, we observed the response of wheat plants, inoculated with drought-tolerant plant growth-promoting rhizobacteria (PGPR) Bacillus megaterium (MU2) and Bacillus licheniformis (MU8) under induced drought stress. In vitro study of 90 rhizobacteria exhibited 38 isolates showed one or more plant growth-promoting properties, such as solubilization of phosphorus, potassium, and exopolysaccharide production. Four strains revealing the best activities were tested for their drought-tolerance ability by growing them on varying water potentials (- 0.05 to - 0.73 MPa). Among them, two bacterial strains Bacillus megaterium and Bacillus licheniformis showed the best drought-tolerance potential, ACC deaminase activities, IAA production, and antagonistic activities against plant pathogens. Additionally, these strains when exposed to drought stress (- 0.73 MPa) revealed the induction of three new polypeptides (18 kDa, 35 kDa, 30 kDa) in Bacillus megaterium. We determined that 106 cells/mL of Bacillus megaterium and Bacillus licheniformis were enough to induce drought tolerance in wheat under drought stress. These drought-tolerant strains increased the germination index (11-46%), promptness index (16-50%), seedling vigor index (11-151%), fresh weight (35-192%), and dry weight (58-226%) of wheat under irrigated and drought stress. Moreover, these strains efficiently colonized the wheat roots and increased plant biomass, relative water content, photosynthetic pigments, and osmolytes. Upon exposure to drought stress, Bacillus megaterium inoculated wheat plants exhibited improved tolerance by enhancing 59% relative water content, 260, 174 and 70% chlorophyll a, b and carotenoid, 136% protein content, 117% proline content and 57% decline in MDA content. Further, activities of defense-related antioxidant enzymes were also upregulated. Our results revealed that drought tolerance was more evident in Bacillus megaterium as compared to Bacillus licheniformis. These strains could be effective bioenhancer and biofertilizer for wheat cultivation in arid and semi-arid regions. However, a detailed study at the molecular level to deduce the mechanism by which these strains alleviate drought stress in wheat plants needs to be explored.
Collapse
Affiliation(s)
- Urooj Rashid
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan.
| | - Muhammad Nadeem Hassan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid University Rawalpindi, Rawalpindi, 46300, Pakistan
| | - Rumana Keyani
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Zahra Jabeen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Saqib Mumtaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, 45550, Pakistan
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Botany, S. P. College, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
8
|
Yasmin H, Bano A, Wilson NL, Nosheen A, Naz R, Hassan MN, Ilyas N, Saleem MH, Noureldeen A, Ahmad P, Kennedy I. Drought-tolerant Pseudomonas sp. showed differential expression of stress-responsive genes and induced drought tolerance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2022; 174:e13497. [PMID: 34245030 DOI: 10.1111/ppl.13497] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/01/2021] [Accepted: 07/01/2021] [Indexed: 05/07/2023]
Abstract
The growth and persistence of rhizobacteria in soils are highly impacted by moisture stress. In this study, we report the first transcript analysis of four Pseudomonas strains (PS1, PS2, PS3, and PS4) isolated from the root-soil interface of rice and maize associated with different moisture levels during water deprivation. Filtered Pseudomonas sp. cells incubated at low (RH10%) and high (RH85%) relative humidity showed decreased survival of all Pseudomonas sp. at RH10% when compared with RH85%. RT-PCR showed differential expression of treS (trehalose synthase), rpoS (sigma factor), mucA (alginate regulatory gene), and fliM (flagellar motor switch protein gene) in response to exposure to RH10%. However, molecular fingerprinting and nutrient assimilation profile of Pseudomonas strains demonstrated genetic and physiological variation between the four strains irrespective of water regime and host. In vitro testing of these strains showed ACC deaminase activity and gibberellic acid, abscisic acid, indole acetic acid, and exopolysaccharide production. We determined that 50 μl of 1.2 × 103 CFU ml-1 of these Pseudomonas strains was enough to protect Arabidopsis plants against drought stress in a pot experiment. Inoculated plants increased their root colonization ability and biomass; however, PS2 showed higher survival (95%), relative water content (59%), chlorophyll (30%), glycine betaine (38%), proline (23%), and reduced MDA (43%) in shoots than irrigated control under induced water deprivation. It can be concluded that all Pseudomonas strains were effective in mitigating drought stress, however, PS2 appears to impart more resistance to drought than the other strains by upregulating key defense mechanisms.
