1
|
Smoniewski CM, Mirzavand Borujeni P, Hampton M, Petersen A, Faacks SP, Salavati R, Zimmer SL. Manipulation of mitochondrial poly(A) polymerase family proteins in Trypanosoma brucei impacts mRNA termini processing. FRONTIERS IN PARASITOLOGY 2024; 2:1298561. [PMID: 39816830 PMCID: PMC11732105 DOI: 10.3389/fpara.2023.1298561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2025]
Abstract
RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3' end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3' tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous. Here, we elucidate the effects of manipulations of KPAP1 and KPAP2 on the 5' and 3' termini of transcripts and their 3' tails. Using glycerol gradients followed by immunoblotting, we present evidence that KPAP2 is found in protein complexes of up to about 1600 kDa. High-throughput sequencing of mRNA termini showed that KPAP2 overexpression subtly changes an edited transcript's 3' tails, though not in a way consistent with general PAP activity. Next, to identify possible roles of posttranslational modifications on KPAP1 regulation, we mutated two KPAP1 arginine methylation sites to either mimic methylation or hypomethylation. We assessed their effect on 3' mRNA tail characteristics and found that the two mutants generally had opposing effects, though some of these were transcript-specific. We present results suggesting that while methylation increases KPAP1 substrate binding and/or initial nucleotide additions, unmethylated KPAP1is more processive. We also present a comprehensive review of UTR termini, and evidence that tail addition activity may change as mRNA editing is initiated. Together, this work furthers our understanding of the role of KPAP1 and KPAP2 on trypanosome mitochondrial mRNA 3' tail addition, as well as provides more information on mRNA termini processing in general.
Collapse
Affiliation(s)
- Clara M. Smoniewski
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | | | - Marshall Hampton
- Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN, United States
| | - Austin Petersen
- Department of Biology, University of Minnesota Duluth, Duluth, MN, United States
| | - Sean P. Faacks
- Department of Biology, University of Minnesota Duluth, Duluth, MN, United States
| | - Reza Salavati
- Institute of Parasitology, McGill University, Montreal, QC, Canada
| | - Sara L. Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
2
|
Campagnaro GD, Lorenzon LB, Rodrigues MA, Defina TPA, Pinzan CF, Ferreira TR, Cruz AK. Overexpression of Leishmania major protein arginine methyltransferase 6 reduces parasite infectivity in vivo. Acta Trop 2023; 244:106959. [PMID: 37257676 DOI: 10.1016/j.actatropica.2023.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
Arginine methylation is catalysed by Protein Arginine Methyltransferases (PRMTs) and can affect how a target protein functions and how it interacts with other macromolecules, which in turn impacts on cell metabolism and gene expression control. Leishmania parasites express five different PRMTs, and although the presence of each individual PRMT is not essential per se, the imbalanced activity of these PRMTs can impact the virulence of Leishmania parasites in vitro and in vivo. Here we created a Leishmania major cell line overexpressing PRMT6 and show that similar to what was observed for the T. brucei homologous enzyme, L. major PRMT6 probably has a narrow substrate range. However, its overexpression notably impairs the infection in mice, with a mild reduction in the number of viable parasites in the lymph nodes. Our results indicate that arginine methylation by LmjPRMT6 plays a significant role in the adaptation of the parasite to the environment found in the mammalian host.
Collapse
Affiliation(s)
- Gustavo Daniel Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lucas Bigolin Lorenzon
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Mateus Augusto Rodrigues
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tânia Paula Aquino Defina
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tiago Rodrigues Ferreira
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
3
|
Lucky AB, Wang C, Liu M, Liang X, Min H, Fan Q, Siddiqui FA, Adapa SR, Li X, Jiang RHY, Chen X, Cui L, Miao J. A type II protein arginine methyltransferase regulates merozoite invasion in Plasmodium falciparum. Commun Biol 2023; 6:659. [PMID: 37349497 PMCID: PMC10287762 DOI: 10.1038/s42003-023-05038-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023] Open
Abstract
Protein arginine methyltransferases (PRMTs) regulate many important cellular processes, such as transcription and RNA processing in model organisms but their functions in human malaria parasites are not elucidated. Here, we characterize PfPRMT5 in Plasmodium falciparum, which catalyzes symmetric dimethylation of histone H3 at R2 (H3R2me2s) and R8, and histone H4 at R3 in vitro. PfPRMT5 disruption results in asexual stage growth defects primarily due to lower invasion efficiency of the merozoites. Transcriptomic analysis reveals down-regulation of many transcripts related to invasion upon PfPRMT5 disruption, in agreement with H3R2me2s being an active chromatin mark. Genome-wide chromatin profiling detects extensive H3R2me2s marking of genes of different cellular processes, including invasion-related genes in wildtype parasites and PfPRMT5 disruption leads to the depletion of H3R2me2s. Interactome studies identify the association of PfPRMT5 with invasion-related transcriptional regulators such as AP2-I, BDP1, and GCN5. Furthermore, PfPRMT5 is associated with the RNA splicing machinery, and PfPRMT5 disruption caused substantial anomalies in RNA splicing events, including those for invasion-related genes. In summary, PfPRMT5 is critical for regulating parasite invasion and RNA splicing in this early-branching eukaryote.
