1
|
Zemkollari M, Oostenbrink C, Grabherr R, Staudacher E. Molecular cloning, characterisation and molecular modelling of two novel T-synthases from mollusc origin. Glycobiology 2024; 34:cwae013. [PMID: 38366999 PMCID: PMC11005171 DOI: 10.1093/glycob/cwae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024] Open
Abstract
The glycoprotein-N-acetylgalactosamine β1,3-galactosyltransferase, known as T-synthase (EC 2.4.1.122), plays a crucial role in the synthesis of the T-antigen, which is the core 1 O-glycan structure. This enzyme transfers galactose from UDP-Gal to GalNAc-Ser/Thr. The T-antigen has significant functions in animal development, immune response, and recognition processes. Molluscs are a successful group of animals that inhabit various environments, such as freshwater, marine, and terrestrial habitats. They serve important roles in ecosystems as filter feeders and decomposers but can also be pests in agriculture and intermediate hosts for human and cattle parasites. The identification and characterization of novel carbohydrate active enzymes, such as T-synthase, can aid in the understanding of molluscan glycosylation abilities and their adaptation and survival abilities. Here, the T-synthase enzymes from the snail Pomacea canaliculata and the oyster Crassostrea gigas are identified, cloned, expressed, and characterized, with a focus on structural elucidation. The synthesized enzymes display core 1 β1,3-galactosyltransferase activity using pNP-α-GalNAc as substrate and exhibit similar biochemical parameters as previously characterised T-synthases from other species. While the enzyme from C. gigas shares the same structural parameters with the other enzymes characterised so far, the T-synthase from P. canaliculata lacks the consensus sequence CCSD, which was previously considered indispensable.
Collapse
Affiliation(s)
- Marilica Zemkollari
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Chris Oostenbrink
- Department of Material Sciences and Process Engineering, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| | - Erika Staudacher
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Morio A, Lee JM, Fujii T, Mon H, Masuda A, Kakino K, Xu J, Banno Y, Kusakabe T. The biological role of core 1β1-3galactosyltransferase (T-synthase) in mucin-type O-glycosylation in Silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 156:103936. [PMID: 36990248 DOI: 10.1016/j.ibmb.2023.103936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 05/05/2023]
Abstract
O-glycosylation of secreted and membrane-bound proteins is an important post-translational modification that affects recognition of cell surface receptors, protein folding, and stability. However, despite the importance of O-linked glycans, their biological functions have not yet been fully elucidated and the synthetic pathway of O-glycosylation has not been investigated in detail, especially in the silkworm. In this study, we aimed to investigate O-glycosylation in silkworms by analyzing the overall structural profiles of mucin-type O-glycans using LC-MS. We found GalNAc or GlcNAc monosaccharide and core 1 disaccharide (Galβ1-3-GalNAcα1-Ser/Thr) were major components of the O-glycan attached to secreted proteins produced in silkworms. Furthermore, we characterized the 1 b1,3-galactosyltransferase (T-synthase) required for synthesis of the core 1 structure, common to many animals. Five transcriptional variants and four protein isoforms were identified in silkworms, and the biological functions of these isoforms were investigated. We found that BmT-synthase isoforms 1 and 2 were localized in the Golgi apparatus in cultured BmN4 cells and functioned both in cultured cells and silkworms. Additionally, a specific functional domain of T-synthase, called the stem domain, was found to be essential for activity and is presumed to be needed for dimer formation and galactosyltransferase activity. Altogether, our results elucidated the O-glycan profile and function of T-synthase in the silkworm. Our findings allow the practical comprehension of O-glycosylation required for employing silkworms as a productive expression system.
