1
|
Georgieva TG, Darmoul D, Chen H, Cui H, Rice PFS, Barton JK, Besselsen DG, Ignatenko NA. Kallikrein-Related Peptidase 6 Contributes to Murine Intestinal Tumorigenesis Driven by a Mutant Adenomatous polyposis coli Gene. Cancers (Basel) 2024; 16:3842. [PMID: 39594797 PMCID: PMC11592602 DOI: 10.3390/cancers16223842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The objective of this study was to assess the role of a secreted serine protease, kallikrein-related peptidase 6 (KLK6), during colorectal tumorigenesis driven by a mutant Adenomatous polyposis coli (APC) tumor suppressor gene. A first analysis of KLK6 expression in the intestinal tract of Apc-mutant multiple intestinal neoplasia (ApcMin/+) mice revealed up to four-fold induction of Klk6 mRNA levels in adenomas relative to its level in the adjacent mucosa. METHODS AND RESULTS The presence of KLK6 protein in the adenomatous areas was confirmed by immunohistochemistry and optical coherence tomography/laser-induced fluorescence (OCT/LIF) imaging. To assess the contribution of the KLK6 expression on the Apc-mutant intestinal and colon tumorigenesis, we engineered a mouse with floxed alleles of the Klk6 gene (Klk6lox/lox) and crossed it with a mouse expressing the truncated APC protein under control of the intestinal tract-specific human CDX2P9.5-NLS Cre transgene (CPC;Apcfl/fl;Klk6+/+). We found that CPC;Apcfl/fl mice with disrupted Klk6 gene expression (CPC;Apcfl/fl;Klk6fl/fl) had a significantly smaller average size of the small intestinal and colon crypts (p < 0.001 and p = 0.04, respectively) and developed a significantly fewer adenomas (p = 0.01). Moreover, a decrease in high-grade adenomas (p = 0.03) and adenomas with a diameter above 2 mm (p < 0.0001) was noted in CPC;Apcfl/fl;Klk6fl/fl mice. Further molecular analysis showed that Klk6 gene inactivation in the small intestine and colon tissues of CPC;Apcfl/fl;Klk6fl/fl mice resulted in a significant suppression of transforming growth factor β2 (TGF-β2) protein (p ≤ 0.02) and mitogen-activated protein kinase (MAPK) phosphorylation (p ≤ 0.01). CONCLUSIONS These findings demonstrate the oncogenic role of KLK6 in the mutant Apc-mediated intestinal tumorigenesis and suggest the utility of KLK6 for early diagnosis of colorectal tumors.
Collapse
Affiliation(s)
- Teodora G. Georgieva
- Genetically Engineered Mouse Models Core, The University of Arizona Bio5 Institute, Tucson, AZ 85721-0240, USA;
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA; (H.C.); (H.C.)
| | - Dalila Darmoul
- Institut de Biologie Paris-Seine, Sorbonne Université, UMR CNRS 8256, INSERM ERL U1164, Biological Adaptation and Ageing, 75005 Paris, France;
| | - Hwudaurw Chen
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA; (H.C.); (H.C.)
| | - Haiyan Cui
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA; (H.C.); (H.C.)
| | - Photini F. S. Rice
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0240, USA; (P.F.S.R.); (J.K.B.)
| | - Jennifer K. Barton
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721-0240, USA; (P.F.S.R.); (J.K.B.)
| | - David G. Besselsen
- University Animal Care, The University of Arizona, Tucson, AZ 85721-0101, USA;
| | - Natalia A. Ignatenko
- Department of Cellular and Molecular Medicine, The University of Arizona Cancer Center, Tucson, AZ 85724-5024, USA; (H.C.); (H.C.)
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85724-5024, USA
| |
Collapse
|
2
|
Qiu L, Zhou R, Luo Z, Wu J, Jiang H. CDC27-ODC1 Axis Promotes Metastasis, Accelerates Ferroptosis and Predicts Poor Prognosis in Neuroblastoma. Front Oncol 2022; 12:774458. [PMID: 35242701 PMCID: PMC8886130 DOI: 10.3389/fonc.2022.774458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB) is a devastating malignancy threatening children’s health, and amplification of MYCN is associated with treatment failure and a poor outcome. Here, we aimed to demonstrate the role of cell division cycle 27 (CDC27), an important core subunit of the anaphase-promoting complex, and its clinical significance in NB patients. In functional assays, we illustrated that CDC27 promoted the cell growth, metastasis and sphere-formation ability of NB cells both in vitro and in vivo. To further understand the potential mechanism, SK-N-SH cells were transfected with CDC27 siRNA, and RNA-sequencing was performed. The results revealed that downregulation of CDC27 led to markedly reduced expression of ODC1, which is a well-established direct target of MYCN. Subsequently, we further illustrated that suppression of ODC1 significantly attenuated the promotion effect of CDC27 on the proliferation, metastasis, and sphere-formation ability of NB cells, hinting that CDC27 exerted its biological behavior in NB at least partly in an ODC1-dependent manner. In addition, CDC27 rendered cells more vulnerable to ferroptosis, while knockdown of ODC1 markedly reversed the pro-ferroptotic effect of CDC27. Collectively, our data is the first to report that the CDC27/ODC1 axis promotes tumorigenesis and acts as a positive regulator of ferroptosis in NB, highlighting that CDC27 may represent a novel therapeutic strategy and prognostic biomarker in neuroblastoma.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui Zhou
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyan Luo
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiangxue Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
3
|
N1, N12-Diacetylspermine Is Elevated in Colorectal Cancer and Promotes Proliferation through the miR-559/CBS Axis in Cancer Cell Lines. JOURNAL OF ONCOLOGY 2021; 2021:6665704. [PMID: 34603448 PMCID: PMC8486517 DOI: 10.1155/2021/6665704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 08/06/2021] [Accepted: 08/15/2021] [Indexed: 01/05/2023]
Abstract
N1, N12-Diacetylspermine (DiAcSpm) has been reported to be upregulated in the urine of cancer patients. Mass spectrometry has shown elevated DiAcSpm expressions in colorectal cancer (CRC) tissues. However, the diagnostic application of DiAcSpm is not available due to a lack of diagnostic grade antibodies. Also, its biological roles in CRC cells remain unexplored. In the present study, we developed an antibody that directly detected DiAcSpm expression in paraffin-embedded tissues. We also characterized its biological characteristics and underlying mechanisms. Polyclonal antibodies were generated by immunizing animals with a synthetic product of DiAcSpm. Antibody DAS AB016 showed strong sensitivity against DiAcSpm in CRC tissues. Immunohistochemistry results showed that DiAcSpm expression was significantly elevated in CRC tissues. High levels of DiAcSpm correlated with the clinical stage and Ki67 index. DiAcSpm treatment increased levels of proliferation, cell cycle progression, and cyclin D1 and cyclin E proteins in CRC cell lines, SW480 and Caco-2. DiAcSpm also upregulated ATP production in these two cell lines. RNA-sequencing showed that DiAcSpm downregulated miR-559, which was confirmed using RT-qPCR. The luciferase reporter assay, western blotting, and RT-qPCR showed that cystathionine β-synthase (CBS) was the target of miR-559. miR-559 inhibited, while CBS accelerated, CRC proliferation. In addition, CBS siRNA knockdown blocked the biological effects of DiAcSpm on CRC cells. In conclusion, DiAcSpm was found to be increased in CRC tissues using a newly developed antibody. DiAcSpm accelerated CRC proliferation by regulating the miR-559/CBS axis.
Collapse
|
4
|
Pandey R, Zhou M, Chen Y, Darmoul D, Kisiel CC, Nfonsam VN, Ignatenko NA. Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer. Genes (Basel) 2021; 12:749. [PMID: 34065672 PMCID: PMC8157155 DOI: 10.3390/genes12050749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/01/2021] [Accepted: 05/14/2021] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related death worldwide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome enrichment, and protein interaction methods. KLK6-high cases had a distinct spectrum of mutations in titin (TTN), APC, K-RAS, and MUC16 genes. Differentially expressed genes (DEGs) found in the KLK6-overexpressing CRCs were associated with cell signaling, extracellular matrix organization, and cell communication regulatory pathways. The top KLK6-interaction partners were found to be the members of kallikrein family (KLK7, KLK8, KLK10), extracellular matrix associated proteins (keratins, integrins, small proline rich repeat, S100A families) and TGF-β, FOS, and Ser/Thr protein kinase signaling pathways. Expression of selected KLK6-associated genes was validated in a subset of paired normal and tumor CRC patient-derived organoid cultures. The performed analyses identified KLK6 itself and a set of genes, which are co-expressed with KLK6, as potential clinical biomarkers for the management of the CRC disease.