Collapse
Affiliation(s)
- Amuza Byaruhanga Lucky
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Min Liu
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiaoying Liang
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Hui Min
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Faiza Amber Siddiqui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Swamy Rakesh Adapa
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaolian Li
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoguang Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jun Miao
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| |
Collapse
|
4
|
Rodriguez MA. Protein arginine methyltransferases in protozoan parasites. Parasitology 2022; 149:427-435. [PMID: 35331350 PMCID: PMC11010539 DOI: 10.1017/s0031182021002043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/06/2022]
Abstract
Arginine methylation is a post-translational modification involved in gene transcription, signalling pathways, DNA repair, RNA metabolism and splicing, among others, mechanisms that in protozoa parasites may be involved in pathogenicity-related events. This modification is performed by protein arginine methyltransferases (PRMTs), which according to their products are divided into three main types: type I yields monomethylarginine (MMA) and asymmetric dimethylarginine; type II produces MMA and symmetric dimethylarginine; whereas type III catalyses MMA only. Nine PRMTs (PRMT1 to PRMT9) have been characterized in humans, whereas in protozoa parasites, except for Giardia intestinalis, three to eight PRMTs have been identified, where in each group there are at least two enzymes belonging to type I, the majority with higher similarity to human PRMT1, and one of type II, related to human PRMT5. However, the information on the role of most of these enzymes in the parasites biology is limited so far. Here, current knowledge of PRMTs in protozoan parasites is reviewed; these enzymes participate in the cell growth, stress response, stage transitions and virulence of these microorganisms. Thus, PRMTs are attractive targets for developing new therapeutic strategies against these pathogens.
Collapse
Affiliation(s)
- Mario Alberto Rodriguez
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
5
|
Lorenzon L, Quilles JC, Campagnaro GD, Azevedo Orsine L, Almeida L, Veras F, Miserani Magalhães RD, Alcoforado Diniz J, Rodrigues Ferreira T, Kaysel Cruz A. Functional Study of Leishmania braziliensis Protein Arginine Methyltransferases (PRMTs) Reveals That PRMT1 and PRMT5 Are Required for Macrophage Infection. ACS Infect Dis 2022; 8:516-532. [PMID: 35226477 DOI: 10.1021/acsinfecdis.1c00509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In trypanosomatids, regulation of gene expression occurs mainly at the posttranscriptional level, and RNA-binding proteins (RBPs) are key players in determining the fates of transcripts. RBPs are targets of protein arginine methyltransferases (PRMTs), which posttranslationally regulate the RNA-binding capacity and other RBP interactions by transferring methyl groups to arginine residues (R-methylation). Herein, we functionally characterized the five predicted PRMTs in Leishmania braziliensis by gene knockout and endogenous protein HA tagging using CRISPR/Cas9 gene editing. We report that R-methylation profiles vary among Leishmania species and across L. braziliensis lifecycle stages, with the peak PRMT expression occurring in promastigotes. A list of PRMT-interacting proteins was obtained in a single coimmunoprecipitation assay using HA-tagged PRMTs, suggesting a network of putative targets of PRMTs and cooperation between the R-methylation writers. Knockout of each L. braziliensis PRMT led to significant changes in global arginine methylation patterns without affecting cell viability. Deletion of either PRMT1 or PRMT3 disrupted most type I PRMT activity, resulting in a global increase in monomethyl arginine levels. Finally, we demonstrate that L. braziliensis PRMT1 and PRMT5 are required for efficient macrophage infection in vitro, and for axenic amastigote proliferation. The results indicate that R-methylation is modulated across lifecycle stages in L. braziliensis and show possible functional overlap and cooperation among the different PRMTs in targeting proteins. Overall, our data suggest important regulatory roles of these proteins throughout the L. braziliensis life cycle, showing that arginine methylation is important for parasite-host cell interactions.
Collapse
Affiliation(s)
- Lucas Lorenzon
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| | - José C. Quilles
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| | - Gustavo Daniel Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| | - Lissur Azevedo Orsine
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| | - Leticia Almeida
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| | - Flavio Veras
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| | - Rubens Daniel Miserani Magalhães
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| | - Juliana Alcoforado Diniz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| | - Tiago Rodrigues Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14096089 São Paulo, Brazil
| |
Collapse
|
6
|
Erlendson AA, Freitag M. Not all Is SET for Methylation: Evolution of Eukaryotic Protein Methyltransferases. Methods Mol Biol 2022; 2529:3-40. [PMID: 35733008 DOI: 10.1007/978-1-0716-2481-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dynamic posttranslational modifications to canonical histones that constitute the nucleosome (H2A, H2B, H3, and H4) control all aspects of enzymatic transactions with DNA. Histone methylation has been studied heavily for the past 20 years, and our mechanistic understanding of the control and function of individual methylation events on specific histone arginine and lysine residues has been greatly improved over the past decade, driven by excellent new tools and methods. Here, we will summarize what is known about the distribution and some of the functions of protein methyltransferases from all major eukaryotic supergroups. The main conclusion is that protein, and specifically histone, methylation is an ancient process. Many taxa in all supergroups have lost some subfamilies of both protein arginine methyltransferases (PRMT) and the heavily studied SET domain lysine methyltransferases (KMT). Over time, novel subfamilies, especially of SET domain proteins, arose. We use the interactions between H3K27 and H3K36 methylation as one example for the complex circuitry of histone modifications that make up the "histone code," and we discuss one recent example (Paramecium Ezl1) for how extant enzymes that may resemble more ancient SET domain KMTs are able to modify two lysine residues that have divergent functions in plants, fungi, and animals. Complexity of SET domain KMT function in the well-studied plant and animal lineages arose not only by gene duplication but also acquisition of novel DNA- and histone-binding domains in certain subfamilies.
