1
|
Yao Y, Zhang Q, Li Z, Zhang H. MDM2: current research status and prospects of tumor treatment. Cancer Cell Int 2024; 24:170. [PMID: 38741108 DOI: 10.1186/s12935-024-03356-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Mousedouble minute 2 (MDM2) is one of the molecules activated by p53 and plays an important role in the regulation of p53. MDM2 is generally believed to function as a negative regulator of p53 by facilitating its ubiquitination and subsequent degradation. Consequently, blocked p53 activity often fails in damaged cells to undergo cell cycle arrest or apoptosis. Given that around 50% of human cancers involve the inactivation of p53 through genetic mutations, and directly targeting p53 through drug development has limited feasibility, targeting molecular regulation related to p53 has great potential and has become a research hotspot. For example, developing drugs that target the interaction between p53 and MDM2. Such drugs aim to reactivate p53 by targeting either MDM2 binding or p53 phosphorylation. Researchers have identified various compounds that can serve as inhibitors, either by directly binding to MDM2 or by modifying p53 through phosphorylation. Furthermore, a significant correlation exists between the expression of MDM2 in tumors and the effectiveness of immunotherapy, predominantly in the context of immune checkpoint inhibition. This review presents a comprehensive overview of the molecular characteristics of MDM2 and the current state of research on MDM2-targeting inhibitors. It includes a review of the impact of MDM2 targeting on the efficacy of immunotherapy, providing guidance and direction for the development of drugs targeting the p53-MDM2 interaction and optimization of immunotherapy.
Collapse
Affiliation(s)
- Yumei Yao
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Qian Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Zhi Li
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China
| | - Hushan Zhang
- Zhaotong Health Vocational College, No 603 Yucai Road, Zhaotong City, Yunnan Province, 657000, People's Republic of China.
- Anning First People's Hospital Affiliated to Kunming University of Science and Technology, Kunming, Yunnan, 650302, People's Republic of China.
| |
Collapse
|
2
|
Wermelinger GF, Rubini L, da Fonseca ACC, Ouverney G, de Oliveira RPRF, de Souza AS, Forezi LSM, Limaverde-Sousa G, Pinheiro S, Robbs BK. A Novel MDM2-Binding Chalcone Induces Apoptosis of Oral Squamous Cell Carcinoma. Biomedicines 2023; 11:1711. [PMID: 37371806 DOI: 10.3390/biomedicines11061711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/07/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents ~90% of all oral cancers, being the eighth most common cancer in men. The overall 5-year survival rate is only 39% for metastatic cancers, and currently used chemotherapeutics can cause important side effects. Thus, there is an urgency in developing new and effective anti-cancer agents. As both chalcones and 1,2,3-triazoles are valuable pharmacophores/privileged structures in the search for anticancer compounds, in this work, new 1,2,3-triazole-chalcone hybrids were synthesized and evaluated against oral squamous cell carcinoma. By using different in silico, in vitro, and in vivo approaches, we demonstrated that compound 1f has great cytotoxicity and selectivity against OSCC (higher than carboplatin and doxorubicin) and other cancer cells in addition to showing minimal toxicity in mice. Furthermore, we demonstrate that induced cell death occurs by apoptosis and cell cycle arrest at the G2/M phase. Moreover, we found that 1f has a potential affinity for MDM2 protein, similar to the known ligand nutlin-3, and presents a better selectivity, pharmacological profile, and potential to be orally absorbed and is not a substrate of Pg-P when compared to nutlin-3. Therefore, we conclude that 1f is a good lead for a new chemotherapeutic drug against OSCC and possibly other types of cancers.
Collapse
Affiliation(s)
- Guilherme Freimann Wermelinger
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Lucas Rubini
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Anna Carolina Carvalho da Fonseca
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| | - Gabriel Ouverney
- Postgraduate Program in Applied Science for Health Products, Faculty of Pharmacy, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Rafael P R F de Oliveira
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Acácio S de Souza
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Luana S M Forezi
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Gabriel Limaverde-Sousa
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, FIOCRUZ, Rio de Janeiro 21040-900, RJ, Brazil
| | - Sergio Pinheiro
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niteroi 24020-141, RJ, Brazil
| | - Bruno Kaufmann Robbs
- Basic Science Department, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo 28625-650, RJ, Brazil
| |
Collapse
|
3
|
Kumar A, Gautam V, Sandhu A, Rawat K, Sharma A, Saha L. Current and emerging therapeutic approaches for colorectal cancer: A comprehensive review. World J Gastrointest Surg 2023; 15:495-519. [PMID: 37206081 PMCID: PMC10190721 DOI: 10.4240/wjgs.v15.i4.495] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/11/2023] [Accepted: 03/03/2023] [Indexed: 04/22/2023] Open
Abstract
Colorectal cancer (CRC) affects 1 in 23 males and 1 in 25 females, making it the third most common cancer. With roughly 608000 deaths worldwide, CRC accounts for 8% of all cancer-related deaths, making it the second most common cause of death due to cancer. Standard and conventional CRC treatments include surgical expurgation for resectable CRC and radiotherapy, chemotherapy, immunotherapy, and their combinational regimen for non-resectable CRC. Despite these tactics, nearly half of patients develop incurable recurring CRC. Cancer cells resist the effects of chemotherapeutic drugs in a variety of ways, including drug inactivation, drug influx and efflux modifications, and ATP-binding cassette transporter overexpression. These constraints necessitate the development of new target-specific therapeutic strategies. Emerging therapeutic approaches, such as targeted immune boosting therapies, non-coding RNA-based therapies, probiotics, natural products, oncolytic viral therapies, and biomarker-driven therapies, have shown promising results in preclinical and clinical studies. We tethered the entire evolutionary trends in the development of CRC treatments in this review and discussed the potential of new therapies and how they might be used in conjunction with conventional treatments as well as their advantages and drawbacks as future medicines.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vipasha Gautam
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Arushi Sandhu
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Kajal Rawat
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Antika Sharma
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Lekha Saha
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
4
|
Therapeutics Targeting p53-MDM2 Interaction to Induce Cancer Cell Death. Int J Mol Sci 2022; 23:ijms23095005. [PMID: 35563397 PMCID: PMC9103871 DOI: 10.3390/ijms23095005] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Named as the guardian of the genome, p53 is a tumor suppressor that regulates cell function, often through many different mechanisms such as DNA repair, apoptosis, cell cycle arrest, senescence, metabolism, and autophagy. One of the genes that p53 activates is MDM2, which forms a negative feedback loop since MDM2 induces the degradation of p53. When p53 activity is inhibited, damaged cells do not undergo cell cycle arrest or apoptosis. As 50% of human cancers inactivate p53 by mutation, current research focuses on reactivating p53 by developing drugs that target the p53-MDM2 interaction, which includes the binding of MDM2 and phosphorylation of p53. The objective of this article is to provide a short list and description of p53-MDM2 antagonists that may be excellent candidates for inducing cancer cell death. Relevant articles were searched for and identified using online databases such as PubMed and ScienceDirect. Increasing p53 levels, by targeting the p53-MDM2 interaction, can help p53 play its role as a tumor suppressor and induce cancer cell death. Researchers have identified different compounds that can act as inhibitors, either by directly binding to MDM2 or by modifying p53 with phosphorylation. The results associated with the drugs demonstrate the importance of targeting such interactions to inhibit cancer cell growth, which indicates that the use of the compounds may improve cancer therapeutics.