Collapse
Affiliation(s)
- Ritu Pandey
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| | - Muhan Zhou
- Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; (M.Z.); (Y.C.)
| | - Yuliang Chen
- Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; (M.Z.); (Y.C.)
| | - Dalila Darmoul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France;
| | - Conner C. Kisiel
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| | - Valentine N. Nfonsam
- Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA;
| | - Natalia A. Ignatenko
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA;
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
5
|
Chen H, Sells E, Pandey R, Abril ER, Hsu CH, Krouse RS, Nagle RB, Pampalakis G, Sotiropoulou G, Ignatenko NA. Kallikrein 6 protease advances colon tumorigenesis via induction of the high mobility group A2 protein. Oncotarget 2019; 10:6062-6078. [PMID: 31692974 PMCID: PMC6817440 DOI: 10.18632/oncotarget.27153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Kallikrein-related peptidase 6 (KLK6) overexpression is commonly observed in primary tumors of colorectal cancer (CRC) patients and has been associated with tumor aggressiveness, metastasis, and poor prognosis. We previously established a unique contribution of KLK6 in colon cancer metastasis via a specific network of microRNAs and mRNAs. Here we evaluated the cellular functions of KLK6 protease in Caco-2 colon adenocarcinoma cell line after introduction of the enzymatically active or inactive form of the enzyme. We found that proteolytically active KLK6 increased Caco-2 cells invasiveness in vitro and decreased the animal survival in the orthotopic colon cancer model. The active KLK6 induced phosphorylation of SMAD 2/3 proteins leading to the altered expression of the epithelial-mesenchymal transition (EMT) markers. KLK6 overexpression also induced the RNA-binding protein LIN28B and high-mobility group AT-hook 2 (HMGA2) transcription factor, two essential regulators of cell invasion and metastasis. In the CRC patients, KLK6 protein levels were elevated in the non-cancerous distant and adjacent tissues, compared to their paired tumor tissues (p < 0.0001 and p = 0.0157, respectively). Patients with mutant K-RAS tumors had significantly higher level of KLK6 protein in the luminal surface of non-cancerous distant tissue, compared to the corresponding tissues of the patients with K-RAS wild type tumors (p ≤ 0.05). Furthermore, KLK6 and HMGA2 immunohistochemistry (IHC) scores in patients' tumors and paired adjacent tissues positively correlated (Spearman correlation P < 0.01 and p = 0.03, respectively). These findings demonstrate the critical function of the KLK6 enzyme in colon cancer progression and its contribution to the signaling network in colon cancer.
Collapse
Affiliation(s)
- Hwudaurw Chen
- University of Arizona Cancer Center, Tucson, AZ, USA
| | - Earlphia Sells
- Biochemistry and Molecular and Cellular Biology Graduate Program, Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Ritu Pandey
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Chiu-Hsieh Hsu
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Robert S. Krouse
- University of Arizona College of Medicine, Tucson, AZ, USA
- Southern Arizona Veterans Affairs Health Care System, Tucson, AZ, USA
| | - Raymond B. Nagle
- Department of Pathology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | | | - Natalia A. Ignatenko
- University of Arizona Cancer Center, Tucson, AZ, USA
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
6
|
Gerner EW, Bruckheimer E, Cohen A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J Biol Chem 2018; 293:18770-18778. [PMID: 30355737 DOI: 10.1074/jbc.tm118.003343] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer is a set of diseases characterized by uncontrolled cell growth. In certain cancers of the gastrointestinal tract, the adenomatous polyposis coli (APC) tumor suppressor gene is altered in either germline or somatic cells and causes formation of risk factors, such as benign colonic or intestinal neoplasia, which can progress to invasive cancer. APC is a key component of the WNT pathway, contributing to normal GI tract development, and APC alteration results in dysregulation of the pathway for production of polyamines, which are ubiquitous cations essential for cell growth. Studies with mice have identified nonsteroidal anti-inflammatory drugs (NSAIDs) and difluoromethylornithine (DFMO), an inhibitor of polyamine synthesis, as potent inhibitors of colon carcinogenesis. Moreover, gene expression profiling has uncovered that NSAIDs activate polyamine catabolism and export. Several DFMO-NSAID combination strategies are effective and safe methods for reducing risk factors in clinical trials with patients having genetic or sporadic risk of colon cancer. These strategies affect cancer stem cells, inflammation, immune surveillance, and the microbiome. Pharmacotherapies consisting of drug combinations targeting the polyamine pathway provide a complementary approach to surgery and cytotoxic cancer treatments for treating patients with cancer risk factors. In this Minireview, we discuss the role of polyamines in colon cancer and highlight the mechanisms of select pharmacoprevention agents to delay or prevent carcinogenesis in humans.
Collapse
Affiliation(s)
- Eugene W Gerner
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and .,the Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona 85711
| | | | - Alfred Cohen
- From Cancer Prevention Pharmaceuticals, Tucson, Arizona 85718 and
| |
Collapse
|
7
|
Sun L, Suo C, Li ST, Zhang H, Gao P. Metabolic reprogramming for cancer cells and their microenvironment: Beyond the Warburg Effect. Biochim Biophys Acta Rev Cancer 2018; 1870:51-66. [PMID: 29959989 DOI: 10.1016/j.bbcan.2018.06.005] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023]
Abstract
While metabolic reprogramming of cancer cells has long been considered from the standpoint of how and why cancer cells preferentially utilize glucose via aerobic glycolysis, the so-called Warburg Effect, the progress in the following areas during the past several years has substantially advanced our understanding of the rewired metabolic network in cancer cells that is intertwined with oncogenic signaling. First, in addition to the major nutrient substrates glucose and glutamine, cancer cells have been discovered to utilize a variety of unconventional nutrient sources for survival. Second, the deregulated biomass synthesis is intertwined with cell cycle progression to coordinate the accelerated progression of cancer cells. Third, the reciprocal regulation of cancer cell's metabolic alterations and the microenvironment, involving extensive host immune cells and microbiota, have come into view as critical mechanisms to regulate cancer progression. These and other advances are shaping the current and future paradigm of cancer metabolism.
Collapse
Affiliation(s)
- Linchong Sun
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Caixia Suo
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shi-Ting Li
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Huafeng Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| | - Ping Gao
- Laboratory of Cancer and Stem Cell metabolism, Guangzhou First Hospital, School of Medicine, South China University of Technology, Guangzhou 510006, China; CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
8
|
Jiang H, Du J, Gu J, Jin L, Pu Y, Fei B. A 65‑gene signature for prognostic prediction in colon adenocarcinoma. Int J Mol Med 2018; 41:2021-2027. [PMID: 29393333 PMCID: PMC5810222 DOI: 10.3892/ijmm.2018.3401] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/05/2018] [Indexed: 01/14/2023] Open
Abstract
The aim of the present study was to examine the molecular factors associated with the prognosis of colon cancer. Gene expression datasets were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus databases to screen differentially expressed genes (DEGs) between colon cancer samples and normal samples. Survival‑related genes were selected from the DEGs using the Cox regression method. A co‑expression network of survival‑related genes was then constructed, and functional clusters were extracted from this network. The significantly enriched functions and pathways of the genes in the network were identified. Using Bayesian discriminant analysis, a prognostic prediction system was established to distinguish the positive from negative prognostic samples. The discrimination efficacy of the system was validated in the GSE17538 dataset using Kaplan‑Meier survival analysis. A total of 636 and 1,892 DEGs between the colon cancer samples and normal samples were screened from the TCGA and GSE44861 dataset, respectively. There were 155 survival‑related genes selected. The co‑expression network of survival‑related genes included 138 genes, 534 lines (connections) and five functional clusters, including the signaling pathway, cellular response to cAMP, and immune system process functional clusters. The molecular function, cellular components and biological processes were the significantly enriched functions. The peroxisome proliferator‑activated receptor signaling pathway, Wnt signaling pathway, B cell receptor signaling pathway, and cytokine‑cytokine receptor interactions were the significant pathways. A prognostic prediction system based on a 65‑gene signature was established using this co‑expression network. Its discriminatory effect was validated in the TCGA dataset (P=3.56e‑12) and the GSE17538 dataset (P=1.67e‑6). The 65‑gene signature included kallikrein‑related peptidase 6 (KLK6), collagen type XI α1 (COL11A1), cartilage oligomeric matrix protein, wingless‑type MMTV integration site family member 2 (WNT2) and keratin 6B. In conclusion, a 65‑gene signature was screened in the present study, which showed a prognostic prediction effect in colon adenocarcinoma. KLK6, COL11A1, and WNT2 may be suitable prognostic predictors for colon adenocarcinoma.
Collapse
Affiliation(s)
- Hui Jiang
- Departments of Gastrointestinal Surgery
| | - Jun Du
- Departments of Gastrointestinal Surgery
| | - Jiming Gu
- Departments of Gastrointestinal Surgery
| | | | - Yong Pu
- Pathology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214062, P.R. China
| | | |
Collapse
|
9
|
Alpha-Difluoromethylornithine, an Irreversible Inhibitor of Polyamine Biosynthesis, as a Therapeutic Strategy against Hyperproliferative and Infectious Diseases. Med Sci (Basel) 2018; 6:medsci6010012. [PMID: 29419804 PMCID: PMC5872169 DOI: 10.3390/medsci6010012] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022] Open
Abstract
The fluorinated ornithine analog α-difluoromethylornithine (DFMO, eflornithine, ornidyl) is an irreversible suicide inhibitor of ornithine decarboxylase (ODC), the first and rate-limiting enzyme of polyamine biosynthesis. The ubiquitous and essential polyamines have many functions, but are primarily important for rapidly proliferating cells. Thus, ODC is potentially a drug target for any disease state where rapid growth is a key process leading to pathology. The compound was originally discovered as an anticancer drug, but its effectiveness was disappointing. However, DFMO was successfully developed to treat African sleeping sickness and is currently one of few clinically used drugs to combat this neglected tropical disease. The other Food and Drug Administration (FDA) approved application for DFMO is as an active ingredient in the hair removal cream Vaniqa. In recent years, renewed interest in DFMO for hyperproliferative diseases has led to increased research and promising preclinical and clinical trials. This review explores the use of DFMO for the treatment of African sleeping sickness and hirsutism, as well as its potential as a chemopreventive and chemotherapeutic agent against colorectal cancer and neuroblastoma.