Collapse
Affiliation(s)
- Akihiro Morio
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan; Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd, 2716-1 Kurakake 2716-1, Ohra-gun Chiyoda-machi, Gunma, 370-0503, Gunma, Japan
| | - Jae Man Lee
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tsuguru Fujii
- Laboratory of Creative Science for Insect Industries, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroaki Mon
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Akitsu Masuda
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kohei Kakino
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, Biomedical Synthetic Biology Research Center, School of Life Sciences, East China Normal University, Shanghai, 200062, PR China
| | - Yutaka Banno
- Graduate School of Bio Resources and Bioenvironmental Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahiro Kusakabe
- Laboratory of Insect Genome Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
3
|
Zhang Y, Sun L, Lei C, Li W, Han J, Zhang J, Zhang Y. A Sweet Warning: Mucin-Type O-Glycans in Cancer. Cells 2022; 11:cells11223666. [PMID: 36429094 PMCID: PMC9688771 DOI: 10.3390/cells11223666] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Glycosylation is a common post-translational modification process of proteins. Mucin-type O-glycosylation is an O-glycosylation that starts from protein serine/threonine residues. Normally, it is involved in the normal development and differentiation of cells and tissues, abnormal glycosylation can lead to a variety of diseases, especially cancer. This paper reviews the normal biosynthesis of mucin-type O-glycans and their role in the maintenance of body health, followed by the mechanisms of abnormal mucin-type O-glycosylation in the development of diseases, especially tumors, including the effects of Tn, STn, T antigen, and different glycosyltransferases, with special emphasis on their role in the development of gastric cancer. Finally, tumor immunotherapy targeting mucin-type O-glycans was discussed.
Collapse
Affiliation(s)
- Yuhan Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Lingbo Sun
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
- Correspondence: (L.S.); (Y.Z.)
| | - Changda Lei
- Department of Gastroenterology, Ninth Hospital of Xi‘an, Xi’an 710054, China
| | - Wenyan Li
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Jiaqi Han
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Jing Zhang
- Medical College of Yan’an University, Yan’an University, Yan’an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan’an, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an 716000, China
- Correspondence: (L.S.); (Y.Z.)
| |
Collapse
|
4
|
Expression and Impact of C1GalT1 in Cancer Development and Progression. Cancers (Basel) 2021; 13:cancers13246305. [PMID: 34944925 PMCID: PMC8699795 DOI: 10.3390/cancers13246305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary C1GalT1 is one of the enzymes that catalyze the addition of sugar residues to proteins (protein glycosylation). It specifically controls the synthesis and formation of a special disaccharide structure Galβ1,3GalNAcα-, which occurs predominately in cancer but rarely in normal cells. Recent studies have shown that C1GalT1 is overexpressed in many common cancers including colon, breast, gastric, lung, head and neck, pancreatic, esophageal, prostate, and hepatocellular cancer. C1GalT1 overexpression is also often associated with poorer prognosis and poorer patient survival. This review summarizes our current understanding of the expression of C1GalT1 in various cancers and discusses the impact of C1GalT change on cancer cell activities in cancer development and progression. Abstract C1GalT1 (T-synthase) is one of the key glycosyltransferases in the biosynthesis of O-linked mucin-type glycans of glycoproteins. It controls the formation of Core-1 disaccharide Galβ1,3GalNAcα- (Thomsen–Friedenreich oncofetal antigen, T or TF antigen) and Core-1-associated carbohydrate structures. Recent studies have shown that C1GalT1 is overexpressed in many cancers of epithelial origin including colon, breast, gastric, head and neck, pancreatic, esophageal, prostate, and hepatocellular cancer. Overexpression of C1GalT1 is often seen to also be associated with poorer prognosis and poorer patient survival. Change of C1GalT1 expression causes glycosylation changes of many cell membrane glycoproteins including mucin proteins, growth factor receptors, adhesion molecules, and death receptors. This leads to alteration of the interactions of these cell surface molecules with their binding ligands, resulting in changes of cancer cell activity and behaviors. This review summarizes our current understanding of the expression of C1GalT1 in various cancers and discusses the impact of C1GalT change on cancer cell activities in cancer development and progression.
Collapse
|
5
|
O-glycan recognition and function in mice and human cancers. Biochem J 2020; 477:1541-1564. [PMID: 32348475 DOI: 10.1042/bcj20180103] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Protein glycosylation represents a nearly ubiquitous post-translational modification, and altered glycosylation can result in clinically significant pathological consequences. Here we focus on O-glycosylation in tumor cells of mice and humans. O-glycans are those linked to serine and threonine (Ser/Thr) residues via N-acetylgalactosamine (GalNAc), which are oligosaccharides that occur widely in glycoproteins, such as those expressed on the surfaces and in secretions of all cell types. The structure and expression of O-glycans are dependent on the cell type and disease state of the cells. There is a great interest in O-glycosylation of tumor cells, as they typically express many altered types of O-glycans compared with untransformed cells. Such altered expression of glycans, quantitatively and/or qualitatively on different glycoproteins, is used as circulating tumor biomarkers, such as CA19-9 and CA-125. Other tumor-associated carbohydrate antigens (TACAs), such as the Tn antigen and sialyl-Tn antigen (STn), are truncated O-glycans commonly expressed by carcinomas on multiple glycoproteins; they contribute to tumor development and serve as potential biomarkers for tumor presence and stage, both in immunohistochemistry and in serum diagnostics. Here we discuss O-glycosylation in murine and human cells with a focus on colorectal, breast, and pancreatic cancers, centering on the structure, function and recognition of O-glycans. There are enormous opportunities to exploit our knowledge of O-glycosylation in tumor cells to develop new diagnostics and therapeutics.
