1
|
Kavanaugh LG, Hinrichsen ME, Dunham CM, Conn GL. Regulation, structure, and activity of the Pseudomonas aeruginosa MexXY efflux system. Antimicrob Agents Chemother 2025; 69:e0182524. [PMID: 40192483 PMCID: PMC12057347 DOI: 10.1128/aac.01825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
The current crisis in bacterial antibiotic resistance can be attributed to the overuse (or misuse) of these essential medicines in healthcare and agriculture, coupled with the slowed progression of new drug development. In the versatile, opportunistic pathogen Pseudomonas aeruginosa, the Resistance-Nodulation-Division (RND) efflux pump MexXY plays critical roles in both cell physiology and the acquisition of multidrug resistance. The mexXY operon is not constitutively expressed, but this process is instead controlled by a complex network of multiple interconnected regulatory mechanisms. These include induction by several of the pump's ribosome-targeting antibiotic substrates and transcriptional repression and anti-repression processes that are themselves influenced by various cellular factors, processes, or stresses. Although extensive studies of the MexXY complex are currently lacking as compared to other RND efflux pumps such as Escherichia coli AcrAB-TolC, recent studies have provided valuable insights into the MexXY architecture and substrate profiles, including its contribution to clinical resistance. Furthermore, while MexXY primarily associates with the outer membrane protein OprM, emerging evidence suggests that this transporter-periplasmic adaptor pair may also partner with other outer membrane proteins, potentially to alter the efflux substrate profile and activity under specific environmental conditions. In this minireview, we summarize current understanding of MexXY regulation, structure, and substrate selectivity within the context of clinical resistance and as a framework for future efflux pump inhibitor development.
Collapse
Affiliation(s)
- Logan G. Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Megan E. Hinrichsen
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia, USA
| | - Christine M. Dunham
- Department of Chemistry, Emory University, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L. Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Dubois E, Spasovski V, Plésiat P, Llanes C. Role of the two-component system AmgRS in early resistance of Pseudomonas aeruginosa to cinnamaldehyde. Microbiol Spectr 2025; 13:e0169924. [PMID: 39656006 PMCID: PMC11705830 DOI: 10.1128/spectrum.01699-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025] Open
Abstract
Exposure of Pseudomonas aeruginosa to cinnamaldehyde (CNA), a natural electrophilic antimicrobial often used as self-medication to treat mild infections, triggers overproduction of the MexAB-OprM efflux system, leading to multidrug resistance. In this study, we demonstrate that CNA exposure induces expression of genes regulated by the two-component system AmgRS. AmgRS activates MexAB-OprM production, independent of repressors MexR and NalD. In addition to the essential role played by the NalC-ArmR pathway in this adaptive process, AmgRS is critical for the survival of P. aeruginosa challenged with CNA. Altogether, these data suggest that efflux-dependent and -independent mechanisms are activated in the early phase of CNA exposure, allowing for progressive enzymatic reduction of the biocide to non-toxic cinnamic alcohol.IMPORTANCEExposure of Pseudomonas aeruginosa to cinnamaldehyde (CNA), an antimicrobial used in self-medication, induces overproduction of the MexAB-OprM efflux system, leading to multidrug resistance. Our study demonstrates that the AmgRS two-component system aids in the survival of P. aeruginosa strain PA14 under CNA exposure through both MexAB-OprM-dependent and -independent mechanisms until the enzymatic reduction of CNA into the less toxic cinnamic alcohol. This discovery highlights the pivotal role of AmgRS in mediating defense against aldehyde biocides, emphasizing its significance in the persistence of P. aeruginosa, a pathogen associated with hospital-acquired infections and cystic fibrosis, and underscores the potential impact on clinical treatment strategies.
Collapse
Affiliation(s)
- Eline Dubois
- UMR CNRS 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| | - Vladimir Spasovski
- UMR CNRS 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| | - Patrick Plésiat
- UMR CNRS 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| | - Catherine Llanes
- UMR CNRS 6249 Chrono-Environnement, UFR Santé, Université Bourgogne Franche-Comté, Besançon, France
| |
Collapse
|
3
|
Ritz D, Deng Y, Schultz D. Common regulatory mutation increases single-cell survival to antibiotic exposures in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614194. [PMID: 39345531 PMCID: PMC11430049 DOI: 10.1101/2024.09.20.614194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Typical antibiotic susceptibility testing (AST) of microbial samples is performed in homogeneous cultures in steady environments, which does not account for the highly heterogeneous and dynamic nature of antibiotic responses. The most common mutation found in P. aeruginosa lineages evolved in the human lung, a loss of function of repressor MexZ, increases basal levels of multidrug efflux MexXY, but does not increase resistance by traditional MIC measures. Here, we use single cell microfluidics to show that P. aeruginosa response to aminoglycosides is highly heterogeneous, with only a subpopulation of cells surviving exposure. mexZ mutations then bypass the lengthy process of MexXY activation, increasing survival to sudden drug exposures and conferring a fitness advantage in fluctuating environments. We propose a simple "Response Dynamics" assay to quantify the speed of population-level recovery to drug exposures. This assay can be used alongside MIC for resistance profiling to better predict clinical outcomes.
Collapse
Affiliation(s)
- David Ritz
- Department of Microbiology & Immunology, Geisel School of Medicine, Hanover, NH 03755, USA
| | - Yijie Deng
- Thayer School of Engineering – Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology & Immunology, Geisel School of Medicine, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Madden DE, Baird T, Bell SC, McCarthy KL, Price EP, Sarovich DS. Keeping up with the pathogens: improved antimicrobial resistance detection and prediction from Pseudomonas aeruginosa genomes. Genome Med 2024; 16:78. [PMID: 38849863 PMCID: PMC11157771 DOI: 10.1186/s13073-024-01346-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) is an intensifying threat that requires urgent mitigation to avoid a post-antibiotic era. Pseudomonas aeruginosa represents one of the greatest AMR concerns due to increasing multi- and pan-drug resistance rates. Shotgun sequencing is gaining traction for in silico AMR profiling due to its unambiguity and transferability; however, accurate and comprehensive AMR prediction from P. aeruginosa genomes remains an unsolved problem. METHODS We first curated the most comprehensive database yet of known P. aeruginosa AMR variants. Next, we performed comparative genomics and microbial genome-wide association study analysis across a Global isolate Dataset (n = 1877) with paired antimicrobial phenotype and genomic data to identify novel AMR variants. Finally, the performance of our P. aeruginosa AMR database, implemented in our AMR detection and prediction tool, ARDaP, was compared with three previously published in silico AMR gene detection or phenotype prediction tools-abritAMR, AMRFinderPlus, ResFinder-across both the Global Dataset and an analysis-naïve Validation Dataset (n = 102). RESULTS Our AMR database comprises 3639 mobile AMR genes and 728 chromosomal variants, including 75 previously unreported chromosomal AMR variants, 10 variants associated with unusual antimicrobial susceptibility, and 281 chromosomal variants that we show are unlikely to confer AMR. Our pipeline achieved a genotype-phenotype balanced accuracy (bACC) of 85% and 81% across 10 clinically relevant antibiotics when tested against the Global and Validation Datasets, respectively, vs. just 56% and 54% with abritAMR, 58% and 54% with AMRFinderPlus, and 60% and 53% with ResFinder. ARDaP's superior performance was predominantly due to the inclusion of chromosomal AMR variants, which are generally not identified with most AMR identification tools. CONCLUSIONS Our ARDaP software and associated AMR variant database provides an accurate tool for predicting AMR phenotypes in P. aeruginosa, far surpassing the performance of current tools. Implementation of ARDaP for routine AMR prediction from P. aeruginosa genomes and metagenomes will improve AMR identification, addressing a critical facet in combatting this treatment-refractory pathogen. However, knowledge gaps remain in our understanding of the P. aeruginosa resistome, particularly the basis of colistin AMR.