Collapse
Affiliation(s)
- Humaira Yasmin
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Asghari Bano
- Department of Biosciences, University of Wah, Wah Cantt, Pakistan
| | - Neil L Wilson
- Department of Agricultural Chemistry and Soil Science, University of Sydney, Sydney, New South Wales, Australia
| | - Asia Nosheen
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Rabia Naz
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | | | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ahmed Noureldeen
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, S. P. College Srinagar, Jammu and Kashmir, India
| | - Ivan Kennedy
- Department of Agricultural Chemistry and Soil Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Craig K, Johnson BR, Grunden A. Leveraging Pseudomonas Stress Response Mechanisms for Industrial Applications. Front Microbiol 2021; 12:660134. [PMID: 34040596 PMCID: PMC8141521 DOI: 10.3389/fmicb.2021.660134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas are metabolically versatile and capable of adapting to a wide variety of environments. Stress physiology of Pseudomonas strains has been extensively studied because of their biotechnological potential in agriculture as well as their medical importance with regards to pathogenicity and antibiotic resistance. This versatility and scientific relevance led to a substantial amount of information regarding the stress response of a diverse set of species such as Pseudomonas chlororaphis, P. fluorescens, P. putida, P. aeruginosa, and P. syringae. In this review, environmental and industrial stressors including desiccation, heat, and cold stress, are cataloged along with their corresponding mechanisms of survival in Pseudomonas. Mechanisms of survival are grouped by the type of inducing stress with a focus on adaptations such as synthesis of protective substances, biofilm formation, entering a non-culturable state, enlisting chaperones, transcription and translation regulation, and altering membrane composition. The strategies Pseudomonas strains utilize for survival can be leveraged during the development of beneficial strains to increase viability and product efficacy.
Collapse
Affiliation(s)
- Kelly Craig
- AgBiome Inc., Research Triangle Park, NC, United States
| | | | - Amy Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
10
|
López-Lara LI, Pazos-Rojas LA, López-Cruz LE, Morales-García YE, Quintero-Hernández V, de la Torre J, van Dillewijn P, Muñoz-Rojas J, Baez A. Influence of rehydration on transcriptome during resuscitation of desiccated Pseudomonas putida KT2440. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01596-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Purpose
Pseudomonas putida KT2440 is a desiccation-sensitive bacterium that loses culturability after 15 days of air desiccation. We have previously shown that P. putida KT2440 can develop a viable but nonculturable (VBNC) state after being exposed to desiccation stress and eventually recover when desiccated cells are rehydrated for at least 24 h.
Methods
To determine which genes of transport, oxidation-reduction, and transcription processes could be involved in the return of P. putida KT2440 to the culturable state, a transcriptome analysis was carried out comparing the gene expression of non-desiccated samples with samples subjected to desiccation followed by 20 min of rehydration or desiccation followed by 24 h of rehydration.
Results
Desiccation stress triggered a VBNC state of P. putida. The major response was detected after 24 h of rehydration with 148 upregulated and 42 downregulated genes. During the VBNC state, P. putida activated transmembrane transport processes like that of siderophores through a TonB-dependent transporter and putative polyhydric alcohol transport systems. Prolonged rehydration with distilled water resuscitated P. putida KT2440 cells activating the catabolism of phenylalanine/tyrosine to provide energy and carbon for ubiquinone biosynthesis while maintaining a reduced protein synthesis. On the other hand, the interruption of the TonB-dependent receptor gene (PP_1446) increased desiccation survival of the mutant strain.
Conclusion
The activation of the iron transport system (TonB-dependent siderophore receptor) and alcohol transport can be helping the VBNC state of P. putida. Activation of catabolism of phenylalanine/tyrosine and reduced protein synthesis was needed for resuscitation from the VBNC state.
Collapse
|
11
|
Hueso-Gil Á, Calles B, de Lorenzo V. The Wsp intermembrane complex mediates metabolic control of the swim-attach decision of Pseudomonas putida. Environ Microbiol 2020; 22:3535-3547. [PMID: 32519402 DOI: 10.1111/1462-2920.15126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Pseudomonas putida is a microorganism of biotechnological interest that-similar to many other environmental bacteria-adheres to surfaces and forms biofilms. Although various mechanisms contributing to the swim-attach decision have been studied in this species, the role of a 7-gene operon homologous to the wsp cluster of Pseudomonas aeruginosa-which regulates cyclic di-GMP (cdGMP) levels upon surface contact-remained to be investigated. In this work, the function of the wsp operon of P. putida KT2440 has been characterized through inspection of single and multiple wsp deletion variants, complementation with Pseudomonas aeruginosa's homologues, combined with mutations of regulatory genes fleQ and fleN and removal of the flagellar regulator fglZ. The ability of the resulting strains to form biofilms at 6 and 24 h under three different carbon regimes (citrate, glucose and fructose) revealed that the Wsp complex delivers a similar function to both Pseudomonas species. In P. putida, the key components include WspR, a protein that harbours the domain for producing cdGMP, and WspF, which controls its activity. These results not only contribute to a deeper understanding of the network that regulates the sessile-planktonic decision of P. putida but also suggest strategies to exogenously control such a lifestyle switch.