Collapse
|
10
|
Sells E, Pandey R, Chen H, Skovan BA, Cui H, Ignatenko NA. Specific microRNA-mRNA Regulatory Network of Colon Cancer Invasion Mediated by Tissue Kallikrein-Related Peptidase 6. Neoplasia 2017; 19:396-411. [PMID: 28431272 PMCID: PMC5397577 DOI: 10.1016/j.neo.2017.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/02/2017] [Accepted: 02/06/2017] [Indexed: 01/05/2023] Open
Abstract
Metastatic colon cancer is a major cause of deaths among colorectal cancer (CRC) patients. Elevated expression of kallikrein 6 (KLK6), a member of a kallikrein subfamily of peptidase S1 family serine proteases, has been reported in CRC and is associated with low patient survival rates and poor disease prognosis. We knocked down KLK6 expression in HCT116 colon cancer cells to determine the significance of KLK6 expression for metastatic dissemination and to identify the KLK6-associated microRNAs (miRNAs) signaling networks in metastatic colon cancer. KLK6 suppression resulted in decreased cells invasion in vitro with a minimal effect on the cell growth and viability. In vivo, animals with orthotopic colon tumors deficient in KLK6 expression had the statistically significant increase in survival rates (P = .005) and decrease in incidence of distant metastases. We further performed the integrated miRNA and messenger RNA (mRNA) expression profiling to identify functional miRNA-mRNA interactions associated with KLK6-mediated invasiveness of colon cancer. Through bioinformatics analysis we identified and functionally validated the top two up-regulated miRNAs, miR-182 and miR-203, and one down-regulated miRNA, miRNA-181d, and their seven mRNA effectors. The established miRNA-mRNA interactions modulate cellular proliferation, differentiation and epithelial–mesenchymal transition (EMT) in KLK6-expressing colon cancer cells via the TGF-β signaling pathway and RAS-related GTP-binding proteins. We confirmed the potential tumor suppressive properties of miR-181d and miR-203 in KLK6-expressing HCT116 cells using Matrigel invasion assay. Our data provide experimental evidence that KLK6 controls metastasis formation in colon cancer via specific downstream network of miRNA-mRNA effectors.
Collapse
Affiliation(s)
- Earlphia Sells
- Biochemistry and, Molecular and Cellular Biology Graduate Program, Department of Molecular and Cellular Biology, College of Science, University of Arizona, Tucson, AZ, USA
| | - Ritu Pandey
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Hwudaurw Chen
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Bethany A Skovan
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Haiyan Cui
- University of Arizona, Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Natalia A Ignatenko
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
11
|
Expression of Kallikrein-Related Peptidase 6 in Primary Mucosal Malignant Melanoma of the Head and Neck. Head Neck Pathol 2016; 11:314-320. [PMID: 27844409 PMCID: PMC5550389 DOI: 10.1007/s12105-016-0769-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023]
Abstract
Mucosal melanomas of the head and neck (MMHN) are aggressive tumors with poor prognosis, different opposed to cutaneous melanoma. In this study, we characterized primary mucosal malignant melanoma for the expression of Kallikrein-related peptidase 6 (KLK6), a member of the KLK family with relevance to the malignant phenotype in various cancer types including cutaneous melanoma. Paraffin-embedded MMHN of 22 patients were stained immunohistochemically for KLK6 and results were correlated with clinical and pathological data. In 77.3% (17/22) of MMHN cases, positive KLK6 staining was found. Staining pattern for tumor cells showed a predominant cytoplasmic staining. However, in six cases we also observed a prominent nuclear staining. MMHN with a high KLK6 expression showed significantly better outcome concerning local recurrence-free survival (p = 0.013) and nuclear KLK6 staining was significantly associated with the survival status (p = 0.027). Overexpression of KLK6 was detected in more than 70% of MMHN and approximately 40% of tumors showed a strong expression pattern. Correlation between clinical outcome of MMHN patients and overexpression of KLK6 has not been addressed so far. Our data demonstrate for the first time increased levels of KLK6 in MMHN and strengthen the hypothesis that there might be a context-specific regulation and function of KLK6 in mucosal melanoma.
Collapse
|
12
|
Padavano J, Henkhaus RS, Chen H, Skovan BA, Cui H, Ignatenko NA. Mutant K-RAS Promotes Invasion and Metastasis in Pancreatic Cancer Through GTPase Signaling Pathways. CANCER GROWTH AND METASTASIS 2015; 8:95-113. [PMID: 26512205 PMCID: PMC4612127 DOI: 10.4137/cgm.s29407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies, characterized by the local invasion into surrounding tissues and early metastasis to distant organs. Oncogenic mutations of the K-RAS gene occur in more than 90% of human pancreatic cancers. The goal of this study was to investigate the functional significance and downstream effectors of mutant K-RAS oncogene in the pancreatic cancer invasion and metastasis. We applied the homologous recombination technique to stably disrupt K-RAS oncogene in the human pancreatic cell line MiaPaCa-2, which carries the mutant K-RAS (G12C) oncogene in both alleles. Using in vitro assays, we found that clones with disrupted mutant K-RAS gene exhibited low RAS activity, reduced growth rates, increased sensitivity to the apoptosis inducing agents, and suppressed motility and invasiveness. In vivo assays showed that clones with decreased RAS activity had reduced tumor formation ability in mouse xenograft model and increased survival rates in the mouse orthotopic pancreatic cancer model. We further examined molecular pathways downstream of mutant K-RAS and identified RhoA GTP activating protein 5, caveolin-1, and RAS-like small GTPase A (RalA) as key effector molecules, which control mutant K-RAS-dependent migration and invasion in MiaPaCa-2 cells. Our study provides rational for targeting RhoA and RalA GTPase signaling pathways for inhibition of pancreatic cancer metastasis.
Collapse
Affiliation(s)
- Julianna Padavano
- Department of Biochemistry and Molecular Biophysics, Undergraduate Biology Research Program, University of Arizona, Tucson, Arizona, USA
| | - Rebecca S Henkhaus
- Cancer Biology Interdisciplinary Program, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Hwudaurw Chen
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Bethany A Skovan
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Haiyan Cui
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Natalia A Ignatenko
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Liu Y, Wen Q, Chen XL, Yang SJ, Gao L, Gao L, Zhang C, Li JL, Xiang XX, Wan K, Chen XH, Zhang X, Zhong JF. All-trans retinoic acid arrests cell cycle in leukemic bone marrow stromal cells by increasing intercellular communication through connexin 43-mediated gap junction. J Hematol Oncol 2015; 8:110. [PMID: 26446715 PMCID: PMC4597383 DOI: 10.1186/s13045-015-0212-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/28/2015] [Indexed: 01/28/2023] Open
Abstract
Background Gap junctional intercellular communication (GJIC) is typically decreased in malignant tumors. Gap junction is not presented between hematopoietic cells but occurred in bone marrow stromal cells (BMSCs). Connexin 43 (Cx43) is the major gap junction (GJ) protein; our previous study revealed that Cx43 expression and GJIC were decreased in acute leukemic BMSCs. All-trans retinoic acid (ATRA) increases GJIC in a variety of cancer cells and has been used to treat acute promyelocytic leukemia, but the effects of ATRA on leukemic BMSCs is unknown. In this study, we evaluated the potential effects of ATRA on cell cycle, proliferation, and apoptosis of leukemic BMSCs. Effects of ATRA on Cx43 expression and GJIC were also examined. Methods Human BMSCs obtained from 25 patients with primary acute leukemia, and 10 normal healthy donors were cultured. Effects of ATRA on cell cycle, cell proliferation, and apoptosis were examined with or without co-treatment with amphotericin-B. Cx43 expression was examined at both the mRNA and protein expression levels. GJIC was examined by using a dye transfer assay and measuring the rate of fluorescence recovery after photobleaching (FRAP). Results ATRA arrested the cell cycle progression, inhibited cell growth, and increased apoptosis in leukemic BMSCs. Both Cx43 expression and GJIC function were increased by ATRA treatment. Most of the observed effects mediated by ATRA were abolished by amphotericin-B pretreatment. Conclusions ATRA arrests cell cycle progression in leukemic BMSCs, likely due to upregulating Cx43 expression and enhancing GJIC function. Electronic supplementary material The online version of this article (doi:10.1186/s13045-015-0212-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yao Liu
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China. .,Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Qin Wen
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Xue-Lian Chen
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Shi-Jie Yang
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Lei Gao
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Li Gao
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Cheng Zhang
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Jia-Li Li
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Xi-Xi Xiang
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Kai Wan
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Xing-Hua Chen
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, the Third Military Medical University, Xinqiao Street, Chongqing, 400037, China.
| | - Jiang-Fan Zhong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
14
|
LeGendre-McGhee S, Rice PS, Wall RA, Sprute KJ, Bommireddy R, Luttman AM, Nagle RB, Abril ER, Farrell K, Hsu CH, Roe DJ, Gerner EW, Ignatenko NA, Barton JK. Time-serial Assessment of Drug Combination Interventions in a Mouse Model of Colorectal Carcinogenesis Using Optical Coherence Tomography. CANCER GROWTH AND METASTASIS 2015; 8:63-80. [PMID: 26396545 PMCID: PMC4562605 DOI: 10.4137/cgm.s21216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/05/2015] [Accepted: 07/07/2015] [Indexed: 02/07/2023]
Abstract
Optical coherence tomography (OCT) is a high-resolution, nondestructive imaging modality that enables time-serial assessment of adenoma development in the mouse model of colorectal cancer. In this study, OCT was utilized to evaluate the effectiveness of interventions with the experimental antitumor agent α-difluoromethylornithine (DFMO) and a nonsteroidal anti-inflammatory drug sulindac during early [chemoprevention (CP)] and late stages [chemotherapy (CT)] of colon tumorigenesis. Biological endpoints for drug interventions included OCT-generated tumor number and tumor burden. Immunochistochemistry was used to evaluate biochemical endpoints [Ki-67, cleaved caspase-3, cyclooxygenase (COX)-2, β-catenin]. K-Ras codon 12 mutations were studied with polymerase chain reaction-based technique. We demonstrated that OCT imaging significantly correlated with histological analysis of both tumor number and tumor burden for all experimental groups (P < 0.0001), but allows more accurate and full characterization of tumor number and burden growth rate because of its time-serial, nondestructive nature. DFMO alone or in combination with sulindac suppressed both the tumor number and tumor burden growth rate in the CP setting because of DFMO-mediated decrease in cell proliferation (Ki-67, P < 0.001) and K-RAS mutations frequency (P = 0.04). In the CT setting, sulindac alone and DFMO/sulindac combination were effective in reducing tumor number, but not tumor burden growth rate. A decrease in COX-2 staining in DFMO/sulindac CT groups (COX-2, P < 0.01) confirmed the treatment effect. Use of nondestructive OCT enabled repeated, quantitative evaluation of tumor number and burden, allowing changes in these parameters to be measured during CP and as a result of CT. In conclusion, OCT is a robust minimally invasive method for monitoring colorectal cancer disease and effectiveness of therapies in mouse models.