Collapse
Affiliation(s)
- Danielle E Madden
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Timothy Baird
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
- Respiratory Department, Sunshine Coast University Hospital, Birtinya, Queensland, Australia
| | - Scott C Bell
- Adult Cystic Fibrosis Centre, The Prince Charles Hospital, Chermside, Queensland, Australia
- Children's Health Research Centre, Faculty of Medicine, The University of Queensland, South Brisbane, Queensland, Australia
| | - Kate L McCarthy
- University of Queensland Medical School, Herston, QLD, Australia
- Royal Brisbane and Women's Hospital, Herston, Queensland, Australia
| | - Erin P Price
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia
| | - Derek S Sarovich
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia.
- Sunshine Coast Health Institute, Birtinya, Queensland, Australia.
| |
Collapse
|
5
|
Wu W, Huang J, Xu Z. Antibiotic influx and efflux in Pseudomonas aeruginosa: Regulation and therapeutic implications. Microb Biotechnol 2024; 17:e14487. [PMID: 38801351 PMCID: PMC11129675 DOI: 10.1111/1751-7915.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
Pseudomonas aeruginosa is a notorious multidrug-resistant pathogen that poses a serious and growing threat to the worldwide public health. The expression of resistance determinants is exquisitely modulated by the abundant regulatory proteins and the intricate signal sensing and transduction systems in this pathogen. Downregulation of antibiotic influx porin proteins and upregulation of antibiotic efflux pump systems owing to mutational changes in their regulators or the presence of distinct inducing molecular signals represent two of the most efficient mechanisms that restrict intracellular antibiotic accumulation and enable P. aeruginosa to resist multiple antibiotics. Treatment of P. aeruginosa infections is extremely challenging due to the highly inducible mechanism of antibiotic resistance. This review comprehensively summarizes the regulatory networks of the major porin proteins (OprD and OprH) and efflux pumps (MexAB-OprM, MexCD-OprJ, MexEF-OprN, and MexXY) that play critical roles in antibiotic influx and efflux in P. aeruginosa. It also discusses promising therapeutic approaches using safe and efficient adjuvants to enhance the efficacy of conventional antibiotics to combat multidrug-resistant P. aeruginosa by controlling the expression levels of porins and efflux pumps. This review not only highlights the complexity of the regulatory network that induces antibiotic resistance in P. aeruginosa but also provides important therapeutic implications in targeting the inducible mechanism of resistance.
Collapse
Affiliation(s)
- Weiyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiahui Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zeling Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
6
|
Yamasaki S, Zwama M, Yoneda T, Hayashi-Nishino M, Nishino K. Drug resistance and physiological roles of RND multidrug efflux pumps in Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001322. [PMID: 37319001 PMCID: PMC10333786 DOI: 10.1099/mic.0.001322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/18/2023] [Indexed: 06/17/2023]
Abstract
Drug efflux pumps transport antimicrobial agents out of bacteria, thereby reducing the intracellular antimicrobial concentration, which is associated with intrinsic and acquired bacterial resistance to these antimicrobials. As genome analysis has advanced, many drug efflux pump genes have been detected in the genomes of bacterial species. In addition to drug resistance, these pumps are involved in various essential physiological functions, such as bacterial adaptation to hostile environments, toxin and metabolite efflux, biofilm formation and quorum sensing. In Gram-negative bacteria, efflux pumps in the resistance–nodulation–division (RND) superfamily play a clinically important role. In this review, we focus on Gram-negative bacteria, including Salmonella enterica , Escherichia coli and Pseudomonas aeruginosa , and discuss the role of RND efflux pumps in drug resistance and physiological functions.
Collapse
Affiliation(s)
- Seiji Yamasaki
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Martijn Zwama
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Tomohiro Yoneda
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuko Hayashi-Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kunihiko Nishino
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, 2-8 Yamadaoka, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Ambreetha S, Singh V. Genetic and environmental determinants of surface adaptations in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37276014 DOI: 10.1099/mic.0.001335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudomonas aeruginosa
is a well-studied Gram-negative opportunistic bacterium that thrives in markedly varied environments. It is a nutritionally versatile microbe that can colonize a host as well as exist in the environment. Unicellular, planktonic cells of
P. aeruginosa
can come together to perform a coordinated swarming movement or turn into a sessile, surface-adhered population called biofilm. These collective behaviours produce strikingly different outcomes. While swarming motility rapidly disseminates the bacterial population, biofilm collectively protects the population from environmental stresses such as heat, drought, toxic chemicals, grazing by predators, and attack by host immune cells and antibiotics. The ubiquitous nature of
P. aeruginosa
is likely to be supported by the timely transition between planktonic, swarming and biofilm lifestyles. The social behaviours of this bacteria viz biofilm and swarm modes are controlled by signals from quorum-sensing networks, LasI-LasR, RhlI-RhlR and PQS-MvfR, and several other sensory kinases and response regulators. A combination of environmental and genetic cues regulates the transition of the
P. aeruginosa
population to specific states. The current review is aimed at discussing key factors that promote physiologically distinct transitioning of the
P. aeruginosa
population.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| | - Varsha Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| |
Collapse
|
8
|
Yasuda N, Fujita T, Fujioka T, Tagawa M, Kohira N, Torimaru K, Shiota S, Kumagai T, Morita D, Ogawa W, Tsuchiya T, Kuroda T. Effects of the order of exposure to antimicrobials on the incidence of multidrug-resistant Pseudomonas aeruginosa. Sci Rep 2023; 13:8826. [PMID: 37258635 DOI: 10.1038/s41598-023-35256-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 05/15/2023] [Indexed: 06/02/2023] Open
Abstract
Multidrug-resistant Pseudomonas aeruginosa (MDRP) is one of the most important pathogens in clinical practice. To clarify the mechanisms contributing to its emergence, we isolated MDRPs using the P. aeruginosa PAO1, the whole genome sequence of which has already been elucidated. Mutant strains resistant to carbapenems, aminoglycosides, and new quinolones, which are used to treat P. aeruginosa infections, were isolated; however, none met the criteria for MDRPs. Then, PAO1 strains were exposed to these antimicrobial agents in various orders and the appearance rate of MDRP varied depending on the order of exposure; MDRPs more frequently appeared when gentamicin was applied before ciprofloxacin, but were rarely isolated when ciprofloxacin was applied first. Exposure to ciprofloxacin followed by gentamicin increased the expression of MexCD-OprJ, an RND-type multidrug efflux pump, due to the NfxB mutation. In contrast, exposure to gentamicin followed by ciprofloxacin resulted in more mutations in DNA gyrase. These results suggest that the type of quinolone resistance mechanism is related to the frequency of MDRP and that the risk of MDRP incidence is highly dependent on the order of exposure to gentamicin and ciprofloxacin.
Collapse
Affiliation(s)
- Nami Yasuda
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Tomoko Fujita
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Takahiro Fujioka
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Mei Tagawa
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Naoki Kohira
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Kensho Torimaru
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Sumiko Shiota
- Department of Molecular Biology, School of Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Takanori Kumagai
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Daichi Morita
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Wakano Ogawa
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
- Department of Microbiology and Biochemistry, Daiichi University of Pharmacy, 22-1, Tamagawa-Machi, Minami-ku, Fukuoka, 815-8511, Japan
| | - Tomofusa Tsuchiya
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Teruo Kuroda
- Department of Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1-1, Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.