Collapse
|
5
|
Sun Y, Cao B, Zhou J. Roles of DANCR/microRNA-518a-3p/MDMA ceRNA network in the growth and malignant behaviors of colon cancer cells. BMC Cancer 2020; 20:434. [PMID: 32423468 PMCID: PMC7236548 DOI: 10.1186/s12885-020-06856-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/13/2020] [Indexed: 02/07/2023] Open
Abstract
Background The competing endogenous RNA (ceRNA) networks of long non-coding RNAs (lncRNAs) and microRNAs (miRs) have aroused wide concerns. The study aims to investigate the roles of lncRNA DANCR-associated ceRNA network in the growth and behaviors of colon cancer (CC) cells. Methods Differentially expressed lncRNAs between CC and paracancerous tissues were analyzed using microarrays and RT-qPCR. Follow-up studies were conducted to evaluate the correlation between DANCR expression and prognosis of CC patients. Loss-of-functions of DANCR were performed to identify its role in the malignant behaviors of CC cells. Sub-cellular localization of DANCR and the potential targets of DANCR were predicted and validated. Cells with inhibited DANCR were implanted into nude mice to evaluate the tumor formation and metastasis in vivo. Results DANCR was highly-expressed in CC tissues and cell lines, and higher levels of DANCR were linked with worse prognosis and less survival time of CC patients. Silencing of DANCR inhibited proliferation, viability, metastasis and resistance to death of CC cells. DANCR was found to be sub-localized in cytoplasmic matrix and to mediate murine double minute 2 (MDM2) expression through sponging miR-518a-3p in CC cells, during which the Smad2/3 signaling was activated. Likewise, silencing of DANCR in CC cells inhibited tumor formation and metastasis in vivo. Conclusion This study provided evidence that silencing of DANCR might inhibit the growth and metastasis of CC cells through the DANCR/miR-518a-3p/MDM2 ceRNA network and the defect of Smad2/3 while activation of the p53 signaling pathways. This study may offer novel insights in CC treatment.
Collapse
Affiliation(s)
- Yi Sun
- Department of Clinical Laboratory, HwaMei Hospital; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, No.41 Northwest Street, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Bin Cao
- Department of Clinical Laboratory, Yunlong Health Center, Ningbo, 315000, Zhejiang, People's Republic of China
| | - Jingzhen Zhou
- Department of Clinical Laboratory, HwaMei Hospital; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences; Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, No.41 Northwest Street, Ningbo, 315000, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Bauleth-Ramos T, Feijão T, Gonçalves A, Shahbazi MA, Liu Z, Barrias C, Oliveira MJ, Granja P, Santos HA, Sarmento B. Colorectal cancer triple co-culture spheroid model to assess the biocompatibility and anticancer properties of polymeric nanoparticles. J Control Release 2020; 323:398-411. [PMID: 32320816 DOI: 10.1016/j.jconrel.2020.04.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/08/2023]
Abstract
Colorectal cancer (CRC) is the third most common and the second deadliest type of cancer worldwide, urging the development of more comprehensive models and of more efficient treatments. Although the combination of nanotechnology with chemo- and immuno-therapy has represented a promising treatment approach, its translation to the clinic has been hampered by the absence of cellular models that can provide reliable and predictive knowledge about the in vivo efficiency of the formulation. Herein, a 3D model based on CRC multicellular tumor spheroids (MCTS) model was developed by combining epithelial colon cancer cells (HCT116), human intestinal fibroblasts and monocytes. The developed MCTS 3D model mimicked several tumor features with cells undergoing spatial organization and producing extracellular matrix, forming a mass of tissue with a necrotic core. Furthermore, monocytes were differentiated into macrophages with an anti-inflammatory, pro-tumor M2-like phenotype. For a combined chemoimmunotherapy effect, spermine-modified acetalated dextran nanoparticles (NPs) loaded with the chemotherapeutic Nutlin-3a (Nut3a) and granulocyte-macrophage colony-stimulating factor (GM-CSF) were produced and tested in 2D cultures and in the MCTS 3D model. NPs were successfully taken-up by the cells in 2D, but in a significant less extent in the 3D model. However, these NPs were able to induce an anti-proliferative effect both in the 2D and in the 3D models. Moreover, Nut3a was able to partially shift the polarization of the macrophages present in the MCTS 3D model towards an anti-tumor M1-like phenotype. Overall, the developed MCTS 3D model showed to recapitulate key features of tumors, while representing a valuable model to assess the effect of combinatorial nano-therapeutic strategies in CRC. In addition, the developed NPs could represent a promising approach for CRC treatment.
Collapse
Affiliation(s)
- Tomás Bauleth-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal; Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Tália Feijão
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Gonçalves
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal; Faculdade de Engenharia da Universidade do Porto (FEUP), University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 56184-45139 Zanjan, Iran
| | - Zehua Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cristina Barrias
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
| | - Maria José Oliveira
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Departmento de Patologia e Oncologia, Faculdade de Medicina, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro Granja
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, Rua Jorge Viterbo 228, 4150-180 Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Helsinki Institute of Life Science, University of Helsinki, FI-00014 Helsinki, Finland.
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central da Gandra 1317, 4585-116 Gandra, Portugal.
| |
Collapse
|
7
|
Xie X, He G, Siddik ZH. Cisplatin in Combination with MDM2 Inhibition Downregulates Rad51 Recombinase in a Bimodal Manner to Inhibit Homologous Recombination and Augment Tumor Cell Kill. Mol Pharmacol 2020; 97:237-249. [PMID: 32063580 PMCID: PMC7045891 DOI: 10.1124/mol.119.117564] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/15/2020] [Indexed: 01/22/2023] Open
Abstract
Dysfunction of p53 and resistance to cancer drugs can arise through mutually exclusive overexpression of MDM2 or MDM4. Cisplatin-resistant cells, however, can demonstrate increased binding of both MDM2 and MDM4 to p53 but in absence of cellular overexpression. Whether MDM2 inhibitors alone can activate p53 in these resistant cells was investigated with the goal to establish the mechanism for potential synergy with cisplatin. Thus, growth inhibition by individual drugs and combinations was assessed by a colorimetric assay. Drug-treated parental A2780 and resistant tumor cells were also examined for protein expression using immunoblot and reverse phase protein array (RPPA) and then subjected to Ingenuity Pathway Analysis (IPA). Gene expression was assessed by real-time polymerase chain reaction, DNA damage by confocal microscopy, cell cycle by flow cytometry, and homologous recombination (HR) by a GFP reporter assay. Our results demonstrate that Nutlin-3 but not RITA (reactivation of p53 and induction of tumor cell apoptosis) effectively disrupted the p53-MDM2-MDM4 complex to activate p53, which increased robustly with cisplatin/Nutlin-3 combination and enhanced antitumor effects more than either agent alone. RPPA, IPA, and confocal microscopy provided evidence for an "apparent" increase in DNA damage resulting from HR inhibition by cisplatin/Nutlin-3. Molecularly, the specific HR protein Rad51 was severely downregulated by the combination via two mechanisms: p53-dependent transrepression and p53/MDM2-mediated proteasomal degradation. In conclusion, Nutlin-3 fully destabilizes the p53-MDM2-MDM4 complex and synergizes with cisplatin to intensify p53 function, which then downregulates Rad51 through a bimodal mechanism. As a result, HR is inhibited and antitumor activity enhanced in otherwise HR-proficient sensitive and resistant tumor cells. SIGNIFICANCE STATEMENT: Rad51 downregulation by the combination of cisplatin and Nutlin-3 inhibits homologous recombination (HR), which leads to persistence in DNA damage but not an increase. Thus, inhibition of HR enhances antitumor activity in otherwise HR-proficient sensitive and resistant tumor cells.