Collapse
Affiliation(s)
- Allyson A Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
7
|
Dias-Guerreiro T, Palma-Marques J, Mourata-Gonçalves P, Alexandre-Pires G, Valério-Bolas A, Gabriel Á, Nunes T, Antunes W, da Fonseca IP, Sousa-Silva M, Santos-Gomes G. African Trypanosomiasis: Extracellular Vesicles Shed by Trypanosoma brucei brucei Manipulate Host Mononuclear Cells. Biomedicines 2021; 9:biomedicines9081056. [PMID: 34440259 PMCID: PMC8394715 DOI: 10.3390/biomedicines9081056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
African trypanosomiasis or sleeping sickness is a zoonotic disease caused by Trypanosoma brucei, a protozoan parasite transmitted by Glossina spp. (tsetse fly). Parasite introduction into mammal hosts triggers a succession of events, involving both innate and adaptive immunity. Macrophages (MΦ) have a key role in innate defence since they are antigen-presenting cells and have a microbicidal function essential for trypanosome clearance. Adaptive immune defence is carried out by lymphocytes, especially by T cells that promote an integrated immune response. Like mammal cells, T. b. brucei parasites release extracellular vesicles (TbEVs), which carry macromolecules that can be transferred to host cells, transmitting biological information able to manipulate cell immune response. However, the exact role of TbEVs in host immune response remains poorly understood. Thus, the current study examined the effect elicited by TbEVs on MΦ and T lymphocytes. A combined approach of microscopy, nanoparticle tracking analysis, multiparametric flow cytometry, colourimetric assays and detailed statistical analyses were used to evaluate the influence of TbEVs in mouse mononuclear cells. It was shown that TbEVs can establish direct communication with cells of innate and adaptative immunity. TbEVs induce the differentiation of both M1- and M2-MΦ and elicit the expansion of MHCI+, MHCII+ and MHCI+MHCII+ MΦ subpopulations. In T lymphocytes, TbEVs drive the overexpression of cell-surface CD3 and the nuclear factor FoxP3, which lead to the differentiation of regulatory CD4+ and CD8+ T cells. Moreover, this study indicates that T. b. brucei and TbEVs seem to display opposite but complementary effects in the host, establishing a balance between parasite growth and controlled immune response, at least during the early phase of infection.
Collapse
Affiliation(s)
- Tatiana Dias-Guerreiro
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Joana Palma-Marques
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Patrícia Mourata-Gonçalves
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Graça Alexandre-Pires
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (G.A.-P.); (I.P.d.F.)
| | - Ana Valério-Bolas
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Áurea Gabriel
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
| | - Telmo Nunes
- Microscopy Center, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal;
| | - Wilson Antunes
- Unidade Militar Laboratorial de Defesa Biológica e Química (UMLDBQ), Laboratório de Imagem Nano-Morfológica e Espectroscopia de Raios-X, 1100-471 Lisboa, Portugal;
| | - Isabel Pereira da Fonseca
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (G.A.-P.); (I.P.d.F.)
| | - Marcelo Sousa-Silva
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
- Centro de Ciências da Saúde, Departamento de Analises Clínicas e Toxicológicas, Universidade Federal do Rio Grande do Norte, Natal 59078-970, Brazil
| | - Gabriela Santos-Gomes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), 1349-008 Lisboa, Portugal; (T.D.-G.); (J.P.-M.); (P.M.-G.); (A.V.-B.); (Á.G.); (M.S.-S.)
- Correspondence: ; Tel.: +351-21-365-26-00; Fax: +351-21-363-21-05
| |
Collapse
|
8
|
Campagnaro GD, Nay E, Plevin MJ, Cruz AK, Walrad PB. Arginine Methyltransferases as Regulators of RNA-Binding Protein Activities in Pathogenic Kinetoplastids. Front Mol Biosci 2021; 8:692668. [PMID: 34179098 PMCID: PMC8226133 DOI: 10.3389/fmolb.2021.692668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
A large number of eukaryotic proteins are processed by single or combinatorial post-translational covalent modifications that may alter their activity, interactions and fate. The set of modifications of each protein may be considered a "regulatory code". Among the PTMs, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), can affect how a protein interacts with other macromolecules such as nucleic acids or other proteins. In fact, many RNA-binding (RBPs) proteins are targets of PRMTs. The methylation status of RBPs may affect the expression of their bound RNAs and impact a diverse range of physiological and pathological cellular processes. Unlike most eukaryotes, Kinetoplastids have overwhelmingly intronless genes that are arranged within polycistronic units from which mature mRNAs are generated by trans-splicing. Gene expression in these organisms is thus highly dependent on post-transcriptional control, and therefore on the action of RBPs. These genetic features make trypanosomatids excellent models for the study of post-transcriptional regulation of gene expression. The roles of PRMTs in controlling the activity of RBPs in pathogenic kinetoplastids have now been studied for close to 2 decades with important advances achieved in recent years. These include the finding that about 10% of the Trypanosoma brucei proteome carries arginine methylation and that arginine methylation controls Leishmania:host interaction. Herein, we review how trypanosomatid PRMTs regulate the activity of RBPs, including by modulating interactions with RNA and/or protein complex formation, and discuss how this impacts cellular and biological processes. We further highlight unique structural features of trypanosomatid PRMTs and how it contributes to their singular functionality.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edward Nay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Michael J. Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B. Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom,*Correspondence: Pegine B. Walrad,
| |
Collapse
|
9
|
Ferreira TR, Dowle AA, Parry E, Alves-Ferreira EVC, Hogg K, Kolokousi F, Larson TR, Plevin MJ, Cruz AK, Walrad PB. PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites. Nucleic Acids Res 2020; 48:5511-5526. [PMID: 32365184 PMCID: PMC7261171 DOI: 10.1093/nar/gkaa211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.