- Department of Microbiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
9
|
Gene-Gene Interactions Reduce Aminoglycoside Susceptibility of Pseudomonas aeruginosa through Efflux Pump-Dependent and -Independent Mechanisms. Antibiotics (Basel) 2023; 12:antibiotics12010152. [PMID: 36671353 PMCID: PMC9854422 DOI: 10.3390/antibiotics12010152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Pseudomonas aeruginosa causes a wide range of acute and chronic infections. Aminoglycosides are a cornerstone of treatment, but isolates are often resistant. The purpose of this research was to better understand the genetic basis of aminoglycoside resistance in P. aeruginosa. Bioinformatic approaches identified mutations in resistance-associated genes in the clinical isolates of P. aeruginosa. The common mutations were then engineered into the genome of P. aeruginosa reference strain PAO1. Mutations in the elongation factor gene fusA1 caused the biggest reduction in aminoglycoside susceptibility, with mutations in the two-component regulator gene amgS and the efflux pump regulator gene mexZ having less impact. This susceptibility was further reduced by combinations of mutations. Mutations in fusA1, amgS and mexZ all increased the expression of the mexXY efflux pump that is strongly associated with aminoglycoside resistance. Furthermore, the fusA1 amgS mexZ triple mutant had the highest efflux pump gene expression. Engineering fusA1 and amgS mutants lacking this efflux pump showed that fusA1 and amgS also reduce aminoglycoside susceptibility through additional mechanisms. The fusA1 and amgS mutations reduced bacterial growth, showing that these mutations have a fitness cost. Our findings demonstrate the complex interplay between mutations, efflux pump expression and other mechanisms for reducing the susceptibility of P. aeruginosa to aminoglycosides.
Collapse
|
10
|
Holban AM, Gregoire CM, Gestal MC. Conquering the host: Bordetella spp. and Pseudomonas aeruginosa molecular regulators in lung infection. Front Microbiol 2022; 13:983149. [PMID: 36225372 PMCID: PMC9549215 DOI: 10.3389/fmicb.2022.983149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/17/2022] [Indexed: 11/27/2022] Open
Abstract
When bacteria sense cues from the host environment, stress responses are activated. Two component systems, sigma factors, small RNAs, ppGpp stringent response, and chaperones start coordinate the expression of virulence factors or immunomodulators to allow bacteria to respond. Although, some of these are well studied, such as the two-component systems, the contribution of other regulators, such as sigma factors or ppGpp, is increasingly gaining attention. Pseudomonas aeruginosa is the gold standard pathogen for studying the molecular mechanisms to sense and respond to environmental cues. Bordetella spp., on the other hand, is a microbial model for studying host-pathogen interactions at the molecular level. These two pathogens have the ability to colonize the lungs of patients with chronic diseases, suggesting that they have the potential to share a niche and interact. However, the molecular networks that facilitate adaptation of Bordetella spp. to cues are unclear. Here, we offer a side-by-side comparison of what is known about these diverse molecular mechanisms that bacteria utilize to counteract host immune responses, while highlighting the relatively unexplored interactions between them.
Collapse
Affiliation(s)
- Alina M. Holban
- Research Institute of the University of Bucharest (ICUB), Bucharest, Romania
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Courtney M. Gregoire
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
| | - Monica C. Gestal
- Department of Microbiology and Immunology, Louisiana State University Health Science Center, Shreveport, LA, United States
- *Correspondence: Monica C. Gestal, ;
| |
Collapse
|
11
|
Sionov RV, Steinberg D. Targeting the Holy Triangle of Quorum Sensing, Biofilm Formation, and Antibiotic Resistance in Pathogenic Bacteria. Microorganisms 2022; 10:1239. [PMID: 35744757 PMCID: PMC9228545 DOI: 10.3390/microorganisms10061239] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic and recurrent bacterial infections are frequently associated with the formation of biofilms on biotic or abiotic materials that are composed of mono- or multi-species cultures of bacteria/fungi embedded in an extracellular matrix produced by the microorganisms. Biofilm formation is, among others, regulated by quorum sensing (QS) which is an interbacterial communication system usually composed of two-component systems (TCSs) of secreted autoinducer compounds that activate signal transduction pathways through interaction with their respective receptors. Embedded in the biofilms, the bacteria are protected from environmental stress stimuli, and they often show reduced responses to antibiotics, making it difficult to eradicate the bacterial infection. Besides reduced penetration of antibiotics through the intricate structure of the biofilms, the sessile biofilm-embedded bacteria show reduced metabolic activity making them intrinsically less sensitive to antibiotics. Moreover, they frequently express elevated levels of efflux pumps that extrude antibiotics, thereby reducing their intracellular levels. Some efflux pumps are involved in the secretion of QS compounds and biofilm-related materials, besides being important for removing toxic substances from the bacteria. Some efflux pump inhibitors (EPIs) have been shown to both prevent biofilm formation and sensitize the bacteria to antibiotics, suggesting a relationship between these processes. Additionally, QS inhibitors or quenchers may affect antibiotic susceptibility. Thus, targeting elements that regulate QS and biofilm formation might be a promising approach to combat antibiotic-resistant biofilm-related bacterial infections.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research, The Faculty of Dental Medicine, Hadassah Medical School, The Hebrew University, Jerusalem 9112102, Israel;
| | | |
Collapse
|
12
|
Thacharodi A, Lamont IL. Aminoglycoside resistance in Pseudomonas aeruginosa: the contribution of the MexXY-OprM efflux pump varies between isolates. J Med Microbiol 2022; 71. [PMID: 35708991 DOI: 10.1099/jmm.0.001551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction. Aminoglycoside antibiotics are widely used to treat infections of Pseudomonas aeruginosa. The MexXY-OprM efflux pump is an important contributor to aminoglycoside tolerance in P. aeruginosa reference strains and expression of the mexXY genes is repressed by the MexZ repressor protein. Direct investigation of the role of this efflux pump in clinical isolates is relatively limited.Hypothesis. The contribution of MexXY-OprM to P. aeruginosa aminoglycoside resistance is isolate-specific.Aim. To quantify the role of MexXY-OprM and its repressor, MexZ, in clinical isolates of P. aeruginosa. Methodology. The mexXY genes were deleted from ten clinical isolates of P. aeruginosa, and the mexZ gene from nine isolates. Antimicrobial susceptibility testing was carried out for commonly used antipseudomonal drugs on the engineered mutants and the isogenic wild-type isolates. RT-qPCR was used to measure expression of the mexX gene.Results. All but one of the mexXY mutants were more susceptible to the clinically used aminoglycosides tobramycin, gentamicin and amikacin but the degree to which susceptibility increased varied greatly between isolates. The mexXY mutants were also more susceptible to a fluoroquinolone, ciprofloxacin. In three isolates with functional MexZ, deletion of mexZ increased expression of mexXY and aminoglycoside tolerance. Conversely, deleting mexZ from six clinical isolates with mexZ sequence variants had little or no effect on expression of mexXY or on aminoglycoside susceptibility, consistent with the variants abolishing MexZ function. Genome analysis showed that over 50 % of 619 clinical isolates had sequence variants predicted to reduce the affinity of MexZ for DNA, likely increasing mexXY expression and hence efflux of aminoglycosides.Conclusion. Our findings show that the interplay between MexXY, MexZ and the level of mexXY expression plays an important role in aminoglycoside resistance in clinical isolates of P. aeruginosa but the magnitude of the contribution of this efflux pump to resistance is isolate-specific.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Cell Envelope Stress Response in Pseudomonas aeruginosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:147-184. [DOI: 10.1007/978-3-031-08491-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Ducret V, Perron K, Valentini M. Role of Two-Component System Networks in Pseudomonas aeruginosa Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:371-395. [PMID: 36258080 DOI: 10.1007/978-3-031-08491-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-component systems (TCS) are the largest family of signaling systems in the bacterial kingdom. They enable bacteria to cope with a wide range of environmental conditions via the sensing of stimuli and the transduction of the signal into an appropriate cellular adaptation response. Pseudomonas aeruginosa possesses one of the richest arrays of TCSs in bacteria and they have been the subject of intense investigation for more than 20 years. Most of the P. aeruginosa TCSs characterized to date affect its pathogenesis, via the regulation of virulence factors expression, modulation of the synthesis of antibiotic/antimicrobial resistance mechanisms, and/or via linking virulence to energy metabolism. Here, we give an overview of the current knowledge on P. aeruginosa TCSs, citing key examples for each of the above-mentioned regulatory actions. We then conclude by mentioning few small molecule inhibitors of P. aeruginosa TCSs that have shown an antimicrobial action in vitro.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
15
|
Two-Component Signaling Systems Regulate Diverse Virulence-Associated Traits in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:AEM.03089-20. [PMID: 33771779 DOI: 10.1128/aem.03089-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that can cause problematic infections at different sites throughout the human body. P. aeruginosa encodes a large suite of over 60 two-component signaling systems that enable cells to rapidly sense and respond to external signals. Previous work has shown that some of these sensory systems contribute to P. aeruginosa pathogenesis, but the virulence-associated processes and phenotypic traits that each of these systems controls are still largely unclear. To aid investigations of these sensory systems, we have generated deletion strains for each of 64 genes encoding histidine kinases and one histidine phosphotransferase in P. aeruginosa PA14. We carried out initial phenotypic characterizations of this collection by assaying these mutants for over a dozen virulence-associated traits, and we found that each of these phenotypes is regulated by multiple sensory systems. Our work highlights the usefulness of this collection for further studies of P. aeruginosa two-component signaling systems and provides insight into how these systems may contribute to P. aeruginosa infection.IMPORTANCE Pseudomonas aeruginosa can grow and survive under a wide range of conditions, including as a human pathogen. As such, P. aeruginosa must be able to sense and respond to diverse signals and cues in its environment. This sensory capability is endowed in part by the hundreds of two-component signaling proteins encoded in the P. aeruginosa genome, but the precise roles of each remain poorly defined. To facilitate systematic study of the signaling repertoire of P. aeruginosa PA14, we generated a library of deletion strains, each lacking one of the 64 histidine kinases. By subjecting these strains to a battery of phenotypic assays, we confirmed the functions of many and unveiled roles for dozens of previously uncharacterized histidine kinases in controlling various traits, many of which are associated with P. aeruginosa virulence. Thus, this work provides new insight into the functions of two-component signaling proteins and provides a resource for future investigations.