Collapse
Affiliation(s)
- Xiaolei Xie
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guangan He
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zahid H Siddik
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Miao Z, Liu S, Xiao X, Li D. LINC00342 regulates cell proliferation, apoptosis, migration and invasion in colon adenocarcinoma via miR-545-5p/MDM2 axis. Gene 2020; 743:144604. [PMID: 32213297 DOI: 10.1016/j.gene.2020.144604] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 01/28/2023]
Abstract
AIM Colon adenocarcinoma (COAD) is the third most common cancer in the world. We aimed to explore the functional mechanism of LINC00342 in COAD. METHODS The LINC00342 expressions in COAD tissues were detected via qRT-PCR and in situ hybridization analysis. Statistical analysis was performed to analyze the relationship between LINC00342 expression and COAD clinical features. Small interfering LINC00342 (siLINC00342)/siCtrl were synthesized and then transfected into COAD cells. Cell apoptosis and proliferation were respectively assessed by flow cytometry and cell counting kit-8 assay. Cell migration and invasion were both measured using transwell assay. The target miRNA of LINC00342 were predicted and verified by online bioinformatics tools and luciferase reporter assay and RNA pull-down assay. Mice COAD models were constructed to explore the effects of LINC00342 on COAD in vivo. RESULTS LINC00342 was over-expressed in COAD tissues and LINC00342 overexpression was related to the poor prognosis of COAD patients. LINC00342 knockdown inhibited cell proliferation, migration and invasion and promoted apoptosis of COAD cells. LINC00342 targeted to miR-545-5p/murine double minute 2 (MDM2) in COAD. In COAD tissues and cell lines, LINC00342 expression was positively correlated to MDM2 expression, while it was negatively correlated to miR-545-5p expression. Both miR-545-5p-mimic and siMDM2 transfection could recover the changes of cell biological activities which were induced by LINC00342 overexpression. LINC00342 knockdown suppressed COAD tumor growth in vivo. CONCLUSION LINC00342 affected cell biological activities of COAD in vivo and in vitro via regulating miR-545-5p/MDM2. It might a novel target in COAD therapy.
Collapse
Affiliation(s)
- Zuohua Miao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Suyun Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Xuewen Xiao
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Dan Li
- Department of Pathology, The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
9
|
Long-term cultivation using ineffective MDM2 inhibitor concentrations alters the drug sensitivity profiles of PL21 leukaemia cells. EXPERIMENTAL RESULTS 2020. [DOI: 10.1017/exp.2019.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractAcquired MDM2 inhibitor resistance is commonly caused by loss-of-function TP53 mutations. In addition to the selection of TP53-mutant cells by MDM2 inhibitors, MDM2 inhibitor-induced DNA damage may promote the formation of TP53 mutations. Here, we cultivated 12 sublines of the intrinsically MDM2 inhibitor-resistant TP53 wild-type acute myeloid leukaemia cell line PL21 for 52 passages in the presence of ineffective concentrations of the MDM2 inhibitor nutlin-3 but did not observe loss-of-function TP53 mutations. This suggests that MDM2 inhibitors select TP53-mutant cells after mutations have occurred, but do not directly promote TP53 mutations. Unexpectedly, many sublines displayed increased sensitivity to the anti-cancer drugs cytarabine, doxorubicin, or gemcitabine. Consequently, therapies can affect the outcome of next-line treatments, even in the absence of a therapy response. This finding is conceptually novel. A better understanding of such processes will inform the design of improved therapy protocols in the future.
Collapse
|
10
|
Shilina MA, Grinchuk TM, Anatskaya OV, Vinogradov AE, Alekseenko LL, Elmuratov AU, Nikolsky NN. Cytogenetic and Transcriptomic Analysis of Human Endometrial MSC Retaining Proliferative Activity after Sublethal Heat Shock. Cells 2018; 7:cells7110184. [PMID: 30366433 PMCID: PMC6262560 DOI: 10.3390/cells7110184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
Temperature is an important exogenous factor capable of leading to irreversible processes in the vital activity of cells. However, the long-term effects of heat shock (HS) on mesenchymal stromal cells (MSC) remain unstudied. We investigated the karyotype and DNA repair drivers and pathways in the human endometrium MSC (eMSC) survived progeny at passage 6 after sublethal heat stress (sublethal heat stress survived progeny (SHS-SP)). G-banding revealed an outbreak of random karyotype instability caused by chromosome breakages and aneuploidy. Molecular karyotyping confirmed the random nature of this instability. Transcriptome analysis found homologous recombination (HR) deficiency that most likely originated from the low thermostability of the AT-rich HR driving genes. SHS-SP protection from transformation is provided presumably by low oncogene expression maintained by tight co-regulation between thermosensitive HR drivers BRCA, ATM, ATR, and RAD51 (decreasing expression after SHS), and oncogenes mTOR, MDM2, KRAS, and EGFR. The cancer-related transcriptomic features previously identified in hTERT transformed MSC in culture were not found in SHS-SP, suggesting no traits of malignancy in them. The entrance of SHS-SP into replicative senescence after 25 passages confirms their mortality and absence of transformation features. Overall, our data indicate that SHS may trigger non-tumorigenic karyotypic instability due to HR deficiency and decrease of oncogene expression in progeny of SHS-survived MSC. These data can be helpful for the development of new therapeutic approaches in personalized medicine.
Collapse
Affiliation(s)
- Mariia A Shilina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Tatiana M Grinchuk
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Olga V Anatskaya
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Alexander E Vinogradov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Larisa L Alekseenko
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| | - Artem U Elmuratov
- Institute of Biomedical Chemistry (IBMC) of Russian Academy of Sciences, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia.
- Medical Genetics Centre Genotek, Nastavnichesky Alley 17-1-15, 10510 Moscow, Russia.
| | - Nikolai N Nikolsky
- Institute of Cytology, Russian Academy of Sciences, Tikhoretskay Ave 4, St. 194064 Petersburg, Russia.
| |
Collapse
|
11
|
CMIP Promotes Proliferation and Metastasis in Human Glioma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5340160. [PMID: 28744466 PMCID: PMC5514325 DOI: 10.1155/2017/5340160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022]
Abstract
Glioma is one of the most common primary malignant brain tumors and the outcomes are generally poor. The intrinsic mechanisms involved in glioma development and progression remain unclear. Further studies are urgent and necessary. In this study, we have proven that CMIP (C-Maf-inducing protein) promotes cell proliferation and metastasis in A172 cells through knockdown of CMIP and in U251 cells through overexpression of CMIP by using MTT assay, cell colony formation assay, cell migration assay, and cell invasion assay. Furthermore, we discovered that CMIP upregulates MDM2, which is involved in the promoting role of CMIP in human glioma cells. For clinical study, 99 glioma tissues and 59 normal tissues were analyzed. CMIP expression was higher in glioma tissues than in normal tissues. In glioma tissues, CMIP is found to correlate positively with tumor grade but no significant correlation is found with patients' age, gender, or Karnofsky performance score (KPS). Moreover, CMIP also correlates with low relapse-free survival (RFS) rate and overall survival (OS) rate in glioma patients. Therefore, CMIP is oncogenic and could be a potential target for human glioma diagnosis and therapy.