Collapse
|
6
|
The Cosmc-mediated effects of neutrophil elastase on T antigen expression in BEAS-2B cells. Respir Physiol Neurobiol 2020; 281:103496. [PMID: 32683071 DOI: 10.1016/j.resp.2020.103496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 02/06/2023]
Abstract
Mucin 5AC (MUC5AC) is a highly O-glycosylated mucin secreted by human bronchial epithelial cells during pulmonary inflammatory diseases. T antigen, a component of the MUC5AC glycans, is the product of the O-glycosylation transferase T-synthase and its chaperone Cosmc. Since the expression of Cosmc is mediated by signaling pathways and inflammatory factors affecting mucin O-glycosylation, we analyzed the impact of neutrophil elastase (NE)-mediated Cosmc and T antigen expression in BEAS-2B cells derived from human bronchial epithelial cells. The expression of Cosmc and T antigen in human lung tissue was analyzed by immunohistochemistry. Cellular immunohistochemistry and western blot analysis demonstrated elevated expression of T antigen in BEAS-2B cells after NE stimulation. Altered Cosmc expression in BEAS-2B cells after NE stimulation was analyzed by confocal microscopy, western blot analysis and quantitative RT-PCR. To assess the biological implications of Cosmc function for T-synthase activity and T antigen synthesis after NE stimulation, BEAS-2B cells were transfected with shRNA to silence the expression of Cosmc. The changes in signaling pathways were analyzed by western blotting. The expression of Cosmc and T antigen increased in lung tissue exposed to chronic inflammation. The expression of Cosmc and T antigen increased in NE-stimulated BEAS-2B cells. NE induced increases in T antigen expression and T-synthase transferase activity in BEAS-2B cells expressing Cosmc, highlighting the importance of Cosmc in the relationship between NE and T antigen. Cosmc and phosphatidylinositol-3-kinase (PI3K) played important roles in the signaling pathway that stimulated hyperexpression of T antigen.
Collapse
|
7
|
Shen B, Tong Y, Li Z, Yan H, Ye F, Wang Y, XCai X. C1GALT1C1/COSMC is a novel prognostic biomarker for hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2020; 44:310-320. [PMID: 31471227 DOI: 10.1016/j.clinre.2019.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/25/2019] [Accepted: 07/23/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS The aim of this study is to explore the effects of COSMC on the prognosis of hepatocellular carcinoma (HCC), and establish a novel model with improved predictive capacity. METHODS Ninety-two patients diagnosed with HCC from 2006 to 2010 in our hospital were recruited to analyze the correlation between COSMC expression and prognosis. Cellular experiments were performed to verify the anti-tumor effects of COSMC. A predictive model was established based on the risk factors from multiple COX regression analysis. After validation, the novel model was compared with the conventional model in terms of capacity of predicting the prognosis. RESULTS The expression of COSMC was lower in tumor tissues than in normal tissues and inhibited HCC migration in cells. Besides the expression of COSMC was significantly negatively correlated with overall survival (OS) in HCC, regression analysis showed that COSMC expression, vascular invasion, and TNM stage were prognostic risk factors. Our novel model comprising these three elements was established and validated. Besides the good fit of the calibration curves, a higher concordance index (C-index) for OS (P=0.011) as well as better decision curve analysis (DCA) and survival curves for both disease-free survival (DFS) and OS suggested the superiority of this novel model compared with conventional TNM staging in predicting the prognosis of HCC patients. CONCLUSIONS We established a novel model by integrating the expression of COSMC, vascular invasion, and TNM stage, and found that it was better able to predict survival in patients with HCC compared with conventional TNM staging.