Collapse
|
16
|
Souque C, Escudero JA, MacLean RC. Integron activity accelerates the evolution of antibiotic resistance. eLife 2021; 10:62474. [PMID: 33634790 PMCID: PMC8024014 DOI: 10.7554/elife.62474] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/23/2021] [Indexed: 11/13/2022] Open
Abstract
Mobile integrons are widespread genetic platforms that allow bacteria to modulate the expression of antibiotic resistance cassettes by shuffling their position from a common promoter. Antibiotic stress induces the expression of an integrase that excises and integrates cassettes, and this unique recombination and expression system is thought to allow bacteria to 'evolve on demand' in response to antibiotic pressure. To test this hypothesis, we inserted a custom three-cassette integron into Pseudomonas aeruginosa and used experimental evolution to measure the impact of integrase activity on adaptation to gentamicin. Crucially, integrase activity accelerated evolution by increasing the expression of a gentamicin resistance cassette through duplications and by eliminating redundant cassettes. Importantly, we found no evidence of deleterious off-target effects of integrase activity. In summary, integrons accelerate resistance evolution by rapidly generating combinatorial variation in cassette composition while maintaining genomic integrity.
Collapse
Affiliation(s)
- Célia Souque
- University of Oxford, Department of Zoology, Oxford, United Kingdom
| | - José Antonio Escudero
- University of Oxford, Department of Zoology, Oxford, United Kingdom.,Universidad Complutense de Madrid, Departamento de Sanidad Animal and VISAVET, Madrid, Spain
| | - R Craig MacLean
- University of Oxford, Department of Zoology, Oxford, United Kingdom
| |
Collapse
|
17
|
Dulyayangkul P, Satapoomin N, Avison MB, Charoenlap N, Vattanaviboon P, Mongkolsuk S. Over-Expression of Hypochlorite Inducible Major Facilitator Superfamily (MFS) Pumps Reduces Antimicrobial Drug Susceptibility by Increasing the Production of MexXY Mediated by ArmZ in Pseudomonas aeruginosa. Front Microbiol 2021; 11:592153. [PMID: 33510718 PMCID: PMC7835679 DOI: 10.3389/fmicb.2020.592153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022] Open
Abstract
Pseudomonas aeruginosa, a well-known cause of nosocomial infection, is frequently antibiotic resistant and this complicates treatment. Links between oxidative stress responses inducing antibiotic resistance through over-production of RND-type efflux pumps have been reported in P. aeruginosa, but this has not previously been associated with MFS-type efflux pumps. Two MFS efflux pumps encoded by mfs1 and mfs2 were selected for study because they were found to be sodium hypochlorite (NaOCl) inducible. Antibiotic susceptibility testing was used to define the importance of these MFS pumps in antibiotic resistance and proteomics was used to characterize the resistance mechanisms involved. The results revealed that mfs1 is NaOCl inducible whereas mfs2 is NaOCl, N-Ethylmaleimide and t-butyl hydroperoxide inducible. Deletion of mfs1 or mfs2 did not affect antibiotic or paraquat susceptibility. However, over-production of Mfs1 and Mfs2 reduced susceptibility to aminoglycosides, quinolones, and paraquat. Proteomics, gene expression analysis and targeted mutagenesis showed that over-production of the MexXY RND-type efflux pump in a manner dependent upon armZ, but not amgRS, is the cause of reduced antibiotic susceptibility upon over-production of Mfs1 and Mfs2. mexXY operon expression analysis in strains carrying various lengths of mfs1 and mfs2 revealed that at least three transmembrane domains are necessary for mexXY over-expression and decreased antibiotic susceptibility. Over-expression of the MFS-type efflux pump gene tetA(C) did not give the same effect. Changes in paraquat susceptibility were independent of mexXY and armZ suggesting that it is a substrate of Mfs1 and Mfs2. Altogether, this is the first evidence of cascade effects where the over-production of an MFS pump causes over-production of an RND pump, in this case MexXY via increased armZ expression.
Collapse
Affiliation(s)
- Punyawee Dulyayangkul
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Naphat Satapoomin
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Nisanart Charoenlap
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Paiboon Vattanaviboon
- Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| |
Collapse
|
18
|
Heywood A, Lamont IL. Cell envelope proteases and peptidases of Pseudomonas aeruginosa: multiple roles, multiple mechanisms. FEMS Microbiol Rev 2020; 44:857-873. [PMID: 32804218 DOI: 10.1093/femsre/fuaa036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is commonly isolated from damp environments. It is also a major opportunistic pathogen, causing a wide range of problematic infections. The cell envelope of P. aeruginosa, comprising the cytoplasmic membrane, periplasmic space, peptidoglycan layer and outer membrane, is critical to the bacteria's ability to adapt and thrive in a wide range of environments. Over 40 proteases and peptidases are located in the P. aeruginosa cell envelope. These enzymes play many crucial roles. They are required for protein secretion out of the cytoplasm to the periplasm, outer membrane, cell surface or the environment; for protein quality control and removal of misfolded proteins; for controlling gene expression, allowing adaptation to environmental changes; for modification and remodelling of peptidoglycan; and for metabolism of small molecules. The key roles of cell envelope proteases in ensuring normal cell functioning have prompted the development of inhibitors targeting some of these enzymes as potential new anti-Pseudomonas therapies. In this review, we summarise the current state of knowledge across the breadth of P. aeruginosa cell envelope proteases and peptidases, with an emphasis on recent findings, and highlight likely future directions in their study.