Collapse
|
12
|
McCubrey JA, Lertpiriyapong K, Fitzgerald TL, Martelli AM, Cocco L, Rakus D, Gizak A, Libra M, Cervello M, Montalto G, Yang LV, Abrams SL, Steelman LS. Roles of TP53 in determining therapeutic sensitivity, growth, cellular senescence, invasion and metastasis. Adv Biol Regul 2016; 63:32-48. [PMID: 27776972 DOI: 10.1016/j.jbior.2016.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/06/2016] [Indexed: 12/20/2022]
Abstract
TP53 is a critical tumor suppressor gene that regulates cell cycle progression, apoptosis, cellular senescence and many other properties critical for control of normal cellular growth and death. Due to the pleiotropic effects that TP53 has on gene expression and cellular physiology, mutations at this tumor suppressor gene result in diverse physiological effects. T53 mutations are frequently detected in numerous cancers. The expression of TP53 can be induced by various agents used to treat cancer patients such as chemotherapeutic drugs and ionizing radiation. Radiation will induce Ataxia telangiectasia mutated (ATM) and other kinases that results in the phosphorylation and activation of TP53. TP53 is also negatively regulated by other mechanisms, such as ubiquitination by ligases such as MDM2. While TP53 has been documented to control the expression of many "classical" genes (e.g., p21Cip-1, PUMA, Bax) by transcriptional mechanisms for quite some time, more recently TP53 has been shown to regulate microRNA (miR) gene expression. Different miRs can promote oncogenesis (oncomiR) whereas others act to inhibit tumor progression (tumor suppressor miRs). Targeted therapies to stabilize TP53 have been developed by various approaches, MDM2/MDM4 inhibitors have been developed to stabilize TP53 in TP53-wild type (WT) tumors. In addition, small molecules have been isolated that will reactivate certain mutant TP53s. Both of these types of inhibitors are in clinical trials. Understanding the actions of TP53 may yield novel approaches to suppress cancer, aging and other health problems.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA.
| | - Kvin Lertpiriyapong
- Department of Comparative Medicine, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Timothy L Fitzgerald
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, Università di Bologna, Bologna, Italy
| | - Dariusz Rakus
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Agnieszka Gizak
- Department of Animal Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, Poland
| | - Massimo Libra
- Department of Bio-Medical Sciences, University of Catania, Catania, Italy
| | - Melchiorre Cervello
- Consiglio Nazionale delle Ricerche, Istituto di Biomedicina e Immunologia Molecolare "Alberto Monroy", Palermo, Italy
| | - Guiseppe Montalto
- Biomedical Department of Internal Medicine and Specialties, University of Palermo, Palermo, Italy
| | - Li V Yang
- Department of Internal Medicine, Hematology/Oncology Section, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - Stephen L Abrams
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Linda S Steelman
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| |
Collapse
|
13
|
Li Y, Saini P, Sriraman A, Dobbelstein M. Mdm2 inhibition confers protection of p53-proficient cells from the cytotoxic effects of Wee1 inhibitors. Oncotarget 2016; 6:32339-52. [PMID: 26431163 PMCID: PMC4741697 DOI: 10.18632/oncotarget.5891] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/20/2015] [Indexed: 11/25/2022] Open
Abstract
Pharmacological inhibition of the cell cycle regulatory kinase Wee1 represents a promising strategy to eliminate cancer cells. Wee1 inhibitors cooperate with chemotherapeutics, e. g. nucleoside analogues, pushing malignant cells from S phase towards premature mitosis and death. However, considerable toxicities are observed in preclinical and clinical trials. A high proportion of tumor cells can be distinguished from all other cells of a patient's body by inactivating mutations in the tumor suppressor p53. Here we set out to develop an approach for the selective protection of p53-proficient cells against the cytotoxic effects of Wee1 inhibitors. We pretreated such cells with Nutlin-3a, a prototype inhibitor of the p53-antagonist Mdm2. The resulting transient cell cycle arrest effectively increased the survival of cells that were subsequently treated with combinations of the Wee1 inhibitor MK-1775 and/or the nucleoside analogue gemcitabine. In this constellation, Nutlin-3a reduced caspase activation and diminished the phosphorylation of Histone 2AX, an indicator of the DNA damage response. Both effects were strictly dependent on the presence of p53. Moreover, Nutlin pre-treatment reduced the fraction of cells that were undergoing premature mitosis in response to Wee1 inhibition. We conclude that the pre-activation of p53 through Mdm2 antagonists serves as a viable option to selectively protect p53-proficient cells against the cytotoxic effects of Wee1 inhibitors, especially when combined with a nucleoside analogue. Thus, Mdm2 antagonists might prove useful to avoid unwanted side effects of Wee1 inhibitors. On the other hand, when a tumor contains wild type p53, care should be taken not to induce its activity before applying Wee1 inhibitors.
Collapse
Affiliation(s)
- Yizhu Li
- Institute of Molecular Oncology, Göttingen Centre of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Priyanka Saini
- Institute of Molecular Oncology, Göttingen Centre of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Anusha Sriraman
- Institute of Molecular Oncology, Göttingen Centre of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, Göttingen, Germany
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Centre of Molecular Biosciences (GZMB), Faculty of Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
14
|
Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301. PLoS One 2016; 11:e0153818. [PMID: 27097159 PMCID: PMC4838221 DOI: 10.1371/journal.pone.0153818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/04/2016] [Indexed: 12/20/2022] Open
Abstract
Mitotic inhibitors are widely utilized chemotherapeutic agents that take advantage of mitotic defects in cancer cells. We have identified a novel class of piperazine-based mitotic inhibitors, of which AK301 is the most potent derivative identified to date (EC50 < 200 nM). Colon cancer cells arrested in mitosis with AK301 readily underwent a p53-dependent apoptosis following compound withdrawal and arrest release. This apoptotic response was significantly higher for AK301 than for other mitotic inhibitors tested (colchicine, vincristine, and BI 2536). AK301-treated cells exhibited a robust mitosis-associated DNA damage response, including ATM activation, γH2AX phosphorylation and p53 stabilization. The association between mitotic signaling and the DNA damage response was supported by the finding that Aurora B inhibition reduced the level of γH2AX staining. Confocal imaging of AK301-treated cells revealed multiple γ-tubulin microtubule organizing centers attached to microtubules, but with limited centrosome migration, raising the possibility that aberrant microtubule pulling may underlie DNA breakage. AK301 selectively targeted APC-mutant colonocytes and promoted TNF-induced apoptosis in p53-mutant colon cancer cells. Our findings indicate that AK301 induces a mitotic arrest state with a highly active DNA damage response. Together with a reversible arrest state, AK301 is a potent promoter of a mitosis-to-apoptosis transition that can target cancer cells with mitotic defects.