Collapse
Affiliation(s)
- Ángeles Hueso-Gil
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
12
|
Roccuzzo S, Couto N, Karunakaran E, Kapoore RV, Butler TO, Mukherjee J, Hansson EM, Beckerman AP, Pandhal J. Metabolic Insights Into Infochemicals Induced Colony Formation and Flocculation in Scenedesmus subspicatus Unraveled by Quantitative Proteomics. Front Microbiol 2020; 11:792. [PMID: 32457714 PMCID: PMC7220994 DOI: 10.3389/fmicb.2020.00792] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/02/2020] [Indexed: 01/15/2023] Open
Abstract
Microalgae can respond to natural cues from crustacean grazers, such as Daphnia, by forming colonies and aggregations called flocs. Combining microalgal biology, physiological ecology, and quantitative proteomics, we identified how infochemicals from Daphnia trigger physiological and cellular level changes in the microalga Scenedesmus subspicatus, underpinning colony formation and flocculation. We discovered that flocculation occurs at an energy-demanding ‘alarm’ phase, with an important role proposed in cysteine synthesis. Flocculation appeared to be initially stimulated by the production of an extracellular matrix where polysaccharides and fatty acids were present, and later sustained at an ‘acclimation’ stage through mitogen-activated protein kinase (MAPK) signaling cascades. Colony formation required investment into fatty acid metabolism, likely linked to separation of membranes during cell division. Higher energy demands were required at the alarm phase, which subsequently decreased at the acclimation stage, thus suggesting a trade-off between colony formation and flocculation. From an ecological and evolutionary perspective, our findings represent an improved understanding of the effect of infochemicals on microalgae-grazers interactions, and how they can therefore potentially impact on the structure of aquatic communities. Moreover, the mechanisms revealed are of interest in algal biotechnology, for exploitation in low-cost, sustainable microalgal biomass harvesting.
Collapse
Affiliation(s)
- Sebastiana Roccuzzo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Narciso Couto
- Centre for Applied Pharmacokinetic Research, The University of Manchester, Manchester, United Kingdom
| | - Esther Karunakaran
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Rahul Vijay Kapoore
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Thomas O Butler
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Joy Mukherjee
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Erika M Hansson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
13
|
Svenningsen NB, Martínez-García E, Nicolaisen MH, de Lorenzo V, Nybroe O. The biofilm matrix polysaccharides cellulose and alginate both protect Pseudomonas putida mt-2 against reactive oxygen species generated under matric stress and copper exposure. Microbiology (Reading) 2018; 164:883-888. [DOI: 10.1099/mic.0.000667] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Nanna B. Svenningsen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | | | - Mette H. Nicolaisen
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Victor de Lorenzo
- Systems Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Ole Nybroe
- Section for Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
14
|
Moreno-Forero SK, Rojas E, Beggah S, van der Meer JR. Comparison of differential gene expression to water stress among bacteria with relevant pollutant-degradation properties. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:91-102. [PMID: 26616826 DOI: 10.1111/1758-2229.12356] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 11/15/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.
Collapse
Affiliation(s)
- Silvia K Moreno-Forero
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Edward Rojas
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Siham Beggah
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| | - Jan R van der Meer
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, Lausanne, 1015, Switzerland
| |
Collapse
|
15
|
Yu W, Chen Z, Shen L, Wang Y, Li Q, Yan S, Zhong CJ, He N. Proteomic profiling ofBacillus licheniformisreveals a stress response mechanism in the synthesis of extracellular polymeric flocculants. Biotechnol Bioeng 2015; 113:797-806. [DOI: 10.1002/bit.25838] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 01/08/2023]
Affiliation(s)
- Wencheng Yu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Zhen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Liang Shen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Yuanpeng Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
| | - Shan Yan
- Department of Chemistry; State University of New York at Binghamton; Binghamton 13902 New York
| | - Chuan-Jian Zhong
- Department of Chemistry; State University of New York at Binghamton; Binghamton 13902 New York
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering; Xiamen University; Xiamen PR China
- Department of Chemistry; State University of New York at Binghamton; Binghamton 13902 New York
| |
Collapse
|
16
|
Transcriptome Profiling of Wild-Type and pga-Knockout Mutant Strains Reveal the Role of Exopolysaccharide in Aggregatibacter actinomycetemcomitans. PLoS One 2015. [PMID: 26221956 PMCID: PMC4519337 DOI: 10.1371/journal.pone.0134285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Exopolysaccharides have a diverse set of functions in most bacteria including a mechanistic role in protecting bacteria against environmental stresses. Among the many functions attributed to the exopolysaccharides, biofilm formation, antibiotic resistance, immune evasion and colonization have been studied most extensively. The exopolysaccharide produced by many Gram positive as well as Gram negative bacteria including the oral pathogen Aggregatibacter actinomycetemcomitans is the homopolymer of β(1,6)-linked N-acetylglucosamine. Recently, we reported that the PGA-deficient mutant of A. actinomycetemcomitans failed to colonize or induce bone resorption in a rat model of periodontal disease, and the colonization genes, apiA and aae, were significantly down regulated in the mutant strain. To understand the role of exopolysaccharide and the pga locus in the global expression of A. actinomycetemcomitans, we have used comparative transcriptome profiling to identify differentially expressed genes in the wild-type strain in relation to the PGA-deficient strain. Transcriptome analysis revealed that about 50% of the genes are differently expressed (P < 0.05 and fold change >1.5). Our study demonstrated that the absence of the pga locus affects the genes involved in peptidoglycan recycling, glycogen storage, and virulence. Further, using confocal microscopy and plating assays, we show that the viability of pga mutant strain is significantly reduced during biofilm growth. Thus, this study highlights the importance of pga genes and the exopolysaccharide in the virulence of A. actinomycetemcomitans.
Collapse
|