Collapse
Affiliation(s)
- Tiago R Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Adam A Dowle
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Ewan Parry
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Karen Hogg
- Imaging and Cytometry Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Foteini Kolokousi
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Tony R Larson
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Michael J Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Angela K Cruz
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| |
Collapse
|
10
|
Hashimoto H, Kafková L, Raczkowski A, Jordan KD, Read LK, Debler EW. Structural Basis of Protein Arginine Methyltransferase Activation by a Catalytically Dead Homolog (Prozyme). J Mol Biol 2020; 432:410-426. [PMID: 31726063 PMCID: PMC6995776 DOI: 10.1016/j.jmb.2019.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023]
Abstract
Prozymes are pseudoenzymes that stimulate the function of weakly active enzymes through complex formation. The major Trypanosoma brucei protein arginine methyltransferase, TbPRMT1 enzyme (ENZ), requires TbPRMT1 prozyme (PRO) to form an active heterotetrameric complex. Here, we present the X-ray crystal structure of the TbPRMT1 ENZ-Δ52PRO tetrameric complex with the cofactor product S-adenosyl-l-homocysteine (AdoHcy) at 2.4 Å resolution. The individual ENZ and PRO units adopt the highly-conserved PRMT domain architecture and form an antiparallel heterodimer that corresponds to the canonical homodimer observed in all previously reported PRMTs. In turn, two such heterodimers assemble into a tetramer both in the crystal and in solution with twofold rotational symmetry. ENZ is unstable in absence of PRO and incapable of forming a homodimer due to a steric clash of an ENZ-specific tyrosine within the dimerization arm, rationalizing why PRO is required to complement ENZ to form a PRMT dimer that is necessary, but not sufficient for PRMT activity. The PRO structure deviates from other, active PRMTs in that it lacks the conserved η2 310-helix within the Rossmann fold, abolishing cofactor binding. In addition to its chaperone function for ENZ, PRO substantially contributes to substrate binding. Heterotetramerization is required for catalysis, as heterodimeric ENZ-PRO mutants lack binding affinity and methyltransferase activity toward the substrate protein TbRGG1. Together, we provide a structural basis for TbPRMT1 ENZ activation by PRO heterotetramer formation, which is conserved across all kinetoplastids, and describe a chaperone function of the TbPRMT1 prozyme, which represents a novel mode of PRMT regulation.
Collapse
Affiliation(s)
- Hideharu Hashimoto
- Department of Biochemistry and Molecular Biology, Thomas
Jefferson University, Philadelphia, PA 19107, USA
| | - Lucie Kafková
- Department of Microbiology and Immunology and Witebsky
Center for Microbial Pathogenesis and Immunology, SUNY Buffalo, Buffalo, NY 14203,
USA
| | - Ashleigh Raczkowski
- Simons Electron Microscopy Center, New York Structural
Biology Center, New York, NY 10027, USA
| | - Kelsey D. Jordan
- Simons Electron Microscopy Center, New York Structural
Biology Center, New York, NY 10027, USA
| | - Laurie K. Read
- Department of Microbiology and Immunology and Witebsky
Center for Microbial Pathogenesis and Immunology, SUNY Buffalo, Buffalo, NY 14203,
USA
| | - Erik W. Debler
- Department of Biochemistry and Molecular Biology, Thomas
Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
11
|
Trypanosoma brucei PRMT1 Is a Nucleic Acid Binding Protein with a Role in Energy Metabolism and the Starvation Stress Response. mBio 2018; 9:mBio.02430-18. [PMID: 30563898 PMCID: PMC6299225 DOI: 10.1128/mbio.02430-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In Trypanosoma brucei and related kinetoplastid parasites, transcription of protein coding genes is largely unregulated. Rather, mRNA binding proteins, which impact processes such as transcript stability and translation efficiency, are the predominant regulators of gene expression. Arginine methylation is a posttranslational modification that preferentially targets RNA binding proteins and is, therefore, likely to have a substantial impact on T. brucei biology. The data presented here demonstrate that cells depleted of T. brucei PRMT1 (TbPRMT1), a major type I protein arginine methyltransferase, exhibit decreased virulence in an animal model. To understand the basis of this phenotype, quantitative global proteomics was employed to measure protein steady-state levels in cells lacking TbPRMT1. The approach revealed striking changes in proteins involved in energy metabolism. Most prominent were a decrease in glycolytic enzyme abundance and an increase in proline degradation pathway components, changes that resemble the metabolic remodeling that occurs during T. brucei life cycle progression. The work describes several RNA binding proteins whose association with mRNA was altered in TbPRMT1-depleted cells, and a large number of TbPRMT1-interacting proteins, thereby highlighting potential TbPRMT1 substrates. Many proteins involved in the T. brucei starvation stress response were found to interact with TbPRMT1, prompting analysis of the response of TbPRMT1-depleted cells to nutrient deprivation. Indeed, depletion of TbPRMT1 strongly hinders the ability of T. brucei to form cytoplasmic mRNA granules under starvation conditions. Finally, this work shows that TbPRMT1 itself binds nucleic acids in vitro and in vivo, a feature completely novel to protein arginine methyltransferases.IMPORTANCE Trypanosoma brucei infection causes human African trypanosomiasis, also known as sleeping sickness, a disease with a nearly 100% fatality rate when untreated. Current drugs are expensive, toxic, and highly impractical to administer, prompting the community to explore various unique aspects of T. brucei biology in search of better treatments. In this study, we identified the protein arginine methyltransferase (PRMT), TbPRMT1, as a factor that modulates numerous aspects of T. brucei biology. These include glycolysis and life cycle progression signaling, both of which are being intensely researched toward identification of potential drug targets. Our data will aid research in those fields. Furthermore, we demonstrate for the first time a direct association of a PRMT with nucleic acids, a finding we believe could translate to other organisms, including humans, thereby impacting research in fields as distant as human cancer biology and immune response modulation.