Collapse
|
15
|
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med 2016; 6:a026104. [PMID: 26931810 DOI: 10.1101/cshperspect.a026104] [Citation(s) in RCA: 784] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
P53 is a transcription factor highly inducible by many stress signals such as DNA damage, oncogene activation, and nutrient deprivation. Cell-cycle arrest and apoptosis are the most prominent outcomes of p53 activation. Many studies showed that p53 cell-cycle and apoptosis functions are important for preventing tumor development. p53 also regulates many cellular processes including metabolism, antioxidant response, and DNA repair. Emerging evidence suggests that these noncanonical p53 activities may also have potent antitumor effects within certain context. This review focuses on the cell-cycle arrest and apoptosis functions of p53, their roles in tumor suppression, and the regulation of cell fate decision after p53 activation.
Collapse
Affiliation(s)
- Jiandong Chen
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida 33612
| |
Collapse
|
16
|
Valente LJ, Aubrey BJ, Herold MJ, Kelly GL, Happo L, Scott CL, Newbold A, Johnstone RW, Huang DCS, Vassilev LT, Strasser A. Therapeutic Response to Non-genotoxic Activation of p53 by Nutlin3a Is Driven by PUMA-Mediated Apoptosis in Lymphoma Cells. Cell Rep 2016; 14:1858-66. [PMID: 26904937 DOI: 10.1016/j.celrep.2016.01.059] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 11/23/2015] [Accepted: 01/16/2016] [Indexed: 01/24/2023] Open
Abstract
Nutlin3a is a small-molecule antagonist of MDM2 that promotes non-genotoxic activation of p53 through p53 protein stabilization and transactivation of p53 target genes. Nutlin3a is the forerunner of a class of cancer therapeutics that have reached clinical trials. Using transgenic and gene-targeted mouse models lacking the critical p53 target genes, p21, Puma, and Noxa, we found that only loss of PUMA conferred profound protection against Nutlin3a-induced killing in both non-transformed lymphoid cells and Eμ-Myc lymphomas in vitro and in vivo. CRISPR/Cas9-mediated targeting of the PUMA gene rendered human hematopoietic cancer cell lines markedly resistant to Nutlin3a-induced cell death. These results demonstrate that PUMA-mediated apoptosis, but not p21-mediated cell-cycle arrest or senescence, is a critical determinant of the therapeutic response to non-genotoxic p53 activation by Nutlin3a. Importantly, in human cancer, PUMA expression may predict patient responses to treatment with MDM2 antagonists.
Collapse
Affiliation(s)
- Liz J Valente
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Brandon J Aubrey
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Department of Clinical Haematology and Bone Marrow Transplant Service, The Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Marco J Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Lina Happo
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Andrea Newbold
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3002, Australia
| | - Ricky W Johnstone
- Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3002, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3002, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | | | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
17
|
Fleyshman D, Cheney P, Ströse A, Mudambi S, Safina A, Commane M, Purmal A, Morgan K, Wang NJ, Gray J, Spellman PT, Issaeva N, Gurova K. ARTIK-52 induces replication-dependent DNA damage and p53 activation exclusively in cells of prostate and breast cancer origin. Cell Cycle 2015; 15:455-70. [PMID: 26694952 DOI: 10.1080/15384101.2015.1127478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The realization, that the androgen receptor (AR) is essential for prostate cancer (PC) even after relapse following androgen deprivation therapy motivated the search for novel types of AR inhibitors. We proposed that targeting AR expression versus its function would work in cells having either wild type or mutant AR as well as be independent of androgen synthesis pathways. Previously, using a phenotypic screen in androgen-independent PC cells we identified a small molecule inhibitor of AR, ARTIK-52. Treatment with ARTIK-52 caused the loss of AR protein and death of AR-positive, but not AR-negative, PC cells. Here we present data that ARTIK-52 induces degradation of AR mRNA through a mechanism that we were unable to establish. However, we found that ARTIK-52 is toxic to breast cancer (BC) cells expressing AR, although they were not sensitive to AR knockdown, suggesting an AR-independent mechanism of toxicity. Using different approaches we detected that ARTIK-52 induces replication-dependent double strand DNA breaks exclusively in cancer cells of prostate and breast origin, while not causing DNA damage, or any toxicity, in normal cells, as well as in non-PC and non-BC tumor cells, independent of their proliferation status. This amazing specificity, combined with such a basic mechanism of toxicity, makes ARTIK-52 a potentially useful tool to discover novel attractive targets for the treatment of BC and PC. Thus, phenotypic screening allowed us to identify a compound, whose properties cannot be predicted based on existing knowledge and moreover, uncover a barely known link between AR and DNA damage response in PC and BC epithelial cells.
Collapse
Affiliation(s)
- Daria Fleyshman
- a Department of Cell Stress Biology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Peter Cheney
- a Department of Cell Stress Biology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Anda Ströse
- a Department of Cell Stress Biology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Shaila Mudambi
- a Department of Cell Stress Biology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Alfiya Safina
- a Department of Cell Stress Biology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Mairead Commane
- a Department of Cell Stress Biology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Andrei Purmal
- b Department of Chemistry , Cleveland BioLabs , Buffalo , NY , USA
| | - Kelsey Morgan
- a Department of Cell Stress Biology , Roswell Park Cancer Institute , Buffalo , NY , USA
| | - Nicholas J Wang
- c Collaborative Life Sciences Building (CLSB), Oregon Health & Science University , Portland , OR , USA
| | - Joe Gray
- c Collaborative Life Sciences Building (CLSB), Oregon Health & Science University , Portland , OR , USA
| | - Paul T Spellman
- c Collaborative Life Sciences Building (CLSB), Oregon Health & Science University , Portland , OR , USA
| | - Natalia Issaeva
- d Department of Surgery , Otolaryngology and Yale Cancer Center, Yale University School of Medicine , New Haven , CT , USA
| | - Katerina Gurova
- a Department of Cell Stress Biology , Roswell Park Cancer Institute , Buffalo , NY , USA
| |
Collapse
|
18
|
Kim DH, Park KW, Chae IG, Kundu J, Kim EH, Kundu JK, Chun KS. Carnosic acid inhibits STAT3 signaling and induces apoptosis through generation of ROS in human colon cancer HCT116 cells. Mol Carcinog 2015; 55:1096-110. [PMID: 26152521 DOI: 10.1002/mc.22353] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 05/04/2015] [Accepted: 05/28/2015] [Indexed: 12/18/2022]
Abstract
Carnosic acid (CA), the main antioxidant compound of Rosmarinus officinalis L., has been reported to possess anticancer activity. However, the molecular mechanisms underlying the anticancer effects of CA remain poorly understood. Our study revealed that CA treatment significantly reduced the viability of human colon cancer HCT116, SW480, and HT-29 cells. Treatment with CA induced apoptosis, which was associated with the induction of p53 and Bax, inhibition of Mdm2, Bcl-2, and Bcl-xl expression, activation of caspase-9, and -3, and the cleavage of PARP in HCT116 cells. CA inhibited the constitutive phosphorylation, the DNA binding and the reporter gene activity of STAT3 in HCT116 cells by blocking the phosphorylation of upstream JAK2 and Src kinases. Moreover, CA attenuated the expression of STAT3 target gene products, such as survivin, cyclin D1, D2, and D3. In STAT3-overexpressed HCT116 cells, CA inhibited cell viability and the expression of cyclin D1 and survivin. Furthermore, CA treatment induced the generation of ROS in these colon cancer cells. Pretreatment of cells with ROS scavenger N-acetyl cysteine abrogated the inhibitory effect of CA on the JAK2-STAT3/Src-STAT3 signaling and rescued cells from CA-induced apoptosis by blocking the induction of p53 and the cleavage of caspase-3 and PARP in HCT116 cells. However, L-buthionine-sulfoximine, a pharmacological inhibitor of GSH synthesis, increased CA-induced ROS production, thereby potentiating apoptotic effect of CA. In conclusion, our study provides the first report that CA induced apoptosis in HCT116 cells via generation of ROS, induction of p53, activation of caspases, and inhibition of STAT3 signaling pathway. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Do-Hee Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Ki-Woong Park
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - In Gyeong Chae
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Juthika Kundu
- College of Pharmacy, Keimyung University, Daegu, South Korea
| | - Eun-Hee Kim
- CHA Cancer Institute, CHA University, Seoul, South Korea
| | | | - Kyung-Soo Chun
- College of Pharmacy, Keimyung University, Daegu, South Korea
| |
Collapse
|
19
|
Abstract
Various experimental strategies aim to (re)activate p53 signalling in cancer cells. The most advanced clinically are small-molecule inhibitors of the autoregulatory interaction between p53 and MDM2 (murine double minute 2). Different MDM2 inhibitors are currently under investigation in clinical trials. As for other targeted anti-cancer therapy approaches, relatively rapid resistance acquisition may limit the clinical efficacy of MDM2 inhibitors. In particular, MDM2 inhibitors were shown to induce p53 mutations in experimental systems. In the present article, we summarize what is known about MDM2 inhibitors as anti-cancer drugs with a focus on the acquisition of resistance to these compounds.