Collapse
Affiliation(s)
| | - Photini S Rice
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - R Andrew Wall
- College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Kyle J Sprute
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | | | - Amber M Luttman
- College of Optical Sciences, University of Arizona, Tucson, AZ, USA
| | - Raymond B Nagle
- Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Edward R Abril
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Katrina Farrell
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Chiu-Hsieh Hsu
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Denise J Roe
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA. ; Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, USA
| | - Eugene W Gerner
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Natalia A Ignatenko
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA. ; Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jennifer K Barton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA. ; College of Optical Sciences, University of Arizona, Tucson, AZ, USA. ; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
15
|
Schrader CH, Kolb M, Zaoui K, Flechtenmacher C, Grabe N, Weber KJ, Hielscher T, Plinkert PK, Hess J. Kallikrein-related peptidase 6 regulates epithelial-to-mesenchymal transition and serves as prognostic biomarker for head and neck squamous cell carcinoma patients. Mol Cancer 2015; 14:107. [PMID: 25990935 PMCID: PMC4437453 DOI: 10.1186/s12943-015-0381-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 05/08/2015] [Indexed: 12/14/2022] Open
Abstract
Background Dysregulated expression of Kallikrein-related peptidase 6 (KLK6) is a common feature for many human malignancies and numerous studies evaluated KLK6 as a promising biomarker for early diagnosis or unfavorable prognosis. However, the expression of KLK6 in carcinomas derived from mucosal epithelia, including head and neck squamous cell carcinoma (HNSCC), and its mode of action has not been addressed so far. Methods Stable clones of human mucosal tumor cell lines were generated with shRNA-mediated silencing or ectopic overexpression to characterize the impact of KLK6 on tumor relevant processes in vitro. Tissue microarrays with primary HNSCC samples from a retrospective patient cohort (n = 162) were stained by immunohistochemistry and the correlation between KLK6 staining and survival was addressed by univariate Kaplan-Meier and multivariate Cox proportional hazard model analysis. Results KLK6 expression was detected in head and neck tumor cell lines (FaDu, Cal27 and SCC25), but not in HeLa cervix carcinoma cells. Silencing in FaDu cells and ectopic expression in HeLa cells unraveled an inhibitory function of KLK6 on tumor cell proliferation and mobility. FaDu clones with silenced KLK6 expression displayed molecular features resembling epithelial-to-mesenchymal transition, nuclear β-catenin accumulation and higher resistance against irradiation. Low KLK6 protein expression in primary tumors from oropharyngeal and laryngeal SCC patients was significantly correlated with poor progression-free (p = 0.001) and overall survival (p < 0.0005), and served as an independent risk factor for unfavorable clinical outcome. Conclusions In summary, detection of low KLK6 expression in primary tumors represents a promising tool to stratify HNSCC patients with high risk for treatment failure. These patients might benefit from restoration of KLK6 expression or pharmacological targeting of signaling pathways implicated in EMT. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0381-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carola H Schrader
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Markus Kolb
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Karim Zaoui
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | | | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BIOQUANT, Heidelberg, Germany. .,Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Klaus-Josef Weber
- Department of Radiation Oncology, University of Heidelberg, Heidelberg, Germany.
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Peter K Plinkert
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany.
| | - Jochen Hess
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany. .,Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
16
|
Kabir A, Kumar GS. Probing the interaction of spermine and 1-naphthyl acetyl spermine with DNA polynucleotides: a comparative biophysical and thermodynamic investigation. MOLECULAR BIOSYSTEMS 2014; 10:1172-83. [PMID: 24643290 DOI: 10.1039/c3mb70616h] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interaction of spermine and its analogue, 1-naphthyl acetyl spermine with four double stranded DNA polynucleotides has been studied to understand the structural and thermodynamic basis of the binding. The efficacy and specificity of DNA binding of this analogue has not yet been revealed. The energetics of the interaction was studied by isothermal titration calorimetry and differential scanning calorimetry. Circular dichroism spectroscopy, UV-thermal melting and ethidium bromide displacement assay have been employed to characterize the association. Circular dichroism studies showed that 1-naphthyl acetyl spermine caused a stronger structural perturbation in the polynucleotides. Among the adenine-thymine polynucleotides the alternating polynucleotide was more preferred by naphthyl acetyl spermine compared to the preference of spermine for the homo sequence. The higher melting stabilization revealed by the optical melting and differential scanning calorimetry results suggested that the binding of 1-naphthyl acetyl spermine increased the melting temperature and the total standard molar enthalpy of the transition of adenine-thymine polynucleotides. Microcalorimetry results revealed that unlike spermine the binding of 1-naphthyl acetyl spermine was endothermic. The interaction was characterized by total enthalpy-entropy compensation and high standard molar heat capacity values. There are differences in the mode of association of 1-naphthyl acetyl spermine and spermine. 1-naphthyl acetyl spermine binds with an enhanced affinity with the adenine-thymine hetero polynucleotide. Thus, the result suggests the importance of polyamine analogues and their ability to interfere with normal polyamine interactions.
Collapse
Affiliation(s)
- Ayesha Kabir
- Biophysical Chemistry Laboratory, Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700 032, India.
| | | |
Collapse
|
17
|
Drygiannakis I, Valatas V, Sfakianaki O, Bourikas L, Manousou P, Kambas K, Ritis K, Kolios G, Kouroumalis E. Proinflammatory cytokines induce crosstalk between colonic epithelial cells and subepithelial myofibroblasts: implication in intestinal fibrosis. J Crohns Colitis 2013; 7:286-300. [PMID: 22578910 DOI: 10.1016/j.crohns.2012.04.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/10/2012] [Accepted: 04/11/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Colonic epithelial cells and adjacent subepithelial myofibroblasts are important counterparts in the pathogenesis of intestinal inflammation and fibrosis. We investigated the possible crosstalk between them, whilst focusing on the mucosal inflammation pathways that potentially trigger intestinal fibrosis. METHODS We studied the effects of proinflammatory cytokines (IL-1α, TNF-α, IFN-γ) on human colonic epithelial cell lines and the effects of epithelial cell-conditioned media on primary human colonic subepithelial myofibroblasts isolated from normal controls or patients with inflammatory Crohn's disease along with the corresponding 18CO cell line. Readouts included production of TGF-β and TIMP-1, total collagen synthesis, matrix metalloproteinases MMP-2 and MMP-9 and myofibroblast migration/mobility. RESULTS Proinflammatory cytokines upregulated TGF-β and TIMP-1 in colonic epithelial cells. Conditioned medium from these epithelial cell cultures induced production of MMP-9 and collagen and inhibited the migration/mobility of subepithelial myofibroblasts. MMP-9 production depended on endothelin receptor A signalling on responding myofibroblasts. Collagen up-regulation was independent of TGF-β, CTGF, TF and endothelin. Subepithelial myofibroblasts isolated from Crohn's disease patients had similar responses to those isolated from normal controls, with the exception of higher basal collagen production. CONCLUSIONS Our study indicates that colonic epithelial cells may respond to an inflammatory milieu by inducing myofibroblast functions similar to those observed during intestinal fibrosis.
Collapse
|
18
|
Basu Roy UK, Henkhaus RS, Loupakis F, Cremolini C, Gerner EW, Ignatenko NA. Caveolin-1 is a novel regulator of K-RAS-dependent migration in colon carcinogenesis. Int J Cancer 2013; 133:43-57. [PMID: 23280667 DOI: 10.1002/ijc.28001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 11/12/2012] [Accepted: 12/05/2012] [Indexed: 12/13/2022]
Abstract
Caveolin-1 is an essential component of membrane caveolae. It is an important regulator of cellular processes such as signal transduction and endocytosis. We report here, for the first time, that caveolin-1 is a target of the K-RAS oncogene in colon carcinogenesis. Caveolin-1 is induced in colon cancer cells and in human colon tumor samples, in response to K-RAS activating mutations. An activated K-RAS oncogene transcriptionally induces caveolin-1 expression in human colon cancer cells and this effect is not restricted to the type of activating K-RAS mutation. Inhibition of the P-I3 Kinase-AKT pathway, but not the ERK MAPK pathway, both important K-RAS effectors, leads to a decrease in caveolin-1 expression indicating that the AKT pathway is involved in caveolin-1 expression in response to an activated K-RAS. Increased AKT signaling induces caveolin-1 expression by increasing the activity of the transcription factor, Sp1. Interestingly; caveolin-1 depletion alters K-RAS-dependent signaling by decreasing Grb2-SOS activity. Consistent with these finding, caveolin-1-depleted cells shows decreased migration in vitro. However, caveolin-1 overexpression by itself does not increase migration whereas an activated Src can increase migration in a caveolin-1-dependent manner. This increased migration is highly dependent on the RhoA GTPase, indicating that an activated K-RAS modulates migration in part via caveolin-1 induction, and increasing RhoA activity via phospho-caveolin-1. Our findings indicate that K-RAS regulates both caveolin-1 expression and other factors affecting caveolin-1 functions in colon cancer-derived cell migration.