Collapse
|
12
|
Holzmuller P, Geiger A, Nzoumbou-Boko R, Pissarra J, Hamrouni S, Rodrigues V, Dauchy FA, Lemesre JL, Vincendeau P, Bras-Gonçalves R. Trypanosomatid Infections: How Do Parasites and Their Excreted-Secreted Factors Modulate the Inducible Metabolism of l-Arginine in Macrophages? Front Immunol 2018; 9:778. [PMID: 29731753 PMCID: PMC5921530 DOI: 10.3389/fimmu.2018.00778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted-secreted (ES) molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage's inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the development of vaccines or immunotherapeutic approaches.
Collapse
Affiliation(s)
- Philippe Holzmuller
- CIRAD, Montpellier, France.,UMR 117 ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes", Univ. Montpellier (I-MUSE), CIRAD, INRA, Montpellier, France
| | - Anne Geiger
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Romaric Nzoumbou-Boko
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Laboratoire de Parasitologie-Mycologie, Bordeaux, France
| | - Joana Pissarra
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Sarra Hamrouni
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Valérie Rodrigues
- CIRAD, Montpellier, France.,UMR 117 ASTRE "Animal, Santé, Territoire, Risques et Ecosystèmes", Univ. Montpellier (I-MUSE), CIRAD, INRA, Montpellier, France
| | - Frédéric-Antoine Dauchy
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Département des Maladies Infectieuses et Tropicales, Bordeaux, France
| | - Jean-Loup Lemesre
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| | - Philippe Vincendeau
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France.,Univ. Bordeaux, UMR 177 INTERTRYP, Bordeaux, France.,CHU Bordeaux, Laboratoire de Parasitologie-Mycologie, Bordeaux, France
| | - Rachel Bras-Gonçalves
- UMR 177 INTERTRYP "Interactions Hôte-Vecteur-Parasite-Environnement dans les maladies tropicales négligées dues aux Trypanosomatidae", Univ. Montpellier (I-MUSE), CIRAD, IRD, Univ. Bordeaux 2, Univ. Lyon 1, Montpellier, France
| |
Collapse
|
13
|
Crozier TWM, Tinti M, Larance M, Lamond AI, Ferguson MAJ. Prediction of Protein Complexes in Trypanosoma brucei by Protein Correlation Profiling Mass Spectrometry and Machine Learning. Mol Cell Proteomics 2017; 16:2254-2267. [PMID: 29042480 PMCID: PMC5724185 DOI: 10.1074/mcp.o117.068122] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/04/2017] [Indexed: 01/10/2023] Open
Abstract
A disproportionate number of predicted proteins from the genome sequence of the protozoan parasite Trypanosoma brucei, an important human and animal pathogen, are hypothetical proteins of unknown function. This paper describes a protein correlation profiling mass spectrometry approach, using two size exclusion and one ion exchange chromatography systems, to derive sets of predicted protein complexes in this organism by hierarchical clustering and machine learning methods. These hypothesis-generating proteomic data are provided in an open access online data visualization environment (http://134.36.66.166:8083/complex_explorer). The data can be searched conveniently via a user friendly, custom graphical interface. We provide examples of both potential new subunits of known protein complexes and of novel trypanosome complexes of suggested function, contributing to improving the functional annotation of the trypanosome proteome. Data are available via ProteomeXchange with identifier PXD005968.