Collapse
|
20
|
Li XL, Zhou J, Chen ZR, Chng WJ. P53 mutations in colorectal cancer - molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 2015; 21:84-93. [PMID: 25574081 PMCID: PMC4284363 DOI: 10.3748/wjg.v21.i1.84] [Citation(s) in RCA: 247] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/20/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with high prevalence and low 5-year survival. CRC is a heterogeneous disease with a complex, genetic and biochemical background. It is now generally accepted that a few important intracellular signaling pathways, including Wnt/β-catenin signaling, Ras signaling, and p53 signaling are frequently dysregulated in CRC. Patients with mutant p53 gene are often resistant to current therapies, conferring poor prognosis. Tumor suppressor p53 protein is a transcription factor inducing cell cycle arrest, senescence, and apoptosis under cellular stress. Emerging evidence from laboratories and clinical trials shows that some small molecule inhibitors exert anti-cancer effect via reactivation and restoration of p53 function. In this review, we summarize the p53 function and characterize its mutations in CRC. The involvement of p53 mutations in pathogenesis of CRC and their clinical impacts will be highlighted. Moreover, we also describe the current achievements of using p53 modulators to reactivate this pathway in CRC, which may have great potential as novel anti-cancer therapy.
Collapse
|
21
|
Lowe JM, Menendez D, Bushel PR, Shatz M, Kirk EL, Troester MA, Garantziotis S, Fessler MB, Resnick MA. p53 and NF-κB coregulate proinflammatory gene responses in human macrophages. Cancer Res 2014; 74:2182-92. [PMID: 24737129 DOI: 10.1158/0008-5472.can-13-1070] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Macrophages are sentinel immune cells that survey the tissue microenvironment, releasing cytokines in response to both exogenous insults and endogenous events such as tumorigenesis. Macrophages mediate tumor surveillance and therapy-induced tumor regression; however, tumor-associated macrophages (TAM) and their products may also promote tumor progression. Whereas NF-κB is prominent in macrophage-initiated inflammatory responses, little is known about the role of p53 in macrophage responses to environmental challenge, including chemotherapy or in TAMs. Here, we report that NF-κB and p53, which generally have opposing effects in cancer cells, coregulate induction of proinflammatory genes in primary human monocytes and macrophages. Using Nutlin-3 as a tool, we demonstrate that p53 and NF-κB rapidly and highly induce interleukin (IL)-6 by binding to its promoter. Transcriptome analysis revealed global p53/NF-κB co-regulation of immune response genes, including several chemokines, which effectively induced human neutrophil migration. In addition, we show that p53, activated by tumor cell paracrine factors, induces high basal levels of macrophage IL-6 in a TAM model system [tumor-conditioned macrophages (TCM)]. Compared with normal macrophages, TCMs exhibited higher p53 levels, enhanced p53 binding to the IL-6 promoter, and reduced IL-6 levels upon p53 inhibition. Taken together, we describe a mechanism by which human macrophages integrate signals through p53 and NF-κB to drive proinflammatory cytokine induction. Our results implicate a novel role for macrophage p53 in conditioning the tumor microenvironment and suggest a potential mechanism by which p53-activating chemotherapeutics, acting upon p53-sufficient macrophages and precursor monocytes, may indirectly impact tumors lacking functional p53.
Collapse
Affiliation(s)
- Julie M Lowe
- Authors' Affiliations: Laboratory of Molecular Genetics, Biostatistics Branch, Laboratory of Respiratory Biology, National Institute of Environmental Health Sciences (NIEHS), NIH, Research Triangle Park; and Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Khoo KH, Hoe KK, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov 2014; 13:217-36. [PMID: 24577402 DOI: 10.1038/nrd4236] [Citation(s) in RCA: 568] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The tumour suppressor p53 is the most frequently mutated gene in human cancer, with more than half of all human tumours carrying mutations in this particular gene. Intense efforts to develop drugs that could activate or restore the p53 pathway have now reached clinical trials. The first clinical results with inhibitors of MDM2, a negative regulator of p53, have shown efficacy but hint at on-target toxicities. Here, we describe the current state of the development of p53 pathway modulators and new pathway targets that have emerged. The challenge of targeting protein-protein interactions and a fragile mutant transcription factor has stimulated many exciting new approaches to drug discovery.
Collapse
Affiliation(s)
| | - Khoo Kian Hoe
- p53 Laboratory (p53Lab), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06, Immunos, 138648 Singapore
| | - Chandra S Verma
- 1] Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street #07-01, Matrix, 138671 Singapore. [2] School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore. [3] Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543 Singapore
| | - David P Lane
- p53 Laboratory (p53Lab), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06, Immunos, 138648 Singapore
| |
Collapse
|
23
|
Polato F, Rusconi P, Zangrossi S, Morelli F, Boeri M, Musi A, Marchini S, Castiglioni V, Scanziani E, Torri V, Broggini M. DRAGO (KIAA0247), a new DNA damage-responsive, p53-inducible gene that cooperates with p53 as oncosuppressor. [Corrected]. J Natl Cancer Inst 2014; 106:dju053. [PMID: 24652652 DOI: 10.1093/jnci/dju053] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. METHODS DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. RESULTS We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. CONCLUSIONS DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.