Collapse
Affiliation(s)
- Bo Shen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China
| | - Yifan Tong
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China
| | - Zheyong Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China
| | - Han Yan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China
| | - Fang Ye
- Department of Children Preventive Medicine, Children's Hospital, School of Medicine, Zhejiang University, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China
| | - Xiujun XCai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Laparoscopic Technology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
8
|
Gupta R, Leon F, Rauth S, Batra SK, Ponnusamy MP. A Systematic Review on the Implications of O-linked Glycan Branching and Truncating Enzymes on Cancer Progression and Metastasis. Cells 2020; 9:E446. [PMID: 32075174 PMCID: PMC7072808 DOI: 10.3390/cells9020446] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022] Open
Abstract
Glycosylation is the most commonly occurring post-translational modifications, and is believed to modify over 50% of all proteins. The process of glycan modification is directed by different glycosyltransferases, depending on the cell in which it is expressed. These small carbohydrate molecules consist of multiple glycan families that facilitate cell-cell interactions, protein interactions, and downstream signaling. An alteration of several types of O-glycan core structures have been implicated in multiple cancers, largely due to differential glycosyltransferase expression or activity. Consequently, aberrant O-linked glycosylation has been extensively demonstrated to affect biological function and protein integrity that directly result in cancer growth and progression of several diseases. Herein, we provide a comprehensive review of several initiating enzymes involved in the synthesis of O-linked glycosylation that significantly contribute to a number of different cancers.
Collapse
Affiliation(s)
- Rohitesh Gupta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Frank Leon
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Sanchita Rauth
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA
- Department of Pathology and Microbiology, UNMC, Omaha, NE 68198-5900, USA
| | - Moorthy P. Ponnusamy
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68105, USA; (R.G.); (F.L.); (S.R.)
- Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 681980-5900, USA
| |
Collapse
|
9
|
Xu F, Wang D, Cui J, Li J, Jiang H. Demethylation of the Cosmc Promoter Alleviates the Progression of Breast Cancer Through Downregulation of the Tn and Sialyl-Tn Antigens. Cancer Manag Res 2020; 12:1017-1027. [PMID: 32104083 PMCID: PMC7023867 DOI: 10.2147/cmar.s214553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/24/2019] [Indexed: 01/28/2023] Open
Abstract
Background Aberrant gene methylation in breast cancer is associated with an unfavorable prognosis. Besides, abnormal Cosmc can induce the expression of Tn and STn antigens. The present study aimed to investigate the roles of Cosmc promoter methylation in breast cancer through the regulation of Tn and STn antigens. Methods The expression patterns of Cosmc and the Tn and STn antigens in breast cancer cell lines were determined. Cosmc was overexpressed to explore the effects of Cosmc on cell behavior, including the growth, migration, invasion, and apoptosis of breast cancer cells and tumor growth with in vitro and in vivo experiments. Afterwards, a methyltransferase and a methyltransferase inhibitor were used to alter the methylation status of Cosmc to explore the mechanisms related to Cosmc promoter methylation. Results Cosmc was poorly expressed in breast cancer cells. Cosmc overexpression inhibited cell growth, migration, and invasion while promoting apoptosis in breast cancer cells in vitro and restraining tumor growth in vivo. Cosmc promoter methylation was found to decrease the levels of Cosmc and increased the expression of the Tn and STn antigens in breast cancer. Conclusion In conclusion, the demethylation of Cosmc mitigates breast cancer progression through the repression of the Tn and STn antigens, which provides evidence for therapeutic considerations for a novel target against breast cancer.