Collapse
Affiliation(s)
- Astra Heywood
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
19
|
Singh M, Sykes EME, Li Y, Kumar A. MexXY RND pump of Pseudomonas aeruginosa PA7 effluxes bi-anionic β-lactams carbenicillin and sulbenicillin when it partners with the outer membrane factor OprA but not with OprM. MICROBIOLOGY-SGM 2020; 166:1095-1106. [PMID: 32909933 DOI: 10.1099/mic.0.000971] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Antibiotic resistance in Pseudomonas aeruginosa is a serious concern in healthcare systems. Among the determinants of antibiotic resistance in P. aeruginosa, efflux pumps belonging to the resistance-nodulation-division (RND) family confer resistance to a broad range of antibacterial compounds. The MexXY efflux system is widely overexpressed in P. aeruginosa isolates from cystic fibrosis (CF) patients. MexXY can form functional complexes with two different outer membrane factors (OMFs), OprA and OprM. In this study, using state-of-the-art genetic tools, the substrate specificities of MexXY-OprA and MexXY-OprM complexes were determined. Our results show, for the first time, that the substrate profile of the MexXY system from P. aeruginosa PA7 can vary depending on which OM factor (OprM or OprA) it complexes with. While both MexXY-OprA and MexXY-OprM complexes are capable of effluxing aminoglycosides, the bi-anionic β-lactam molecules carbenicillin and sulbenicillin were found to only be the substrate of MexXY-OprA. Our study therefore shows that by partnering with different OMF proteins MexY can expand its substrate profile.
Collapse
Affiliation(s)
- Manu Singh
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Yanqi Li
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
20
|
Hypermutator Pseudomonas aeruginosa Exploits Multiple Genetic Pathways To Develop Multidrug Resistance during Long-Term Infections in the Airways of Cystic Fibrosis Patients. Antimicrob Agents Chemother 2020; 64:AAC.02142-19. [PMID: 32071060 DOI: 10.1128/aac.02142-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/20/2019] [Indexed: 12/30/2022] Open
Abstract
Pseudomonas aeruginosa exploits intrinsic and acquired resistance mechanisms to resist almost every antibiotic used in chemotherapy. Antimicrobial resistance in P. aeruginosa isolates recovered from cystic fibrosis (CF) patients is further enhanced by the occurrence of hypermutator strains, a hallmark of chronic infections in CF patients. However, the within-patient genetic diversity of P. aeruginosa populations related to antibiotic resistance remains unexplored. Here, we show the evolution of the mutational resistome profile of a P. aeruginosa hypermutator lineage by performing longitudinal and transversal analyses of isolates collected from a CF patient throughout 20 years of chronic infection. Our results show the accumulation of thousands of mutations, with an overall evolutionary history characterized by purifying selection. However, mutations in antibiotic resistance genes appear to have been positively selected, driven by antibiotic treatment. Antibiotic resistance increased as infection progressed toward the establishment of a population constituted by genotypically diversified coexisting sublineages, all of which converged to multidrug resistance. These sublineages emerged by parallel evolution through distinct evolutionary pathways, which affected genes of the same functional categories. Interestingly, ampC and ftsI, encoding the β-lactamase and penicillin-binding protein 3, respectively, were found to be among the most frequently mutated genes. In fact, both genes were targeted by multiple independent mutational events, which led to a wide diversity of coexisting alleles underlying β-lactam resistance. Our findings indicate that hypermutators, apart from boosting antibiotic resistance evolution by simultaneously targeting several genes, favor the emergence of adaptive innovative alleles by clustering beneficial/compensatory mutations in the same gene, hence expanding P. aeruginosa strategies for persistence.
Collapse
|
21
|
Wardell SJT, Rehman A, Martin LW, Winstanley C, Patrick WM, Lamont IL. A large-scale whole-genome comparison shows that experimental evolution in response to antibiotics predicts changes in naturally evolved clinical Pseudomonas aeruginosa. Antimicrob Agents Chemother 2019; 63:AAC.01619-19. [PMID: 31570397 PMCID: PMC6879238 DOI: 10.1128/aac.01619-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a wide range of acute and chronic infections. An increasing number of isolates have mutations that make them antibiotic resistant, making treatment difficult. To identify resistance-associated mutations we experimentally evolved the antibiotic sensitive strain P. aeruginosa PAO1 to become resistant to three widely used anti-pseudomonal antibiotics, ciprofloxacin, meropenem and tobramycin. Mutants could tolerate up to 2048-fold higher concentrations of antibiotic than strain PAO1. Genome sequences were determined for thirteen mutants for each antibiotic. Each mutant had between 2 and 8 mutations. For each antibiotic at least 8 genes were mutated in multiple mutants, demonstrating the genetic complexity of resistance. For all three antibiotics mutations arose in genes known to be associated with resistance, but also in genes not previously associated with resistance. To determine the clinical relevance of mutations uncovered in this study we analysed the corresponding genes in 558 isolates of P. aeruginosa from patients with chronic lung disease and in 172 isolates from the general environment. Many genes identified through experimental evolution had predicted function-altering changes in clinical isolates but not in environmental isolates, showing that mutated genes in experimentally evolved bacteria can predict those that undergo mutation during infection. Additionally, large deletions of up to 479kb arose in experimentally evolved meropenem resistant mutants and large deletions were present in 87 of the clinical isolates. These findings significantly advance understanding of antibiotic resistance in P. aeruginosa and demonstrate the validity of experimental evolution in identifying clinically-relevant resistance-associated mutations.
Collapse
Affiliation(s)
| | - Attika Rehman
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lois W Martin
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Wayne M Patrick
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
22
|
Thirumalmuthu K, Devarajan B, Prajna L, Mohankumar V. Mechanisms of Fluoroquinolone and Aminoglycoside Resistance in Keratitis-AssociatedPseudomonas aeruginosa. Microb Drug Resist 2019; 25:813-823. [DOI: 10.1089/mdr.2018.0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Kannan Thirumalmuthu
- Department of Ocular Microbiology and Aravind Medical Research Foundation, Madurai, India
| | | | - Lalitha Prajna
- Department of Ocular Microbiology and Aravind Medical Research Foundation, Madurai, India
| | - Vidyarani Mohankumar
- Department of Ocular Microbiology and Aravind Medical Research Foundation, Madurai, India
| |
Collapse
|
23
|
Analysis of the Pseudomonas aeruginosa Aminoglycoside Differential Resistomes Allows Defining Genes Simultaneously Involved in Intrinsic Antibiotic Resistance and Virulence. Antimicrob Agents Chemother 2019; 63:AAC.00185-19. [PMID: 30858210 DOI: 10.1128/aac.00185-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/01/2019] [Indexed: 01/04/2023] Open
Abstract
High-throughput screening of transposon insertion libraries is a useful strategy for unveiling bacterial genes whose inactivation results in an altered susceptibility to antibiotics. A potential drawback of these studies is they are usually based on just one model antibiotic for each structural family, under the assumption that the results can be extrapolated to all members of said family. To determine if this simplification is appropriate, we have analyzed the susceptibility of mutants of Pseudomonas aeruginosa to four aminoglycosides. Our results indicate that each mutation produces different effects on susceptibility to the tested aminoglycosides, with only two mutants showing similar changes in the susceptibility to all studied aminoglycosides. This indicates that the role of a particular gene in the resistome of a given antibiotic should not be generalized to other members of the same structural family. Five aminoglycoside-hypersusceptible mutants inactivating glnD, hflK, PA2798, PA3016, and hpf were chosen for further analysis in order to elucidate if lower aminoglycoside susceptibility correlates with cross-hypersusceptibility to other antibiotics and with impaired virulence. Our results indicate that glnD inactivation leads to increased cross-susceptibility to different antibiotics. The mutant in this gene is strongly impaired in virulence traits such as pyocyanin production, biofilm formation, elastase activity, and swarming motility and the ability to kill Caenorhabditis elegans Thus, GlnD might be an interesting target for developing antibiotic coadjuvants with antiresistance and antivirulence properties against P. aeruginosa.