Collapse
Affiliation(s)
- Upal K Basu Roy
- Department of Biochemistry and Molecular Biophysics, Biochemistry and Molecular and Cellular Biology Graduate Program, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
19
|
Yuk J, Simpson MJ, Simpson AJ. Coelomic fluid: a complimentary biological medium to assess sub-lethal endosulfan exposure using ¹H NMR-based earthworm metabolomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1301-1313. [PMID: 22451197 DOI: 10.1007/s10646-012-0884-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Endosulfan is an environmentally persistent pesticide and has been shown to be genotoxic, neurotoxic and carcinogenic to surrounding organisms. Earthworms are widely used in environmental metabolomic studies to assess soil ecotoxicity. Previous nuclear magnetic resonance (NMR)-based metabolomic studies have analyzed earthworm tissue extracts after exposure to endosulfan and identified some key metabolic indicators that can be used as biomarkers of stress. However, some metabolites may have been masked due to overlap with other metabolites in the tissue extract. Therefore, in this study, the coelomic fluid (CF) and the tissue extract of the earthworm, Eisenia fetida, were both investigated using ¹H NMR-based metabolomics to analyze their metabolic profile in response to endosulfan exposure at three sub-lethal (below LC₅₀) concentrations. Principal component analysis determined the earthworm CF and earthworm tissue extract to both have significant separation between the exposed and control at the two highest sub-lethal endosulfan exposures (1.0 and 2.0 μg cm⁻²). Alanine, glycine, malate, α-ketoglutarate, succinate, betaine, myo-inositol, lactate and spermidine in the earthworm CF and alanine, glutamine, fumarate, glutamate, maltose, melibiose, ATP and lactate in earthworm tissue extract were all detected as having significant fluctuations after endosulfan exposure. An increase in ATP production was detected by the increase activity in the citric acid cycle and by anaerobic metabolism. A significant decrease in the polyamine, spermidine after endosulfan exposure describes an apoptotic mode of protection which correlates to a previous endosulfan exposure study where DNA damage has been reported. This study highlights that earthworm CF is a complementary biological medium to tissue extracts and can be helpful to better understand the toxic mode of action of contaminants at sub-lethal levels in the environment.
Collapse
Affiliation(s)
- Jimmy Yuk
- Department of Chemistry, Scarborough College, University of Toronto, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
| | | | | |
Collapse
|
20
|
Bayani J, Diamandis EP. The physiology and pathobiology of human kallikrein-related peptidase 6 (KLK6). Clin Chem Lab Med 2011; 50:211-33. [PMID: 22047144 DOI: 10.1515/cclm.2011.750] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 09/21/2011] [Indexed: 12/11/2022]
Abstract
The human kallikrein-related peptidase 6 (KLK6) gene belongs to the 15-member kallikrein (KLK) gene family mapping to chromosome 19q13.3-13.4. Encoding for an enzyme with trypsin-like properties, KLK6 can degrade components of the extracellular matrix. The successful utilisation of another KLK member (KLK3/PSA) for prostate cancer diagnosis has led many to evaluate KLK6 as a potential biomarker for other cancer and diseased states. The observed dysregulated expression in cancers, neurodegenerative diseases and skin conditions has led to the discovery that KLK6 participates in other cellular pathways including inflammation, receptor activation and regulation of apoptosis. Moreover, the improvements in high-throughput genomics have not only enabled the identification of sequence polymorphisms, but of transcript variants, whose functional significances have yet to be realised. This comprehensive review will summarise the current findings of KLK6 pathophysiology and discuss its potential as a viable biomarker.
Collapse
Affiliation(s)
- Jane Bayani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
21
|
DFMO: targeted risk reduction therapy for colorectal neoplasia. Best Pract Res Clin Gastroenterol 2011; 25:495-506. [PMID: 22122766 PMCID: PMC3227870 DOI: 10.1016/j.bpg.2011.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/14/2011] [Accepted: 09/30/2011] [Indexed: 01/31/2023]
Abstract
Strategies to decrease intracellular polyamine levels have been studied for their efficacy in reducing colorectal cancer (CRC) risk. A successful strategy combined agents that decreased polyamine synthesis by inhibiting ornithine decarboxylase with difluoromethylornithine (DFMO), and increased cellular export of polyamines by activating the spermidine/spermine acetyl transferase with non-steroidal anti-inflammatory drugs (NSAIDs). A Phase III trial treating resected adenoma patients with DFMO plus sulindac demonstrated marked reduction of metachronous adenomas, advanced adenomas and multiple adenomas compared to placebo. This combination regimen was well-tolerated, however there was a non-significant excess of cardiovascular events in the treatment arm compared to placebo as well as modest ototoxicity. Targeting this therapy to people at elevated risk of CRC, and employing clinical and genetic predictors, should improve patient benefit and reduce the risk of side effects to improve the acceptability of this strategy.
Collapse
|
22
|
Wu CL, Liao YF, Hung YC, Lu KH, Hung HC, Liu GY. Ornithine decarboxylase prevents dibenzoylmethane-induced apoptosis through repressing reactive oxygen species generation. J Biochem Mol Toxicol 2011; 25:312-9. [DOI: 10.1002/jbt.20391] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/29/2011] [Accepted: 02/16/2011] [Indexed: 11/10/2022]
|
23
|
Stark F, Pfannstiel J, Klaiber I, Raabe T. Protein kinase CK2 links polyamine metabolism to MAPK signalling in Drosophila. Cell Signal 2011; 23:876-82. [PMID: 21262350 DOI: 10.1016/j.cellsig.2011.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 01/13/2011] [Indexed: 01/22/2023]
Abstract
MAPK signalling is a complex process not only requiring the core components Raf, MEK and Erk, but also many proteins like the scaffold protein KSR and several kinases to specifically localize, modulate and fine-tune the outcome of the pathway in a cell context specific manner. In mammals, protein kinase CK2 was shown to bind to the scaffold protein KSR and to phosphorylate Raf proteins at a conserved serine residue in the negative-charge regulatory (N-) region, thereby facilitating maximal activity of the MAPK signalling pathway. In this work we show that in Drosophila CK2 is also bound to KSR. However, despite the presence of a corresponding serine residue in the N-region of DRaf, CK2-mediated phosphorylation of DRaf takes place on a serine residue at the N-terminus and is required for Erk activation. Previous work identified polyamines as regulators of CK2 kinase activity. The main cellular source of polyamines is the catabolism of amino acids. Evidence is provided that phosphorylation of DRaf by CK2 is modulated by polyamines, with spermine being the most potent inhibitor of the reaction. We suggest that CK2 is able to monitor intracellular polyamine levels and translates this information to modulate MAPK signalling.
Collapse
Affiliation(s)
- Felix Stark
- Universität Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstr. 5, D-97078 Würzburg, Germany
| | | | | | | |
Collapse
|
24
|
Abstract
Polyamines are organic cations shown to control gene expression at the transcriptional, posttranscriptional, and translational levels. Multiple cellular oncogenic pathways are involved in regulation of transcription and translation of polyamine-metabolizing enzymes. As a consequence of genetic alterations, expression levels and activities of polyamine-metabolizing enzymes change rapidly during tumorigenesis resulting in high levels of polyamines in many human epithelial tumors. This review summarizes the mechanisms of polyamine regulation by canonical tumor suppressor genes and oncogenes, as well as the role of eukaryotic initiation factor 5A (EIF5A) in cancer. The importance of research utilizing pharmaceutical inhibitors and cancer chemopreventive strategies targeting the polyamine pathway is also discussed.
Collapse
Affiliation(s)
- Edwin A Paz
- Cancer Biology Interdisciplinary Graduate Program, Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | | | | |
Collapse
|
25
|
Abstract
Owing to preferential electrostatic adsorption of multivalent cations on highly anionic surfaces, natural multivalent polyamines and especially quadrivalent spermine can be considered as potential regulators of the complex dynamical properties of anionic MTs (microtubules). Indeed, the C-terminal tails of tubulin display many negative residues in a row which should enable the formation of a correlated liquid-like phase of multivalent counterions on its surface. Although it is known that polyamine counterions promote MT assembly in vitro, little is known about the relevance of this interaction in vivo. In the present study, we have explored the relationship between polyamine levels and MT assembly in HeLa and epithelial NRK (normal rat kidney) cells using DFMO (α-difluoromethylornithine), an irreversible inhibitor of ornithine decarboxylase, and APCHA [N-(3-aminopropyl)-N-cyclohexylamine], a spermine synthase inhibitor. Under conditions of intracellular polyamine depletion, the MT network is clearly disrupted and the MT mass decreases. Addition of spermine to polyamine-depleted cells reverses this phenotype and rapidly promotes the extensions of the MT network. Finally, we show that polyamine levels modulate the coating of MTs with MAP4 (MT-associated protein 4), an MT-stabilizing protein, and the spatial distribution of EB1 (end-binding protein 1), an MT plus-end-binding protein. In addition, polyamines favour the formation of gap junctions in NRK cells, a process which requires MT extensions at the cell periphery. The present study provides a basis for a better understanding of the role played by polyamines in MT assembly and establishes polyamine metabolism as a potential cellular target for modulating MT functions.