Collapse
Affiliation(s)
- Thomas W M Crozier
- From the ‡Division of Biological Chemistry and Drug Discovery and.,§Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | - Michele Tinti
- From the ‡Division of Biological Chemistry and Drug Discovery and
| | - Mark Larance
- §Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | - Angus I Lamond
- §Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee DD2 1NW, UK
| | | |
Collapse
|
14
|
Yakubu RR, Silmon de Monerri NC, Nieves E, Kim K, Weiss LM. Comparative Monomethylarginine Proteomics Suggests that Protein Arginine Methyltransferase 1 (PRMT1) is a Significant Contributor to Arginine Monomethylation in Toxoplasma gondii. Mol Cell Proteomics 2017; 16:567-580. [PMID: 28143887 DOI: 10.1074/mcp.m117.066951] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 12/16/2022] Open
Abstract
Arginine methylation is a common posttranslational modification found on nuclear and cytoplasmic proteins that has roles in transcriptional regulation, RNA metabolism and DNA repair. The protozoan parasite Toxoplasma gondii has a complex life cycle requiring transcriptional plasticity and has unique transcriptional regulatory pathways. Arginine methylation may play an important part in transcriptional regulation and splicing biology in this organism. The T. gondii genome contains five putative protein arginine methyltransferases (PRMTs), of which PRMT1 is important for cell division and growth. In order to better understand the function(s) of the posttranslational modification monomethyl arginine (MMA) in T. gondii, we performed a proteomic analysis of MMA proteins using affinity purification employing anti-MMA specific antibodies followed by mass spectrometry. The arginine monomethylome of T. gondii contains a large number of RNA binding proteins and multiple ApiAP2 transcription factors, suggesting a role for arginine methylation in RNA biology and transcriptional regulation. Surprisingly, 90% of proteins that are arginine monomethylated were detected as being phosphorylated in a previous phosphoproteomics study which raises the possibility of interplay between MMA and phosphorylation in this organism. Supporting this, a number of kinases are also arginine methylated. Because PRMT1 is thought to be a major PRMT in T. gondii, an organism which lacks a MMA-specific PRMT, we applied comparative proteomics to understand how PRMT1 might contribute to the MMA proteome in T. gondii We identified numerous putative PRMT1 substrates, which include RNA binding proteins, transcriptional regulators (e.g. AP2 transcription factors), and kinases. Together, these data highlight the importance of MMA and PRMT1 in arginine methylation in T. gondii, as a potential regulator of a large number of processes including RNA biology and transcription.
Collapse
Affiliation(s)
- Rama R Yakubu
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Natalie C Silmon de Monerri
- §Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York
| | - Edward Nieves
- ¶Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York.,‖Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Kami Kim
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; .,§Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York.,**Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Louis M Weiss
- From the ‡Department of Pathology, Albert Einstein College of Medicine, Bronx, New York; .,§Department of Medicine- Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
15
|
Kafková L, Debler EW, Fisk JC, Jain K, Clarke SG, Read LK. The Major Protein Arginine Methyltransferase in Trypanosoma brucei Functions as an Enzyme-Prozyme Complex. J Biol Chem 2016; 292:2089-2100. [PMID: 27998975 DOI: 10.1074/jbc.m116.757112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 12/14/2016] [Indexed: 11/06/2022] Open
Abstract
Prozymes are catalytically inactive enzyme paralogs that dramatically stimulate the function of weakly active enzymes through complex formation. The two prozymes described to date reside in the polyamine biosynthesis pathway of the human parasite Trypanosoma brucei, an early branching eukaryote that lacks transcriptional regulation and regulates its proteome through posttranscriptional and posttranslational means. Arginine methylation is a common posttranslational modification in eukaryotes catalyzed by protein arginine methyltransferases (PRMTs) that are typically thought to function as homodimers. We demonstrate that a major T. brucei PRMT, TbPRMT1, functions as a heterotetrameric enzyme-prozyme pair. The inactive PRMT paralog, TbPRMT1PRO, is essential for catalytic activity of the TbPRMT1ENZ subunit. Mutational analysis definitively demonstrates that TbPRMT1ENZ is the cofactor-binding subunit and carries all catalytic activity of the complex. Our results are the first demonstration of an obligate heteromeric PRMT, and they suggest that enzyme-prozyme organization is expanded in trypanosomes as a posttranslational means of enzyme regulation.
Collapse
Affiliation(s)
- Lucie Kafková
- From the Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, and Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| | - Erik W Debler
- the Laboratory of Cell Biology, The Rockefeller University, New York, New York 10065, and
| | - John C Fisk
- From the Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, and Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214
| | - Kanishk Jain
- the Department of Chemistry and Biochemistry and The Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Steven G Clarke
- the Department of Chemistry and Biochemistry and The Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Laurie K Read
- From the Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, and Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14214,
| |
Collapse
|
16
|
Liu W. Epigenetics in Schistosomes: What We Know and What We Need Know. Front Cell Infect Microbiol 2016; 6:149. [PMID: 27891322 PMCID: PMC5104962 DOI: 10.3389/fcimb.2016.00149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/28/2016] [Indexed: 01/26/2023] Open
Abstract
Schistosomes are metazoan parasites and can cause schistosomiasis. Epigenetic modifications include DNA methylation, histone modifications and non-coding RNAs. Some enzymes involved in epigenetic modification and microRNA processes have been developed as drugs to treat the disease. Compared with humans and vertebrates, an in-depth understanding of epigenetic modifications in schistosomes is starting to be realized. DNA methylation, histone modifications and non-coding RNAs play important roles in the development and reproduction of schistosomes and in interactions between the host and schistosomes. Therefore, exploring and investigating the epigenetic modifications in schistosomes will facilitate drug development and therapy for schistosomiasis. Here, we review the role of epigenetic modifications in the development, growth and reproduction of schistosomes, and the interactions between the host and schistosome. We further discuss potential epigenetic targets for drug discovery for the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science Shanghai, China
| |
Collapse
|
17
|
Jain K, Warmack RA, Debler EW, Hadjikyriacou A, Stavropoulos P, Clarke SG. Protein Arginine Methyltransferase Product Specificity Is Mediated by Distinct Active-site Architectures. J Biol Chem 2016; 291:18299-308. [PMID: 27387499 DOI: 10.1074/jbc.m116.740399] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 11/06/2022] Open
Abstract
In the family of protein arginine methyltransferases (PRMTs) that predominantly generate either asymmetric or symmetric dimethylarginine (SDMA), PRMT7 is unique in producing solely monomethylarginine (MMA) products. The type of methylation on histones and other proteins dictates changes in gene expression, and numerous studies have linked altered profiles of methyl marks with disease phenotypes. Given the importance of specific inhibitor development, it is crucial to understand the mechanisms by which PRMT product specificity is conferred. We have focused our attention on active-site residues of PRMT7 from the protozoan Trypanosoma brucei We have designed 26 single and double mutations in the active site, including residues in the Glu-Xaa8-Glu (double E) loop and the Met-Gln-Trp sequence of the canonical Thr-His-Trp (THW) loop known to interact with the methyl-accepting substrate arginine. Analysis of the reaction products by high resolution cation exchange chromatography combined with the knowledge of PRMT crystal structures suggests a model where the size of two distinct subregions in the active site determines PRMT7 product specificity. A dual mutation of Glu-181 to Asp in the double E loop and Gln-329 to Ala in the canonical THW loop enables the enzyme to produce SDMA. Consistent with our model, the mutation of Cys-431 to His in the THW loop of human PRMT9 shifts its product specificity from SDMA toward MMA. Together with previous results, these findings provide a structural basis and a general model for product specificity in PRMTs, which will be useful for the rational design of specific PRMT inhibitors.