Collapse
Affiliation(s)
- Federica Polato
- Affiliations of authors: Laboratory of Molecular Pharmacology (FP, PR, SZ, FM, MBo, AM, SM, MBr), and Laboratory of Methodology for Biomedical Research (VT), Department of Oncology, IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy; Dipartimento di Patologia Animale, Igiene e Sanità Pubblica Veterinaria, Università degli Studi di Milano, Milan, Italy (VC, ES); Mouse and Animal Pathology Laboratory, Fondazione Filarete, Milan, Italy (VC, ES); Present address: Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD (FP)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Carnosol induces apoptosis through generation of ROS and inactivation of STAT3 signaling in human colon cancer HCT116 cells. Int J Oncol 2014; 44:1309-15. [PMID: 24481553 DOI: 10.3892/ijo.2014.2281] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 01/09/2014] [Indexed: 11/05/2022] Open
Abstract
Carnosol, an active constituent of rosemary, has been reported to possess anti-inflammatory and anticancer activities. However, the molecular mechanisms underlying the anticancer effects of carnosol remain poorly understood. In the present study, we found that carnosol significantly reduced the viability of human colon cancer (HCT116) cells in a concentration- and time-dependent manner. Treatment of cells with carnosol induced apoptosis, which was associated with activation of caspase-9 and -3 and the cleavage of poly-(ADP-ribose) polymerase (PARP). Incubation with carnosol elevated the expression of Bax and inhibited the levels of Bcl-2 and Bcl-xl. Carnosol induced expression of p53 and inhibited that of murine-double minute-2 (Mdm2). Moreover, carnosol generated reactive oxygen species (ROS), and pretreatment with N-acetyl cysteine abrogated carnosol-induced cleavage of caspase-3 and PARP. The constitutive phosphorylation, the DNA binding and reporter gene activity of signal transducer and activator of transcription-3 (STAT3) was diminished by treatment with carnosol. To further elucidate the molecular mechanisms of STAT3 inactivation, we found that carnosol attenuated the phosphorylation of Janus-activated kinase-2 (Jak2) and Src kinase. Pharmacological inhibition of Jak2 and Src inhibited STAT3 phosphorylation. Furthermore, carnosol attenuated the expression of STAT3 target gene products, such as survivin, cyclin-D1, -D2, and -D3. Taken together, our study provides the first report that carnosol induced apoptosis in HCT116 cells via generation of ROS, induction of p53, activation of caspases and inhibition of STAT3 signaling pathway.
Collapse
|
25
|
Chopra A, Anderson A, Giardina C. Novel piperazine-based compounds inhibit microtubule dynamics and sensitize colon cancer cells to tumor necrosis factor-induced apoptosis. J Biol Chem 2013; 289:2978-91. [PMID: 24338023 DOI: 10.1074/jbc.m113.499319] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We recently identified a series of mitotically acting piperazine-based compounds that potently increase the sensitivity of colon cancer cells to apoptotic ligands. Here we describe a structure-activity relationship study on this compound class and identify a highly active derivative ((4-(3-chlorophenyl)piperazin-1-yl)(2-ethoxyphenyl)methanone), referred to as AK301, the activity of which is governed by the positioning of functional groups on the phenyl and benzoyl rings. AK301 induced mitotic arrest in HT29 human colon cancer cells with an ED50 of ≈115 nm. Although AK301 inhibited growth of normal lung fibroblast cells, mitotic arrest was more pronounced in the colon cancer cells (50% versus 10%). Cells arrested by AK301 showed the formation of multiple microtubule organizing centers with Aurora kinase A and γ-tubulin. Employing in vitro and in vivo assays, tubulin polymerization was found to be slowed (but not abolished) by AK301. In silico molecular docking suggests that AK301 binds to the colchicine-binding domain on β-tubulin, but in a novel orientation. Cells arrested by AK301 expressed elevated levels of TNFR1 on their surface and more readily activated caspases-8, -9, and -3 in the presence of TNF. Relative to other microtubule destabilizers, AK301 was the most active TNF-sensitizing agent and also stimulated Fas- and TRAIL-induced apoptosis. In summary, we report a new class of mitosis-targeting agents that effectively sensitizes cancer cells to apoptotic ligands. These compounds should help illuminate the role of microtubules in regulating apoptotic ligand sensitivity and may ultimately be useful for developing agents that augment the anti-cancer activities of the immune response.
Collapse
|
26
|
AD-1, a novel ginsenoside derivative, shows anti-lung cancer activity via activation of p38 MAPK pathway and generation of reactive oxygen species. Biochim Biophys Acta Gen Subj 2013; 1830:4148-59. [DOI: 10.1016/j.bbagen.2013.04.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 04/01/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
|
27
|
Janouskova H, Ray AM, Noulet F, Lelong-Rebel I, Choulier L, Schaffner F, Lehmann M, Martin S, Teisinger J, Dontenwill M. Activation of p53 pathway by Nutlin-3a inhibits the expression of the therapeutic target α5 integrin in colon cancer cells. Cancer Lett 2013; 336:307-18. [PMID: 23523610 DOI: 10.1016/j.canlet.2013.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/01/2013] [Accepted: 03/15/2013] [Indexed: 12/11/2022]
Abstract
Integrins emerge nowadays as crucial actors of tumor aggressiveness and resistance to therapies. Integrin α5β1, the fibronectin receptor, determines malignant properties of colon carcinoma which is one of the most important causes of cancer-related deaths in the world. Here we show that inhibition of α5 integrin subunit expression by siRNA or α5β1 integrin function by specific antagonist affects the survival of HCT116 colon cancer cells. We also evidence that pharmacological reactivation of the tumor suppressor p53 by Nutlin-3a inhibits specifically the expression of the α5 integrin subunit both at the transcriptional and protein level. Inversely repression of α5 integrin modulates p53 activity. A clear relationship between p53 activation by Nutlin-3a, α5 repression and cell survival is shown. No such effects are obtained in cells lacking p53 or when another non-genotoxic activator of p53, RITA, is used. Our results emphasize the crucial role of α5β1 integrin in colon tumors. Data also suggest that interfering with the integrin α5β1 through the reactivation of p53 by Nutlin-3a may be of valuable interest as a new therapeutic option for colon tumors expressing high level of the integrin and a wild type p53.