Collapse
|
26
|
Önal A. Current Status of Polyamine and Polyamine Analogs Analysis in Cancer Research. Crit Rev Anal Chem 2010. [DOI: 10.1080/10408340903018486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Liu Y, Zhang X, Li ZJ, Chen XH. Up-regulation of Cx43 expression and GJIC function in acute leukemia bone marrow stromal cells post-chemotherapy. Leuk Res 2009; 34:631-40. [PMID: 19910046 DOI: 10.1016/j.leukres.2009.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/10/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
Abstract
Gap junction intercellular communication (GJIC) among bone marrow stromal cells (BMSCs) most frequently occurs through a channel composed of connexin43 (Cx43). Dysregulation of connexin expression is believed to have a role in carcinogenesis. In earlier work, we found that in acute leukemia BMSCs, expression of Cx43 and functioning GJIC declined. However, there has been no evaluation of whether GJIC in BMSCs in complete remission (CR) post-chemotherapy is different from GJIC pre-chemotherapy. We studied Cx43 expression and tested GJIC function in human bone marrow cultures under different physiological and pathological conditions. To assay Cx43 expression we used immunocytochemistry, laser scan confocal microscopy (LSCM), flow cytometry and RT-PCR. The results showed that the expression level of Cx43 and its mRNA in acute leukemia BMSCs post-chemotherapy was significantly higher and similar to normal levels than in primary acute leukemia BMSCs (p<0.01). Functional tests in cultures using dye transfer and fluorescence recovery after photobleaching (FRAP) assays showed that the function of GJIC in acute leukemia BMSCs was significantly improved following effective chemotherapy. Our findings suggest Cx43 and GJIC might be involved in the courses of occurrence, development and termination of acute leukemia, and effective chemotherapy could improve Cx43 expression and GJIC function that were dysfunctional prior to treatment.
Collapse
Affiliation(s)
- Yao Liu
- Department of Hematology, Xinqiao Hospital, The Third Military Medical University, Shapingba District, Xinqiao Street, Chongqing 400037, China
| | | | | | | |
Collapse
|
28
|
Hu Y, Le Leu RK, Young GP. Detection of K-ras mutations in azoxymethane-induced aberrant crypt foci in mice using LNA-mediated real-time PCR clamping and mutant-specific probes. Mutat Res 2009; 677:27-32. [PMID: 19442760 DOI: 10.1016/j.mrgentox.2009.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 04/23/2009] [Accepted: 05/03/2009] [Indexed: 10/20/2022]
Abstract
Azoxymethane, a rodent colon-specific carcinogen, induce DNA damage, and causes proto-oncogene K-ras point mutations and subsequent tumor formation if DNA damage is not repaired or removed. The present study was designed to detect and characterize K-ras mutations in azoxymethane (AOM)-induced aberrant crypt foci (ACF) in mice, and determine whether dietary supplementation of selenium influences K-ras mutations frequency in ACF using a new PCR technique of locked nucleic acid-mediated real-time PCR clamping combined with mutant-specific probes. K-ras mutations were identified in 33% of AOM-induced ACF. In addition to G to A transition mutation, specific G to T transversion mutation was also identified for the first time in mouse ACF. Furthermore, selenium intake was associated with reduced ACF formation and reduced K-ras mutations rate, respectively, from 112 and 37% in mice fed control diet to 65 and 14% in mice fed selenium-containing diet (p < 0.05). This is the first report of the use of one-step LNA-mediated real-time PCR clamping to detect K-ras mutations in AOM-induced colon cancer model. It is highly sensitive and can be applied to the detection of early genetic alterations in carcinogen-based animal models.
Collapse
Affiliation(s)
- Ying Hu
- Department of Medicine, Flinders Centre for Cancer Prevention and Control, Flinders University of South Australia, Adelaide, Australia.
| | | | | |
Collapse
|
29
|
Roy UKB, Henkhaus RS, Ignatenko NA, Mora J, Fultz KE, Gerner EW. Wild-type APC regulates caveolin-1 expression in human colon adenocarcinoma cell lines via FOXO1a and C-myc. Mol Carcinog 2008; 47:947-55. [PMID: 18444242 PMCID: PMC4847746 DOI: 10.1002/mc.20451] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Genetic evidence suggests that caveolin-1, an essential component of membrane caveolae, acts as a tumor promoter in some, and a tumor suppressor in other cancers. The role of caveolin-1 in colon carcinogenesis is controversial. We report here, for the first time, that caveolin-1 is transcriptionally induced in colon cancer cells in response to conditional expression of a full length adenomatous polyposis coli (APC) gene. This induction of caveolin-1 by APC is mediated by both FOXO1a, a member of the Forkhead family of transcription factor, and c-myc. The FOXO1a protein, which is increased by wild-type APC expression, induces caveolin-1 promoter-reporter activity and binds directly to a FKHR consensus binding sequence in the caveolin-1 promoter. The c-myc protein, which is reduced in the presence of wild-type APC, acts to repress caveolin-1 expression by acting at non-E-box containing elements in the caveolin-1 promoter. These data predict that caveolin-1 protein expression would be decreased early in colonic carcinogenesis, which is associated with loss of wild-type APC. Our results would be consistent with the interpretation that caveolin-1 may have tumor suppressing functions during early stages of colon carcinogenesis.
Collapse
Affiliation(s)
- Upal K Basu Roy
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | | | | | | | | | | |
Collapse
|
30
|
Uemura T, Yerushalmi HF, Tsaprailis G, Stringer DE, Pastorian KE, Hawel L, Byus CV, Gerner EW. Identification and characterization of a diamine exporter in colon epithelial cells. J Biol Chem 2008; 283:26428-35. [PMID: 18660501 PMCID: PMC2546529 DOI: 10.1074/jbc.m804714200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 07/24/2008] [Indexed: 11/06/2022] Open
Abstract
SLC3A2, a member of the solute carrier family, was identified by proteomics methods as a component of a transporter capable of exporting the diamine putrescine in the Chinese hamster ovary (CHO) cells selected for resistance to growth inhibition by high exogenous concentrations of putrescine. Putrescine transport was increased in inverted plasma membrane vesicles prepared from cells resistant to growth inhibition by putrescine compared with transport in inverted vesicles prepared from non-selected cells. Knockdown of SLC3A2 in human cells, using short hairpin RNA, caused an increase in putrescine uptake and a decrease in arginine uptake activity. SLC3A2 knockdown cells accumulated higher polyamine levels and grew faster than control cells. The growth of SLC3A2 knockdown cells was inhibited by high concentrations of putrescine. Knockdown of SLC3A2 reduced export of polyamines from cells. Expression of SLC3A2 was suppressed in human HCT116 colon cancer cells, which have an activated K-RAS, compared with their isogenic clone, Hkh2 cells, which lack an activated K-RAS allele. Spermidine/spermine N(1)-acetyltransferase (SAT1) was co-immunoprecipitated by an anti-SLC3A2 antibody as was SLC3A2 with an anti-SAT1 antibody. SLC3A2 and SAT1 colocalized on the plasma membrane. These data provide the first molecular characterization of a polyamine exporter in animal cells and indicate that the diamine putrescine is exported by an arginine transporter containing SLC3A2, whose expression is negatively regulated by K-RAS. The interaction between SLC3A2 and SAT1 suggests that these proteins may facilitate excretion of acetylated polyamines.
Collapse
Affiliation(s)
- Takeshi Uemura
- Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724, Faculty of
Medicine, Technion, Haifa 31096, Israel, Center
for Toxicology, College of Pharmacy, Tucson, Arizona 85721, and
Department of Biomedical Sciences, University of
California, Riverside, California 92521-0121
| | - Hagit F. Yerushalmi
- Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724, Faculty of
Medicine, Technion, Haifa 31096, Israel, Center
for Toxicology, College of Pharmacy, Tucson, Arizona 85721, and
Department of Biomedical Sciences, University of
California, Riverside, California 92521-0121
| | - George Tsaprailis
- Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724, Faculty of
Medicine, Technion, Haifa 31096, Israel, Center
for Toxicology, College of Pharmacy, Tucson, Arizona 85721, and
Department of Biomedical Sciences, University of
California, Riverside, California 92521-0121
| | - David E. Stringer
- Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724, Faculty of
Medicine, Technion, Haifa 31096, Israel, Center
for Toxicology, College of Pharmacy, Tucson, Arizona 85721, and
Department of Biomedical Sciences, University of
California, Riverside, California 92521-0121
| | - Kirk E. Pastorian
- Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724, Faculty of
Medicine, Technion, Haifa 31096, Israel, Center
for Toxicology, College of Pharmacy, Tucson, Arizona 85721, and
Department of Biomedical Sciences, University of
California, Riverside, California 92521-0121
| | - Leo Hawel
- Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724, Faculty of
Medicine, Technion, Haifa 31096, Israel, Center
for Toxicology, College of Pharmacy, Tucson, Arizona 85721, and
Department of Biomedical Sciences, University of
California, Riverside, California 92521-0121
| | - Craig V. Byus
- Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724, Faculty of
Medicine, Technion, Haifa 31096, Israel, Center
for Toxicology, College of Pharmacy, Tucson, Arizona 85721, and
Department of Biomedical Sciences, University of
California, Riverside, California 92521-0121
| | - Eugene W. Gerner
- Arizona Cancer Center, University of
Arizona, Tucson, Arizona 85724, Faculty of
Medicine, Technion, Haifa 31096, Israel, Center
for Toxicology, College of Pharmacy, Tucson, Arizona 85721, and
Department of Biomedical Sciences, University of
California, Riverside, California 92521-0121
| |
Collapse
|
31
|
Henkhaus RS, Gerner EW, Ignatenko NA. Kallikrein 6 is a mediator of K-RAS-dependent migration of colon carcinoma cells. Biol Chem 2008; 389:757-64. [PMID: 18627290 DOI: 10.1515/bc.2008.087] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kallikrein 6 (KLK6) is a trypsin-like serine peptidase whose relevance in various types of cancers is currently being explored. Previous studies have shown that KLK6 mRNA is upregulated in colon and gastric cancers; however, the regulatory mechanisms and phenotypic consequences of this upregulation are largely unknown. Activating K-RAS mutations are common in colon cancer, occurring in approximately 50% of cases. We have recently reported the upregulation of KLK6 mRNA in Caco2 human colon cancer cells stably transfected with a mutant K-RAS allele (K-RAS(G12V)). In this study we examined the pattern of K-RAS-dependent KLK6 expression and secretion in colon cancer cells. Using pharmacological inhibitors of pathways downstream of K-RAS, we could show that the PI3K and p42/44 MAPK pathways play an important role in the induction of KLK6 in mutant K-RAS-expressing colon cancer cells. Increased KLK6 expression enhanced colon cancer cell migration through laminin and Matrigel. Inhibition of KLK6 using small interference RNA treatment or a specific KLK6 antibody in Caco2 cells stably expressing the mutant K-RAS and in SW480 cells carrying a mutation in the K-RAS oncogene resulted in a reduction in invasiveness through cell culture inserts. These data support the oncogenic role of KLK6 in colorectal cancer.