Collapse
|
24
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
25
|
Yoshitani K, Hizukuri Y, Akiyama Y. An in vivo protease activity assay for investigating the functions of the Escherichia coli membrane protease HtpX. FEBS Lett 2019; 593:842-851. [PMID: 30903618 DOI: 10.1002/1873-3468.13368] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 11/06/2022]
Abstract
Escherichia coli HtpX is an M48 family zinc metalloproteinase located in the cytoplasmic membrane. Previous studies suggested that it is involved in the quality control of membrane proteins. However, its in vivo proteolytic function has not been characterized in detail, mainly because the physiological substrates have not been identified and no model substrate that allows sensitive detection of the protease activity is available. We constructed a new model substrate of HtpX and established an in vivo semiquantitative and convenient protease activity assay system for HtpX. This system enables detection of differential protease activities of HtpX mutants carrying mutations in conserved regions. This system would also be useful for investigating the functions of HtpX and its homologs in other bacteria.
Collapse
Affiliation(s)
- Kohei Yoshitani
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Yohei Hizukuri
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Yoshinori Akiyama
- Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| |
Collapse
|
26
|
Poole K, Hay T, Gilmour C, Fruci M. The aminoglycoside resistance-promoting AmgRS envelope stress-responsive two-component system in Pseudomonas aeruginosa is zinc-activated and protects cells from zinc-promoted membrane damage. MICROBIOLOGY-SGM 2019; 165:563-571. [PMID: 30835196 DOI: 10.1099/mic.0.000787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Exposure of wild-type (WT) Pseudomonas aeruginosa PAO1 to ZnCl2 (Zn) yielded a concentration-dependent increase in depolarization of the cytoplasmic membrane (CM), an indication that this metal is membrane-damaging. Consistent with this, Zn activated the AmgRS envelope stress-responsive two-component system (TCS) that was previously shown to be activated by and to protect P. aeruginosa from the membrane-damaging effects of aminoglycoside (AG) antibiotics. A mutant lacking amgR showed enhanced Zn-promoted CM perturbation and was Zn-sensitive, an indication that the TCS protected cells from the CM-damaging effects of this metal. In agreement with this, a mutant carrying an AmgRS-activating amgS mutation was less susceptible to Zn-promoted CM perturbation and more tolerant of elevated levels of Zn than WT. AG activation of AmgRS is known to drive expression of the AG resistance-promoting mexXY multidrug efflux operon, and while Zn similarly induced mexXY expression this was independent of AmgRS and reliant on a second TCS implicated in mexXY regulation, ParRS. MexXY did not, however, contribute to Zn resistance or protection from Zn-promoted CM damage. Despite its activation of AmgRS and induction of mexXY, Zn had a minimal impact on the AG resistance of WT P. aeruginosa although, given that Zn-tolerant AmgRS-activated amgS mutant strains are AG resistant, there is still the prospect of this metal promoting AG resistance development in this organism.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Thomas Hay
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Christie Gilmour
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Michael Fruci
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada.,Present address: London Research and Development Centre, Agriculture and Agri-Food, London, Ontario, Canada
| |
Collapse
|
27
|
Aminoglycoside-inducible expression of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: Involvement of the envelope stress-responsive AmgRS two-component system. PLoS One 2018; 13:e0205036. [PMID: 30289929 PMCID: PMC6173428 DOI: 10.1371/journal.pone.0205036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Exposure of P. aeruginosa to the aminoglycoside (AG) paromomycin (PAR) induced expression of the PA3720-armR locus and the mexAB-oprM multidrug efflux operon that AmgR controls, although PAR induction of mexAB-oprM was independent of armR. Multiple AGs promoted mexAB-oprM expression and this was lost in the absence of the amgRS locus encoding an aminoglycoside-activated envelope stress-responsive 2-component system (TCS). Purified AmgR bound to the mexAB-oprM promoter region consistent with this response regulator directly regulating expression of the efflux operon. The thiol-active reagent, diamide, which, like AGs, promotes protein aggregation and cytoplasmic membrane damage also promoted AmgRS-dependent mexAB-oprM expression, a clear indication that the MexAB-OprM efflux system is recruited in response to membrane perturbation and/or circumstances that lead to this. Despite the AG and diamide induction of mexAB-oprM, however, MexAB-OprM does not appear to contribute to resistance to these agents.
Collapse
|
28
|
Mikalauskas A, Parkins MD, Poole K. Rifampicin potentiation of aminoglycoside activity against cystic fibrosis isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 2018; 72:3349-3352. [PMID: 28961705 DOI: 10.1093/jac/dkx296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 01/30/2023] Open
Abstract
Objectives Rifampicin potentiates the activity of aminoglycosides (AGs) versus Pseudomonas aeruginosa by targeting the AmgRS two-component system. In this study we examine the impact of rifampicin on the AG susceptibility of cystic fibrosis (CF) lung isolates of P. aeruginosa and the contribution of AmgRS to AG resistance in these isolates. Methods amgR deletion derivatives of clinical isolates were constructed using standard gene replacement technology. Susceptibility to AGs ± rifampicin (at ½ MIC) was assessed using a serial 2-fold dilution assay. Results Rifampicin showed a variable ability to potentiate AG activity versus the CF isolates, enhancing AG susceptibility between 2- and 128-fold. Most strains showed potentiation for at least two AGs, with only a few strains showing no AG potentiation by rifampicin. Notably, loss of amgR increased AG susceptibility although rifampicin potentiation of AG activity was still observed in the ΔamgR derivatives. Conclusions AmgRS contributes to AG resistance in CF isolates of P. aeruginosa and rifampicin shows a variable ability to potentiate AG activity against these, highlighting the complexity of AG resistance in such isolates.
Collapse
Affiliation(s)
- Alaya Mikalauskas
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases and Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
29
|
Housseini B Issa K, Phan G, Broutin I. Functional Mechanism of the Efflux Pumps Transcription Regulators From Pseudomonas aeruginosa Based on 3D Structures. Front Mol Biosci 2018; 5:57. [PMID: 29971236 PMCID: PMC6018408 DOI: 10.3389/fmolb.2018.00057] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/31/2018] [Indexed: 01/19/2023] Open
Abstract
Bacterial antibiotic resistance is a worldwide health problem that deserves important research attention in order to develop new therapeutic strategies. Recently, the World Health Organization (WHO) classified Pseudomonas aeruginosa as one of the priority bacteria for which new antibiotics are urgently needed. In this opportunistic pathogen, antibiotics efflux is one of the most prevalent mechanisms where the drug is efficiently expulsed through the cell-wall. This resistance mechanism is highly correlated to the expression level of efflux pumps of the resistance-nodulation-cell division (RND) family, which is finely tuned by gene regulators. Thus, it is worthwhile considering the efflux pump regulators of P. aeruginosa as promising therapeutical targets alternative. Several families of regulators have been identified, including activators and repressors that control the genetic expression of the pumps in response to an extracellular signal, such as the presence of the antibiotic or other environmental modifications. In this review, based on different crystallographic structures solved from archetypal bacteria, we will first focus on the molecular mechanism of the regulator families involved in the RND efflux pump expression in P. aeruginosa, which are TetR, LysR, MarR, AraC, and the two-components system (TCS). Finally, the regulators of known structure from P. aeruginosa will be presented.