Collapse
Affiliation(s)
- Kanishk Jain
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Rebeccah A Warmack
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | | | - Andrea Hadjikyriacou
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| | - Peter Stavropoulos
- the Laboratory of Cell Biology and Laboratory of Lymphocyte Biology, The Rockefeller University, New York, New York 10065
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los Angeles, California 90095 and
| |
Collapse
|
18
|
Wen PP, Shi SP, Xu HD, Wang LN, Qiu JD. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization. Bioinformatics 2016; 32:3107-3115. [PMID: 27354692 DOI: 10.1093/bioinformatics/btw377] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 06/13/2016] [Indexed: 02/04/2023] Open
Abstract
As one of the most important reversible types of post-translational modification, protein methylation catalyzed by methyltransferases carries many pivotal biological functions as well as many essential biological processes. Identification of methylation sites is prerequisite for decoding methylation regulatory networks in living cells and understanding their physiological roles. Experimental methods are limitations of labor-intensive and time-consuming. While in silicon approaches are cost-effective and high-throughput manner to predict potential methylation sites, but those previous predictors only have a mixed model and their prediction performances are not fully satisfactory now. Recently, with increasing availability of quantitative methylation datasets in diverse species (especially in eukaryotes), there is a growing need to develop a species-specific predictor. Here, we designed a tool named PSSMe based on information gain (IG) feature optimization method for species-specific methylation site prediction. The IG method was adopted to analyze the importance and contribution of each feature, then select the valuable dimension feature vectors to reconstitute a new orderly feature, which was applied to build the finally prediction model. Finally, our method improves prediction performance of accuracy about 15% comparing with single features. Furthermore, our species-specific model significantly improves the predictive performance compare with other general methylation prediction tools. Hence, our prediction results serve as useful resources to elucidate the mechanism of arginine or lysine methylation and facilitate hypothesis-driven experimental design and validation. AVAILABILITY AND IMPLEMENTATION The tool online service is implemented by C# language and freely available at http://bioinfo.ncu.edu.cn/PSSMe.aspx CONTACT: jdqiu@ncu.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ping-Ping Wen
- Department of Chemistry, Department of Mathematics, Nanchang University, Nanchang 330031, China
| | - Shao-Ping Shi
- Department of Chemistry, Department of Mathematics, Nanchang University, Nanchang 330031, China
| | - Hao-Dong Xu
- Department of Chemistry, Department of Mathematics, Nanchang University, Nanchang 330031, China
| | - Li-Na Wang
- Department of Chemistry, Department of Mathematics, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- Department of Chemistry, Department of Mathematics, Nanchang University, Nanchang 330031, China Department of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337055, China
| |
Collapse
|
19
|
Geiger A, Bossard G, Sereno D, Pissarra J, Lemesre JL, Vincendeau P, Holzmuller P. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids. Front Immunol 2016; 7:212. [PMID: 27303406 PMCID: PMC4885876 DOI: 10.3389/fimmu.2016.00212] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas' disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts' immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host's immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.
Collapse
Affiliation(s)
- Anne Geiger
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Denis Sereno
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | - Joana Pissarra
- UMR INTERTRYP, IRD-CIRAD, CIRAD TA A-17/G, Montpellier, France
| | | | - Philippe Vincendeau
- UMR 177, IRD-CIRAD Université de Bordeaux Laboratoire de Parasitologie, Bordeaux, France
| | - Philippe Holzmuller
- UMRCMAEE CIRAD-INRA TA-A15/G “Contrôle des maladies animales exotiques et émergentes”, Montpellier, France
| |
Collapse
|
20
|
Hadjikyriacou A, Yang Y, Espejo A, Bedford MT, Clarke SG. Unique Features of Human Protein Arginine Methyltransferase 9 (PRMT9) and Its Substrate RNA Splicing Factor SF3B2. J Biol Chem 2015; 290:16723-43. [PMID: 25979344 DOI: 10.1074/jbc.m115.659433] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Indexed: 12/29/2022] Open
Abstract
Human protein arginine methyltransferase (PRMT) 9 symmetrically dimethylates arginine residues on splicing factor SF3B2 (SAP145) and has been functionally linked to the regulation of alternative splicing of pre-mRNA. Site-directed mutagenesis studies on this enzyme and its substrate had revealed essential unique residues in the double E loop and the importance of the C-terminal duplicated methyltransferase domain. In contrast to what had been observed with other PRMTs and their physiological substrates, a peptide containing the methylatable Arg-508 of SF3B2 was not recognized by PRMT9 in vitro. Although amino acid substitutions of residues surrounding Arg-508 had no great effect on PRMT9 recognition of SF3B2, moving the arginine residue within this sequence abolished methylation. PRMT9 and PRMT5 are the only known mammalian enzymes capable of forming symmetric dimethylarginine (SDMA) residues as type II PRMTs. We demonstrate here that the specificity of these enzymes for their substrates is distinct and not redundant. The loss of PRMT5 activity in mouse embryo fibroblasts results in almost complete loss of SDMA, suggesting that PRMT5 is the primary SDMA-forming enzyme in these cells. PRMT9, with its duplicated methyltransferase domain and conserved sequence in the double E loop, appears to have a unique structure and specificity among PRMTs for methylating SF3B2 and potentially other polypeptides.