Collapse
Affiliation(s)
- Rebecca S Henkhaus
- Cancer Biology Interdisciplinary Program, Arizona Cancer Center, The University of Arizona, 1515 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | |
Collapse
|
32
|
Prediction of ovarian cancer prognosis and response to chemotherapy by a serum-based multiparametric biomarker panel. Br J Cancer 2008; 99:1103-13. [PMID: 18766180 PMCID: PMC2567083 DOI: 10.1038/sj.bjc.6604630] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Currently, there are no effective biomarkers for ovarian cancer prognosis or prediction of therapeutic response. The objective of this study was to examine a panel of 10 serum biochemical parameters for their ability to predict response to chemotherapy, progression and survival of ovarian cancer patients. Sera from ovarian cancer patients were collected prior and during chemotherapy and were analysed by enzyme-linked immunosorbent assay for CA125, kallikreins 5, 6, 7, 8, 10 and 11, B7-H4, regenerating protein IV and Spondin-2. The odds ratio and hazard ratio and their 95% confidence interval (95% CI) were calculated. Time-dependent receiver-operating characteristic (ROC) curves were utilised to evaluate the prognostic performance of the biomarkers. The levels of several markers at baseline (c0), or after the first chemotherapy cycle (rc1), predicted chemotherapy response and overall or progression-free survival in univariate analysis. A multiparametric model (c0 of CA125, KLK5, KLK7 and rc1 of CA125) provided predictive accuracy with area under the ROC curve (AUC) of 0.82 (0.62 after correction for overfitting). Another marker combination (c0 of KLK7, KLK10, B7-H4, Spondin-2) was useful in predicting short-term (1-year) survival with an AUC of 0.89 (0.74 after correction for overfitting). All markers examined, except KLK7 and regenerating protein IV, were powerful predictors of time to progression (TTP) among chemotherapy responders. Individual and panels of biomarkers from the kallikrein family (and other families) can predict response to chemotherapy, overall survival, short-term (1-year) survival, progression-free survival and TTP of ovarian cancer patients treated with chemotherapy.
Collapse
|
33
|
Abstract
Owing to their high turnover, the intestinal mucosal cells have a particularly high requirement for polyamines. Therefore, they are an excellent charcol for the study of polyamine function in rapid physiological growth and differentiation. After a cursory introduction to the major aspects of polyamine metabolism, regulation, and mode of action, we discuss the contribution of the polyamines to the maintenance of normal gut function, the maturation of the intestinal mucosa, and its repair after injuries. Repletion of cellular polyamine pools with (D,L)-2-(difluoromethyl)ornithine has considerably improved our understanding of how the polyamines are involved in the regulation of normal and neoplastic growth. Unfortunately, the attempts to exploit polyamine metabolism as a cancer therapeutic target have not yet been successful. However, the selective inactivation of ornithine decarboxylase appears to be a promising chemopreventive method in familial adenomatous polyposis. Presumably, it relies on the fact that ornithine decarboxylase is a critical regulator of the proliferative response of the protooncogene c-myc, but not of its apoptotic response.
Collapse
Affiliation(s)
- Nikolaus Seiler
- INSERM U682, Université Louis Pasteur EA3430, Faculty of Medicine, Laboratory of Nutritional Cancer Prevention, IRCAD, Strasbourg, France
| | | |
Collapse
|
34
|
Perrin SR, Hauck W, Ndzie E, Blehaut J, Ludemann-Hombouger O, Nicoud RM, Pirkle WH. Purification of Difluoromethylornithine by Global Process Optimization: Coupling of Chemistry and Chromatography with Enantioselective Crystallization. Org Process Res Dev 2007. [DOI: 10.1021/op700118m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott R. Perrin
- NOVASEP, Inc., 23 Creek Circle, Boothwyn, Pennsylvania 19061, Novartis Pharma AG, Litchstrasse 35, CH-4056, Basel, Switzerland, NOVASEP SAS, Site Eiffel, Boulevard de la Moselle, F54340, Pompey, France, and School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, U.S.A
| | - Wilhelm Hauck
- NOVASEP, Inc., 23 Creek Circle, Boothwyn, Pennsylvania 19061, Novartis Pharma AG, Litchstrasse 35, CH-4056, Basel, Switzerland, NOVASEP SAS, Site Eiffel, Boulevard de la Moselle, F54340, Pompey, France, and School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, U.S.A
| | - Elias Ndzie
- NOVASEP, Inc., 23 Creek Circle, Boothwyn, Pennsylvania 19061, Novartis Pharma AG, Litchstrasse 35, CH-4056, Basel, Switzerland, NOVASEP SAS, Site Eiffel, Boulevard de la Moselle, F54340, Pompey, France, and School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, U.S.A
| | - Jean Blehaut
- NOVASEP, Inc., 23 Creek Circle, Boothwyn, Pennsylvania 19061, Novartis Pharma AG, Litchstrasse 35, CH-4056, Basel, Switzerland, NOVASEP SAS, Site Eiffel, Boulevard de la Moselle, F54340, Pompey, France, and School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, U.S.A
| | - Olivier Ludemann-Hombouger
- NOVASEP, Inc., 23 Creek Circle, Boothwyn, Pennsylvania 19061, Novartis Pharma AG, Litchstrasse 35, CH-4056, Basel, Switzerland, NOVASEP SAS, Site Eiffel, Boulevard de la Moselle, F54340, Pompey, France, and School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, U.S.A
| | - Roger-Marc Nicoud
- NOVASEP, Inc., 23 Creek Circle, Boothwyn, Pennsylvania 19061, Novartis Pharma AG, Litchstrasse 35, CH-4056, Basel, Switzerland, NOVASEP SAS, Site Eiffel, Boulevard de la Moselle, F54340, Pompey, France, and School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, U.S.A
| | - William H. Pirkle
- NOVASEP, Inc., 23 Creek Circle, Boothwyn, Pennsylvania 19061, Novartis Pharma AG, Litchstrasse 35, CH-4056, Basel, Switzerland, NOVASEP SAS, Site Eiffel, Boulevard de la Moselle, F54340, Pompey, France, and School of Chemical Sciences, University of Illinois, Urbana, Illinois 61801, U.S.A
| |
Collapse
|
35
|
Marra M, Agostinelli E, Tempera G, Lombardi A, Meo G, Budillon A, Abbruzzese A, Giuberti G, Caraglia M. Anticancer drugs and hyperthermia enhance cytotoxicity induced by polyamine enzymatic oxidation products. Amino Acids 2007; 33:273-81. [PMID: 17610128 DOI: 10.1007/s00726-007-0536-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/01/2007] [Indexed: 11/25/2022]
Abstract
A correlation between regulation of cell proliferation and polyamine metabolism is described. The latter can enter protein synthesis through the modification of eukaryotic initiation factor 5A (eIF5A) and the formation of the peculiar amino acid hypusine. Specific inhibitors of hypusine formation induce apoptosis that can be potentiated by the combination with cytokines such as interferonalpha (IFNalpha) that itself decreases hypusine synthesis. We have also demonstrated that the concomitant treatment of cancer cells with IFNalpha and the protein synthesis inhibitor fusion protein TGFalpha/Pseudomonas Aeruginosa toxin synergize in inducing cancer cell growth inhibition. Another way used by polyamines to induce apoptosis is the generation of intracellular oxidative stress through the interaction with bovine serum amine oxidase (BSAO). This enzyme used simultaneously to spermine induces apoptosis, necrosis, inhibition of cell proliferation and inhibition of DNA and protein synthesis in several cell types. The enzymatic oxidation products of polyamine, H2O2 and aldehyde(s) cause these effects. We have recently found that the cytotoxicity of anti-cancer agents, either etoposide or docetaxel, in cancer cells is potentiated in the presence of BSAO/Spermine. In conclusion, polyamine metabolites could be useful in the design of new therapeutic strategies.