Collapse
Affiliation(s)
- Karim Housseini B Issa
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Gilles Phan
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015), Centre National de la Recherche Scientifique, Faculté de Pharmacie, Université Paris Descartes, Université Sorbonne Paris Cité, Paris, France
| |
Collapse
|
30
|
López-Causapé C, Cabot G, Del Barrio-Tofiño E, Oliver A. The Versatile Mutational Resistome of Pseudomonas aeruginosa. Front Microbiol 2018; 9:685. [PMID: 29681898 PMCID: PMC5897538 DOI: 10.3389/fmicb.2018.00685] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022] Open
Abstract
One of the most striking features of Pseudomonas aeruginosa is its outstanding capacity for developing antimicrobial resistance to nearly all available antipseudomonal agents through the selection of chromosomal mutations, leading to the failure of the treatment of severe hospital-acquired or chronic infections. Recent whole-genome sequencing (WGS) data obtained from in vitro assays on the evolution of antibiotic resistance, in vivo monitoring of antimicrobial resistance development, analysis of sequential cystic fibrosis isolates, and characterization of widespread epidemic high-risk clones have provided new insights into the evolutionary dynamics and mechanisms of P. aeruginosa antibiotic resistance, thus motivating this review. Indeed, the analysis of the WGS mutational resistome has proven to be useful for understanding the evolutionary dynamics of classical resistance pathways and to describe new mechanisms for the majority of antipseudomonal classes, including β-lactams, aminoglycosides, fluoroquinolones, or polymixins. Beyond addressing a relevant scientific question, the analysis of the P. aeruginosa mutational resistome is expected to be useful, together with the analysis of the horizontally-acquired resistance determinants, for establishing the antibiotic resistance genotype, which should correlate with the antibiotic resistance phenotype and as such, it should be useful for the design of therapeutic strategies and for monitoring the efficacy of administered antibiotic treatments. However, further experimental research and new bioinformatics tools are still needed to overcome the interpretation limitations imposed by the complex interactions (including those leading to collateral resistance or susceptibility) between the 100s of genes involved in the mutational resistome, as well as the frequent difficulties for differentiating relevant mutations from simple natural polymorphisms.
Collapse
Affiliation(s)
- Carla López-Causapé
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Gabriel Cabot
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Ester Del Barrio-Tofiño
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Universitari Son Espases, Institut d'Investigació Sanitaria Illes Balears, Palma de Mallorca, Spain
| |
Collapse
|
31
|
Ibacache-Quiroga C, Oliveros JC, Couce A, Blázquez J. Parallel Evolution of High-Level Aminoglycoside Resistance in Escherichia coli Under Low and High Mutation Supply Rates. Front Microbiol 2018; 9:427. [PMID: 29615988 PMCID: PMC5867336 DOI: 10.3389/fmicb.2018.00427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/22/2018] [Indexed: 11/16/2022] Open
Abstract
Antibiotic resistance is a major concern in public health worldwide, thus there is much interest in characterizing the mutational pathways through which susceptible bacteria evolve resistance. Here we use experimental evolution to explore the mutational pathways toward aminoglycoside resistance, using gentamicin as a model, under low and high mutation supply rates. Our results show that both normo and hypermutable strains of Escherichia coli are able to develop resistance to drug dosages > 1,000-fold higher than the minimal inhibitory concentration for their ancestors. Interestingly, such level of resistance was often associated with changes in susceptibility to other antibiotics, most prominently with increased resistance to fosfomycin. Whole-genome sequencing revealed that all resistant derivatives presented diverse mutations in five common genetic elements: fhuA, fusA and the atpIBEFHAGDC, cyoABCDE, and potABCD operons. Despite the large number of mutations acquired, hypermutable strains did not pay, apparently, fitness cost. In contrast to recent studies, we found that the mutation supply rate mainly affected the speed (tempo) but not the pattern (mode) of evolution: both backgrounds acquired the mutations in the same order, although the hypermutator strain did it faster. This observation is compatible with the adaptive landscape for high-level gentamicin resistance being relatively smooth, with few local maxima; which might be a common feature among antibiotics for which resistance involves multiple loci.
Collapse
Affiliation(s)
- Claudia Ibacache-Quiroga
- Centro Nacional de Biotecnología, Madrid, Spain.,Centro de Micro-Bioinnovación, Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Alejandro Couce
- Unité Mixte de Recherche 1137, Infection, Antimicrobiens, Modélisation, Evolution, INSERM, Université Paris Diderot, Paris, France
| | - Jesus Blázquez
- Centro Nacional de Biotecnología, Madrid, Spain.,Unidad de Enfermedades Infecciosas, Microbiología y Medicina Preventiva, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
32
|
Francis VI, Stevenson EC, Porter SL. Two-component systems required for virulence in Pseudomonas aeruginosa. FEMS Microbiol Lett 2018; 364:3828290. [PMID: 28510688 PMCID: PMC5812489 DOI: 10.1093/femsle/fnx104] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a versatile opportunistic pathogen capable of infecting a broad range of hosts, in addition to thriving in a broad range of environmental conditions outside of hosts. With this versatility comes the need to tightly regulate its genome to optimise its gene expression and behaviour to the prevailing conditions. Two-component systems (TCSs) comprising sensor kinases and response regulators play a major role in this regulation. This minireview discusses the growing number of TCSs that have been implicated in the virulence of P. aeruginosa, with a special focus on the emerging theme of multikinase networks, which are networks comprising multiple sensor kinases working together, sensing and integrating multiple signals to decide upon the best response. The networks covered in depth regulate processes such as the switch between acute and chronic virulence (GacS network), the Cup fimbriae (Roc network and Rcs/Pvr network), the aminoarabinose modification of lipopolysaccharide (a network involving the PhoQP and PmrBA TCSs), twitching motility and virulence (a network formed from the Chp chemosensory pathway and the FimS/AlgR TCS), and biofilm formation (Wsp chemosensory pathway). In addition, we highlight the important interfaces between these systems and secondary messenger signals such as cAMP and c-di-GMP.
Collapse
Affiliation(s)
- Vanessa I Francis
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Emma C Stevenson
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| | - Steven L Porter
- Biosciences, Geoffrey Pope Building, College of Life and Environmental Sciences, University of Exeter, Exeter EX 4QD, UK
| |
Collapse
|
33
|
The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 2016; 60:4690-700. [PMID: 27216061 DOI: 10.1128/aac.00823-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/16/2016] [Indexed: 12/24/2022] Open
Abstract
During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4- to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity.
Collapse
|
34
|
Hernando-Amado S, Blanco P, Alcalde-Rico M, Corona F, Reales-Calderón JA, Sánchez MB, Martínez JL. Multidrug efflux pumps as main players in intrinsic and acquired resistance to antimicrobials. Drug Resist Updat 2016; 28:13-27. [PMID: 27620952 DOI: 10.1016/j.drup.2016.06.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Multidrug efflux pumps constitute a group of transporters that are ubiquitously found in any organism. In addition to other functions with relevance for the cell physiology, efflux pumps contribute to the resistance to compounds used for treating different diseases, including resistance to anticancer drugs, antibiotics or antifungal compounds. In the case of antimicrobials, efflux pumps are major players in both intrinsic and acquired resistance to drugs currently in use for the treatment of infectious diseases. One important aspect not fully explored of efflux pumps consists on the identification of effectors able to induce their expression. Indeed, whereas the analysis of clinical isolates have shown that mutants overexpressing these resistance elements are frequently found, less is known on the conditions that may trigger expression of efflux pumps, hence leading to transient induction of resistance in vivo, a situation that is barely detectable using classical susceptibility tests. In the current article we review the structure and mechanisms of regulation of the expression of bacterial and fungal efflux pumps, with a particular focus in those for which a role in clinically relevant resistance has been reported.