Collapse
Affiliation(s)
- Andrea Hadjikyriacou
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los, Angeles, California 90095 and
| | - Yanzhong Yang
- the Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Alexsandra Espejo
- the Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Mark T Bedford
- the Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Steven G Clarke
- From the Department of Chemistry and Biochemistry and the Molecular Biology Institute, UCLA, Los, Angeles, California 90095 and
| |
Collapse
|
21
|
Lott K, Mukhopadhyay S, Li J, Wang J, Yao J, Sun Y, Qu J, Read LK. Arginine methylation of DRBD18 differentially impacts its opposing effects on the trypanosome transcriptome. Nucleic Acids Res 2015; 43:5501-23. [PMID: 25940618 PMCID: PMC4477658 DOI: 10.1093/nar/gkv428] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/22/2015] [Indexed: 12/30/2022] Open
Abstract
Arginine methylation is a posttranslational modification that impacts wide-ranging cellular functions, including transcription, mRNA splicing and translation. RNA binding proteins (RBPs) represent one of the largest classes of arginine methylated proteins in both mammals and the early diverging parasitic protozoan, Trypanosoma brucei. Here, we report the effects of arginine methylation on the functions of the essential and previously uncharacterized T. brucei RBP, DRBD18. RNAseq analysis shows that DRBD18 depletion causes extensive rearrangement of the T. brucei transcriptome, with increases and decreases in hundreds of mRNAs. DRBD18 contains three methylated arginines, and we used complementation of DRBD18 knockdown cells with methylmimic or hypomethylated DRBD18 to assess the functions of these methylmarks. Methylmimic and hypomethylated DRBD18 associate with different ribonucleoprotein complexes. These altered macromolecular interactions translate into differential impacts on the T. brucei transcriptome. Methylmimic DRBD18 preferentially stabilizes target RNAs, while hypomethylated DRBD18 is more efficient at destabilizing RNA. The protein arginine methyltransferase, TbPRMT1, interacts with DRBD18 and knockdown of TbPRMT1 recapitulates the effects of hypomethylated DRBD18 on mRNA levels. Together, these data support a model in which arginine methylation acts as a switch that regulates T. brucei gene expression.
Collapse
Affiliation(s)
- Kaylen Lott
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Shreya Mukhopadhyay
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Li
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jie Wang
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jin Yao
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jun Qu
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
22
|
Wang YC, Wang JD, Chen CH, Chen YW, Li C. A novel BLAST-Based Relative Distance (BBRD) method can effectively group members of protein arginine methyltransferases and suggest their evolutionary relationship. Mol Phylogenet Evol 2015; 84:101-11. [PMID: 25576770 DOI: 10.1016/j.ympev.2014.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/24/2014] [Accepted: 12/05/2014] [Indexed: 01/06/2023]
Abstract
We developed a novel BLAST-Based Relative Distance (BBRD) method by Pearson's correlation coefficient to avoid the problems of tedious multiple sequence alignment and complicated outgroup selection. We showed its application on reconstructing reliable phylogeny for nucleotide and protein sequences as exemplified by the fmr-1 gene and dihydrolipoamide dehydrogenase, respectively. We then used BBRD to resolve 124 protein arginine methyltransferases (PRMTs) that are homologues of nine mammalian PRMTs. The tree placed the uncharacterized PRMT9 with PRMT7 in the same clade, outside of all the Type I PRMTs including PRMT1 and its vertebrate paralogue PRMT8, PRMT3, PRMT6, PRMT2 and PRMT4. The PRMT7/9 branch then connects with the type II PRMT5. Some non-vertebrates contain different PRMTs without high sequence homology with the mammalian PRMTs. For example, in the case of Drosophila arginine methyltransferase (DART) and Trypanosoma brucei methyltransferases (TbPRMTs) in the analyses, the BBRD program grouped them with specific clades and thus suggested their evolutionary relationships. The BBRD method thus provided a great tool to construct a reliable tree for members of protein families through evolution.
Collapse
Affiliation(s)
- Yi-Chun Wang
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| | - Jing-Doo Wang
- Department of Computer Science and Information Engineering, Asia University, No. 500, Lioufeng Rd., Wufeng District, Taichung 41354, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chin-Han Chen
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan
| | - Yi-Wen Chen
- Department of Life Science, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Chuan Li
- Department of Biomedical Sciences, Chung Shan Medical University, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N. Rd., Taichung 40201, Taiwan.
| |
Collapse
|