Collapse
Affiliation(s)
- M Marra
- Department of Experimental Oncology, Experimental Pharmacology Unit, National Institute of Tumours Fondaz. G. Pascale, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Origanti S, Shantz LM. Ras Transformation of RIE-1 Cells Activates Cap-Independent Translation of Ornithine Decarboxylase: Regulation by the Raf/MEK/ERK and Phosphatidylinositol 3-Kinase Pathways. Cancer Res 2007; 67:4834-42. [PMID: 17510413 DOI: 10.1158/0008-5472.can-06-4627] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ornithine decarboxylase (ODC) is the first and generally rate-limiting enzyme in polyamine biosynthesis. Deregulation of ODC is critical for oncogenic growth, and ODC is a target of Ras. These experiments examine translational regulation of ODC in RIE-1 cells, comparing untransformed cells with those transformed by an activated Ras12V mutant. Analysis of the ODC 5' untranslated region (5'UTR) revealed four splice variants with the presence or absence of two intronic sequences. All four 5'UTR species were found in both cell lines; however, variants containing intronic sequences were more abundant in Ras-transformed cells. All splice variants support internal ribosome entry site (IRES)-mediated translation, and IRES activity is markedly elevated in cells transformed by Ras. Inhibition of Ras effector targets indicated that the ODC IRES element is regulated by the phosphorylation status of the translation factor eIF4E. Dephosphorylation of eIF4E by inhibition of mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase (MEK) or the eIF4E kinase Mnk1/2 increases ODC IRES activity in both cell lines. When both the Raf/MEK/ERK and phosphatidylinositol 3-kinase/mammalian target of rapamycin pathways are inhibited in normal cells, ODC IRES activity is very low and cells arrest in G(1). When these pathways are inhibited in Ras-transformed cells, cell cycle arrest does not occur and ODC IRES activity increases, helping to maintain high ODC activity.
Collapse
Affiliation(s)
- Sofia Origanti
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, The Milton S. Hershey Medical Center, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
37
|
Gerner EW, Ignatenko NA, Lance P, Hurley LH. A comprehensive strategy to combat colon cancer targeting the adenomatous polyposis coli tumor suppressor gene. Ann N Y Acad Sci 2006; 1059:97-105. [PMID: 16382048 DOI: 10.1196/annals.1339.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Somatic cells in the majority of colorectal polyps and cancers contain mutations/deletions in the adenomatous polyposis coli (APC) tumor suppressor gene. APC is involved in normal intestinal development and acts to influence a variety of cellular processes. Loss of APC function leads to intestinal neoplasia in both mice and humans. APC influences expression of specific genes, including the c-Myc oncogene, which functions as a transcriptional activator. Loss of APC function leads to alterations in c-Myc-regulated genes including ornithine decarboxylase (ODC), the first enzyme in polyamine synthesis. A single nucleotide polymorphism (SNP) in the ODC promoter affecting c-Myc-dependent expression has been associated with risk of colorectal and other cancers. Pharmaceuticals that target structural features of the c-Myc promoter, and suppress expression of c-Myc and other genes regulated by similar promoter elements, are being developed as potential colorectal cancer chemotherapies. Difluoromethylornithine (DFMO), a selective inhibitor of ODC, is under clinical evaluation as a colorectal cancer chemopreventive agent. APC and APC-dependent genes, such as c-Myc and ODC, may be useful as genetic markers of risk and as targets for chemoprevention and therapy for colorectal cancer.
Collapse
Affiliation(s)
- Eugene W Gerner
- The University of Arizona, Arizona Cancer Center, Tucson, AZ 85724, USA.
| | | | | | | |
Collapse
|
38
|
Roberts ML, Drosopoulos KG, Vasileiou I, Stricker M, Taoufik E, Maercker C, Guialis A, Alexis MN, Pintzas A. Microarray analysis of the differential transformation mediated by Kirsten and Harvey Ras oncogenes in a human colorectal adenocarcinoma cell line. Int J Cancer 2006; 118:616-27. [PMID: 16152623 DOI: 10.1002/ijc.21386] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Colorectal cancer arises after a series of mutational events in the colon epithelia and is often used as a model of the multistep progression of tumorigenesis. Mutations in Ki-Ras have been detected in some 50% of cases and are thought to occur at an early stage. Almost never do mutations arise in the loci of other Ras isoforms (Ha- and N-), leading to the assumption that Ki-Ras plays a unique role in tumorigenesis. In order to examine the distinctive function that Ki-Ras plays in cancer development in the colon, we introduced constitutively active mutant Ki- and Ha-Ras genes into an intermediate-stage colon adenoma cell line (Caco-2). We found that mutant active Ha-RasV12 was more efficient at transforming these colon epithelial cells as assessed by anchorage-independent growth, tumor formation in SCID mice and the development of mesenchymal morphology compared to transformation by Ki-RasV12. We conducted microarray analysis in an attempt to reveal the genes whose aberrant expression is a direct result of overexpression of either Ki-RasV12 or Ha-RasV12. We used Clontech's Atlas cancer cDNA (588 genes) and RZPD's Onco Set 1 (1,544 genes) arrays. We identified fewer genes that were commonly regulated than were differentially expressed between Ki- and Ha-RasV12 isoforms. Specifically, we found that Ki-RasV12 regulated genes involved in cytokine signaling, cell adhesion and colon development, whereas Ha-RasV12 mainly regulated genes involved in controlling cell morphology, correlating to an epithelial-mesenchymal transition only observed in these cells. Our results demonstrate how 2 Ras isoforms regulate disparate biologic processes, revealing a number of genes whose deregulated expression may influence colon carcinogenesis (supplementary material for this article can be found on the International Journal of Cancer website at http://www.interscience.wiley.com/jpages/0020-7136/suppmat/index.html).
Collapse
Affiliation(s)
- Michael L Roberts
- Institute of Biologic Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Oikonomopoulou K, Scorilas A, Michael IP, Grass L, Soosaipillai A, Rosen B, Murphy J, Diamandis EP. Kallikreins as Markers of Disseminated Tumour Cells in Ovarian Cancer – A Pilot Study. Tumour Biol 2006; 27:104-14. [PMID: 16557045 DOI: 10.1159/000092325] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 06/06/2005] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Kallikreins are a family of secreted serine proteases, encoded by 15 genes which all localize in tandem on chromosome 19q13.4. Several members of this family have been previously associated with ovarian cancer. Kallikreins 6 (KLK6) and 10 (KLK10) are elevated in tumour cells, serum and ascites fluid of ovarian cancer patients and correlate with disease prognosis. Other kallikreins that have been related to ovarian cancer include KLK4, 5, 7, 8, 9, 11, 13, 14 and 15. We hypothesized that KLK6 and KLK10 can be utilized to monitor dissemination of ovarian cancer cells in blood and ascites fluid of ovarian cancer patients. METHODS RNA was isolated by immunomagnetic separation of cancer cells and was amplified by RT-PCR. RESULTS Screening for disseminated cancer cells in blood from 24 ovarian cancer patients, with RT-PCR for KLK6 mRNA, resulted in 75% positivity; however, this was not different from the positivity of normal controls. By utilizing KLK10 as a marker, the positivity of patients was 40% versus 20% of controls. Screening of ascites fluid of ovarian cancer patients revealed 90% positivity for KLK6 and KLK10 mRNA compared with 33% for other cancer types. Significant correlations were identified among mRNA of KLK4, 5, 6, 7, 8, 9, 10, 11, 13, 14 and 15 in cancer cells isolated from ascites fluid. CONCLUSION Kallikrein expression by ovarian cancer cells is not specific enough for detecting disseminated disease. Kallikrein expression may have some value for differentiating ovarian cancer from other types of cancer or from non-malignant diseases that lead to ascites accumulation.
Collapse
|
40
|
Obiezu CV, Diamandis EP. Human tissue kallikrein gene family: applications in cancer. Cancer Lett 2005; 224:1-22. [PMID: 15911097 DOI: 10.1016/j.canlet.2004.09.024] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Accepted: 09/15/2004] [Indexed: 10/26/2022]
Abstract
Human tissue kallikrein genes, located on the long arm of chromosome 19, are a subgroup of the serine protease family of proteolytic enzymes. Initially thought to consist of three members, the human kallikrein locus has now been extended and includes 15 tandemly located genes. These genes, and their protein products, share a high degree of homology and are expressed in a wide array of tissues, mainly those that are under steroid hormone control. PSA (hK3) is one of the human kallikreins, and is the most useful tumor marker for prostate cancer screening, diagnosis, prognosis and monitoring. hK2, another prostate-specific kallikrein, has also been proposed as a complementary prostate cancer biomarker. In the past 5 years, the newly discovered kallikreins (KLK4-KLK15) have been associated with several types of cancer. For example, hK4, hK5, hK6, hK7, hK8, hK10, hK11, hK13 and hK14 are emerging biomarkers for ovarian, breast, prostate and testicular cancer. New evidence raises the possibility that some kallikreins are directly involved with cancer progression. We here review the evidence linking kallikreins and cancer and their applicability as novel biomarkers for cancer diagnosis and management.
Collapse
Affiliation(s)
- Christina V Obiezu
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Avenue, Toronto, Ont., Canada M5G 1X5
| | | |
Collapse
|
41
|
Abstract
The amino-acid-derived polyamines have long been associated with cell growth and cancer, and specific oncogenes and tumour-suppressor genes regulate polyamine metabolism. Inhibition of polyamine synthesis has proven to be generally ineffective as an anticancer strategy in clinical trials, but it is a potent cancer chemoprevention strategy in preclinical studies. Clinical trials, with well-defined goals, are now underway to evaluate the chemopreventive efficacy of inhibitors of polyamine synthesis in a range of tissues.
Collapse
|