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Paula Blanco
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Manuel Alcalde-Rico
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Fernando Corona
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - Jose A Reales-Calderón
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - María B Sánchez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain
| | - José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Darwin 3, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
35
|
Potentiation of Aminoglycoside Activity in Pseudomonas aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System. Antimicrob Agents Chemother 2016; 60:3509-18. [PMID: 27021319 DOI: 10.1128/aac.03069-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
A screen for agents that potentiated the activity of paromomycin (PAR), a 4,5-linked aminoglycoside (AG), against wild-type Pseudomonas aeruginosa identified the RNA polymerase inhibitor rifampin (RIF). RIF potentiated additional 4,5-linked AGs, such as neomycin and ribostamycin, but not the clinically important 4,6-linked AGs amikacin and gentamicin. Potentiation was absent in a mutant lacking the AmgRS envelope stress response two-component system (TCS), which protects the organism from AG-generated membrane-damaging aberrant polypeptides and, thus, promotes AG resistance, an indication that RIF was acting via this TCS in potentiating 4,5-linked AG activity. Potentiation was also absent in a RIF-resistant RNA polymerase mutant, consistent with its potentiation of AG activity being dependent on RNA polymerase perturbation. PAR-inducible expression of the AmgRS-dependent genes htpX and yccA was reduced by RIF, suggesting that AG activation of this TCS was compromised by this agent. Still, RIF did not compromise the membrane-protective activity of AmgRS, an indication that it impacted some other function of this TCS. RIF potentiated the activities of 4,5-linked AGs against several AG-resistant clinical isolates, in two cases also potentiating the activity of the 4,6-linked AGs. These cases were, in one instance, explained by an observed AmgRS-dependent expression of the MexXY multidrug efflux system, which accommodates a range of AGs, with RIF targeting of AmgRS undermining mexXY expression and its promotion of resistance to 4,5- and 4,6-linked AGs. Given this link between AmgRS, MexXY expression, and pan-AG resistance in P. aeruginosa, RIF might be a useful adjuvant in the AG treatment of P. aeruginosa infections.
Collapse
|
36
|
Garneau-Tsodikova S, Labby KJ. Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MEDCHEMCOMM 2015; 7:11-27. [PMID: 26877861 DOI: 10.1039/c5md00344j] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Aminoglycoside (AG) antibiotics are used to treat many Gram-negative and some Gram-positive infections and, importantly, multidrug-resistant tuberculosis. Among various bacterial species, resistance to AGs arises through a variety of intrinsic and acquired mechanisms. The bacterial cell wall serves as a natural barrier for small molecules such as AGs and may be further fortified via acquired mutations. Efflux pumps work to expel AGs from bacterial cells, and modifications here too may cause further resistance to AGs. Mutations in the ribosomal target of AGs, while rare, also contribute to resistance. Of growing clinical prominence is resistance caused by ribosome methyltransferases. By far the most widespread mechanism of resistance to AGs is the inactivation of these antibiotics by AG-modifying enzymes. We provide here an overview of these mechanisms by which bacteria become resistant to AGs and discuss their prevalence and potential for clinical relevance.
Collapse
Affiliation(s)
- Sylvie Garneau-Tsodikova
- University of Kentucky, Department of Pharmaceutical Sciences, 789 South Limestone Street, Lexington, KY, USA. ; Tel: 859-218-1686
| | - Kristin J Labby
- Beloit College, Department of Chemistry, 700 College Street, Beloit, WI, USA. ; Tel: 608-363-2273
| |
Collapse
|
37
|
Iyer R, Erwin AL. Direct measurement of efflux in Pseudomonas aeruginosa using an environment-sensitive fluorescent dye. Res Microbiol 2015; 166:516-24. [PMID: 26117599 DOI: 10.1016/j.resmic.2015.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
Resistance-Nodulation-Division (RND) family pumps AcrB and MexB are the major efflux routes in Escherichia coli and Pseudomonas aeruginosa respectively. Fluorescent environment-sensitive dyes provide a means to study efflux pump function in live bacterial cells in real-time. Recently, we demonstrated the utility of this approach using the dye Nile Red to quantify AcrB-mediated efflux and measured the ability of antibiotics and other efflux pump substrates to compete with efflux of Nile Red, independent of antibacterial activity. Here, we extend this method to P. aeruginosa and describe a novel application that permits the comparison and rank-ordering of bacterial strains by their inherent efflux potential. We show that glucose and l-malate re-energize Nile Red efflux in P. aeruginosa, and we highlight differences in the glucose dependence and kinetics of efflux between P. aeruginosa and E. coli. We quantify the differences in efflux among a set of P. aeruginosa laboratory strains, which include PAO1, the hyper-sensitive strain ATCC 35151 and its parent, ATCC 12055. Efflux of Nile Red in P. aeruginosa is mediated by MexAB-OprM and is slower than in E. coli. In conclusion, we describe an efflux measurement tool for use in antibacterial drug discovery and basic research on P. aeruginosa efflux pumps.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Infectious Diseases Department, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, USA.
| | - Alice L Erwin
- Infectious Diseases Department, Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA, USA
| |
Collapse
|
38
|
Venter H, Mowla R, Ohene-Agyei T, Ma S. RND-type drug efflux pumps from Gram-negative bacteria: molecular mechanism and inhibition. Front Microbiol 2015; 6:377. [PMID: 25972857 PMCID: PMC4412071 DOI: 10.3389/fmicb.2015.00377] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/12/2015] [Indexed: 11/13/2022] Open
Abstract
Drug efflux protein complexes confer multidrug resistance on bacteria by transporting a wide spectrum of structurally diverse antibiotics. Moreover, organisms can only acquire resistance in the presence of an active efflux pump. The substrate range of drug efflux pumps is not limited to antibiotics, but it also includes toxins, dyes, detergents, lipids, and molecules involved in quorum sensing; hence efflux pumps are also associated with virulence and biofilm formation. Inhibitors of efflux pumps are therefore attractive compounds to reverse multidrug resistance and to prevent the development of resistance in clinically relevant bacterial pathogens. Recent successes on the structure determination and functional analysis of the AcrB and MexB components of the AcrAB-TolC and MexAB-OprM drug efflux systems as well as the structure of the fully assembled, functional triparted AcrAB-TolC complex significantly contributed to our understanding of the mechanism of substrate transport and the options for inhibition of efflux. These data, combined with the well-developed methodologies for measuring efflux pump inhibition, could allow the rational design, and subsequent experimental verification of potential efflux pump inhibitors (EPIs). In this review we will explore how the available biochemical and structural information can be translated into the discovery and development of new compounds that could reverse drug resistance in Gram-negative pathogens. The current literature on EPIs will also be analyzed and the reasons why no compounds have yet progressed into clinical use will be explored.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | - Rumana Mowla
- School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia Adelaide, SA, Australia
| | | | - Shutao Ma
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University Jinan, China
| |
Collapse
|
39
|
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28:337-418. [PMID: 25788514 PMCID: PMC4402952 DOI: 10.1128/cmr.00117-14] [Citation(s) in RCA: 1005] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The global emergence of multidrug-resistant Gram-negative bacteria is a growing threat to antibiotic therapy. The chromosomally encoded drug efflux mechanisms that are ubiquitous in these bacteria greatly contribute to antibiotic resistance and present a major challenge for antibiotic development. Multidrug pumps, particularly those represented by the clinically relevant AcrAB-TolC and Mex pumps of the resistance-nodulation-division (RND) superfamily, not only mediate intrinsic and acquired multidrug resistance (MDR) but also are involved in other functions, including the bacterial stress response and pathogenicity. Additionally, efflux pumps interact synergistically with other resistance mechanisms (e.g., with the outer membrane permeability barrier) to increase resistance levels. Since the discovery of RND pumps in the early 1990s, remarkable scientific and technological advances have allowed for an in-depth understanding of the structural and biochemical basis, substrate profiles, molecular regulation, and inhibition of MDR pumps. However, the development of clinically useful efflux pump inhibitors and/or new antibiotics that can bypass pump effects continues to be a challenge. Plasmid-borne efflux pump genes (including those for RND pumps) have increasingly been identified. This article highlights the recent progress obtained for organisms of clinical significance, together with methodological considerations for the characterization of MDR pumps.
Collapse
Affiliation(s)
- Xian-Zhi Li
- Human Safety Division, Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Patrick Plésiat
- Laboratoire de Bactériologie, Faculté de Médecine-Pharmacie, Centre Hospitalier Régional Universitaire, Université de Franche-Comté, Besançon, France
| | - Hiroshi Nikaido
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| |
Collapse
|