Collapse
Affiliation(s)
- Hana Janouskova
- UMR7213 CNRS, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chopra AS, Kuratnik A, Scocchera EW, Wright DL, Giardina C. Identification of novel compounds that enhance colon cancer cell sensitivity to inflammatory apoptotic ligands. Cancer Biol Ther 2013; 14:436-49. [PMID: 23377828 DOI: 10.4161/cbt.23787] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Immune and inflammatory death ligands expressed within neoplastic tissue could potentially target apoptosis to transformed cells. To develop approaches that accentuate the anti-cancer potential of the inflammatory response, the Chembridge DIVERSet (TM) library was screened for compounds that accentuated apoptosis in a strictly TNF-dependent manner. We identified a number of novel compounds with this activity, the most active of these, AK3 and AK10, sensitized colon cancer cells to TNF at 0.5 μM and 2 μM, respectively, without inducing apoptosis on their own. The activity of these compounds was structure-dependent and general, as they accentuated cell death by TNF or Fas ligation in multiple colon cancer cell lines. Both AK3 and AK10 arrested cells in mitosis, with live cell imaging indicating that mitotically arrested cells were the source of apoptotic bodies. AK3 accentuated caspase-8 and caspase-9 activation with little effect on NFκB target gene activation. Enhanced caspase activation corresponded to an increased expression of TNFR1 on the cell surface. To determine the general interplay between mitotic arrest and TNF sensitivity, Aurora kinase (MLN8054 and MLN8237) and PLK1 (BI2536) inhibitors were tested for their ability to sensitize cells to TNF. PLK1 inhibition was particularly effective and influenced TNFR1 surface presentation and caspase cleavage like AK3, even though it arrested mitosis at an earlier stage. We propose that AK3 and AK10 represent a new class of mitotic inhibitor and that selected mitotic inhibitors may be useful for treating colon cancers or earlier lesions that have a high level of inflammatory cell infiltrate.
Collapse
Affiliation(s)
- Avijeet S Chopra
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | | | | | | |
Collapse
|
29
|
Fuller AM, Giardina C, Hightower LE, Perdrizet GA, Tierney CA. Hyperbaric oxygen preconditioning protects skin from UV-A damage. Cell Stress Chaperones 2013; 18:97-107. [PMID: 22855227 PMCID: PMC3508122 DOI: 10.1007/s12192-012-0362-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/19/2012] [Accepted: 07/20/2012] [Indexed: 12/11/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT) is used for a number of applications, including the treatment of diabetic foot ulcers and CO poisoning. However, we and others have shown that HBOT can mobilize cellular antioxidant defenses, suggesting that it may also be useful under circumstances in which tissue protection from oxidative damage is desired. To test the protective properties of hyperbaric oxygen (HBO) on a tissue level, we evaluated the ability of a preconditioning treatment regimen to protect cutaneous tissue from UV-A-induced oxidative damage. Three groups of hairless SKH1-E mice were exposed to UV-A 3 days per week for 22 weeks, with two of these groups receiving an HBO pretreatment either two or four times per week. UV-A exposure increased apoptosis and proliferation of the skin tissue, indicating elevated levels of epithelial damage and repair. Pretreatment with HBO significantly reduced UV-A-induced apoptosis and proliferation. A morphometric analysis of microscopic tissue folds also showed a significant increase in skin creasing following UV-A exposure, which was prevented by HBO pretreatment. Likewise, skin elasticity was found to be greatest in the group treated with HBO four times per week. The effects of HBO were also apparent systemically as reductions in caspase-3 activity and expression were observed in the liver. Our findings support a protective function of HBO pretreatment from a direct oxidative challenge of UV-A to skin tissue. Similar protection of other tissues may likewise be achievable.
Collapse
Affiliation(s)
- Ashley M. Fuller
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - Charles Giardina
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - Lawrence E. Hightower
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| | - George A. Perdrizet
- Wound Recovery and Hyperbaric Medicine Center, Kent Hospital, Warwick, RI 02886 USA
| | - Cassandra A. Tierney
- Department of Molecular and Cell Biology, University of Connecticut, 91 North Eagleville Road, U3125, Storrs, CT 06269 USA
| |
Collapse
|
30
|
Conradt L, Henrich A, Wirth M, Reichert M, Lesina M, Algül H, Schmid RM, Krämer OH, Saur D, Schneider G. Mdm2 inhibitors synergize with topoisomerase II inhibitors to induce p53-independent pancreatic cancer cell death. Int J Cancer 2012; 132:2248-57. [DOI: 10.1002/ijc.27916] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/01/2012] [Indexed: 12/20/2022]
|
31
|
Kuratnik A, Senapati VE, Verma R, Mellone BG, Vella AT, Giardina C. Acute sensitization of colon cancer cells to inflammatory cytokines by prophase arrest. Biochem Pharmacol 2012; 83:1217-28. [PMID: 22306067 DOI: 10.1016/j.bcp.2012.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 02/08/2023]
Abstract
Understanding how colon cancer cells survive within the inflammatory milieu of a tumor, and developing approaches that increase their sensitivity to inflammatory cytokines, may ultimately lead to novel approaches for colon cancer therapy and prevention. Analysis of a number of chemopreventive and therapeutic agents reveal that HDAC inhibitors are particularly adept at sensitizing colon cancer cells TNF or TRAIL mediated apoptosis. In vivo data are consistent with an interaction between SAHA and TNF in inducing apoptosis, as AOM-induced colon tumors express elevated levels of TNF and are more sensitive to SAHA administration. Cell cycle analysis and time-lapse imaging indicated a close correspondence between SAHA-induced prophase arrest and TNF or TRAIL-induced apoptosis. Prophase arrest induced by the Aurora kinase inhibitor VX680 likewise sensitized cells to TNF and TRAIL, with siRNA analysis pointing to Aurora kinase A (and not Aurora kinase B) as being the relevant target for this sensitization. We propose that agents that promote prophase arrest may help sensitize cancer cells to TNF and other inflammatory cytokines. We also discuss how circumvention of an early mitotic checkpoint may facilitate cancer cell survival in the inflammatory micro-environment of the tumor.
Collapse
Affiliation(s)
- Anton Kuratnik
- Department of Molecular and Cell Biology, 91 North Eagleville Road, University of Connecticut, Storrs, CT 06269, United States
| | | | | | | | | | | |
Collapse
|
32
|
Zhang W, Yu Y. The important molecular markers on chromosome 17 and their clinical impact in breast cancer. Int J Mol Sci 2011; 12:5672-83. [PMID: 22016618 PMCID: PMC3189742 DOI: 10.3390/ijms12095672] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/16/2011] [Accepted: 08/31/2011] [Indexed: 01/06/2023] Open
Abstract
Abnormalities of chromosome 17 are important molecular genetic events in human breast cancers. Several famous oncogenes (HER2, TOP2A and TAU), tumor suppressor genes (p53, BRCA1 and HIC-1) or DNA double-strand break repair gene (RDM1) are located on chromosome 17. We searched the literature on HER2, TOP2A, TAU, RDM1, p53, BRCA1 and HIC-1 on the Pubmed database. The association of genes with chromosome 17, biological functions and potential significance are reviewed. In breast cancer, the polysomy 17 (three or more) is the predominant numerical aberration. HER2 amplification is widely utilized as molecular markers for trastuzumab target treatment. Amplified TOP2A, TAU and RDM1 genes are related to a significant response to anthracycline-based chemotherapy, taxane or cisplatin, respectively. In contrast, p53, BRCA1 and HIC-1 are important tumor suppressor genes related to breast carcinogenesis. This review focused on several crucial molecular markers residing on chromosome 17. The authors consider the somatic aberrations of chromosome 17 and associated genes in breast cancer.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Surgery, School of Medicine, The Ninth People’s Hospital of Shanghai Jiao Tong University, Shanghai 200011, China
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-21-63138341; Fax: +86-21-63136856
| | - Yingyan Yu
- Department of Surgery, School of Medicine, Shanghai Ruijin Hospital of Shanghai Jiao Tong University, Shanghai 200025, China; E-Mail:
| |
Collapse
|