Collapse
Affiliation(s)
- Feng Xu
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Dong Wang
- Department of Oncology, Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, People's Republic of China
| | - JianXiu Cui
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Jie Li
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Hongchuan Jiang
- Department of Breast Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| |
Collapse
|
10
|
Du T, Jia X, Dong X, Ru X, Li L, Wang Y, Liu J, Feng G, Wen T. Cosmc Disruption-Mediated Aberrant O-glycosylation Suppresses Breast Cancer Cell Growth via Impairment of CD44. Cancer Manag Res 2020; 12:511-522. [PMID: 32158257 PMCID: PMC6986418 DOI: 10.2147/cmar.s234735] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 12/24/2022] Open
Abstract
Background Breast cancer remains the most lethal malignancy in women worldwide. Aberrant O-glycosylation is closely related to many human diseases, including breast carcinoma; however, its precise role in cancer development is insufficiently understood. Cosmc is an endoplasmic reticulum-localized chaperone that regulates the O-glycosylation of proteins. Cosmc dysfunction results in inactive T-synthase and expression of truncated O-glycans such as Tn antigen. Here we investigated the impact of Cosmc disruption-mediated aberrant O-glycosylation on breast cancer cell development through in vitro and in vivo experiments. Materials and Methods We deleted the Cosmc gene in two breast cancer cell lines (MCF7, T47D) using the CRISPR/Cas-9 system and then measured the expression levels of Tn antigen. The proliferation of Tn-positive cells was examined by RTCA, colony formation and in vivo experiments. The effects of Cosmc deficiency on glycoprotein CD44 and MAPK pathway were also determined. Results Both in vitro and in vivo studies showed that Cosmc deficiency markedly suppressed breast cancer cell growth compared with the corresponding controls. Mechanistically, Cosmc disruption impaired the protein expression of CD44 and the associated MAPK signaling pathway; the latter plays a crucial role in cell proliferation. Reconstitution of CD44 substantially reversed the observed alterations, confirming that CD44 requires normal O-glycosylation for its proper expression and activation of the related signaling pathway. Conclusion This study showed that Cosmc deficiency-mediated aberrant O-glycosylation suppressed breast cancer cell growth, which was likely mediated by the impairment of CD44 expression.
Collapse
Affiliation(s)
- Tan Du
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Xingyuan Jia
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Xichen Dong
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Xiaoli Ru
- Department of Gynecology and Obstetrics Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Lina Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Yakun Wang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Guosheng Feng
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, People's Republic of China
| |
Collapse
|
11
|
Gao T, Du T, Hu X, Dong X, Li L, Wang Y, Liu J, Liu L, Gu T, Wen T. Cosmc overexpression enhances malignancies in human colon cancer. J Cell Mol Med 2019; 24:362-370. [PMID: 31633299 PMCID: PMC6933370 DOI: 10.1111/jcmm.14740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022] Open
Abstract
Cosmc is known as a T‐synthase‐specific molecular chaperone that plays a crucial role in the process of O‐glycosylation. Cosmc dysfunction leads to inactive T‐synthase and results in aberrant O‐glycosylation, which is associated with various tumour malignancies. However, it is unclear whether Cosmc has some other functions beyond its involvement in O‐glycosylation. In this study, we aimed to investigate the functional role of Cosmc in human colorectal cancer (CRC). We first assessed the expression levels of Cosmc in human CRC specimens and then forcedly expressed Cosmc in human CRC cell lines (HCT116, SW480) to examine its impact on cellular behaviours. The mechanisms for aberrant expression of Cosmc in CRC tissues and the altered behaviours of tumour cells were explored. It showed that the mRNA and protein levels of Cosmc were markedly elevated in human CRC specimens relative to normal colorectal tissues. The occurrence of endoplasmic reticulum (ER) stress may largely contribute to the increased Cosmc expression in cancer tissue and cells. Cosmc overexpression in CRC cells significantly promoted cell migration and invasion, which could be attributed to the activation of the epithelial‐mesenchymal transition (EMT) pathway rather than aberrant O‐glycosylation. These data indicate that Cosmc expression was elevated in human CRC possibly caused by ER stress, which further enhanced malignancies through the activation of EMT but independently of aberrant O‐glycosylation.
Collapse
Affiliation(s)
- Tianbo Gao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tan Du
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Hu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xichen Dong
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lina Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yakun Wang
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jian Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lijie Liu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tao Gu
- Department of Oncology, First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Aco-Tlachi M, Carreño-López R, Martínez-Morales PL, Maycotte P, Aguilar-Lemarroy A, Jave-Suárez LF, Santos-López G, Reyes-Leyva J, Vallejo-Ruiz V. Glycogene expression profiles based on microarray data from cervical carcinoma HeLa cells with partially silenced E6 and E7 HPV oncogenes. Infect Agent Cancer 2018; 13:25. [PMID: 30038662 PMCID: PMC6053821 DOI: 10.1186/s13027-018-0197-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
Background Aberrant glycosylation is a characteristic of tumour cells. The expression of certain glycan structures has been associated with poor prognosis. In cervical carcinoma, changes in the expression levels of some glycogenes have been associated with lymph invasion. Human papillomavirus (HPV) infection is one of the most important factors underlying the development of cervical cancer. The HPV oncoproteins E6 and E7 have been implicated in cervical carcinogenesis and can modify the host gene expression profile. The roles of these oncoproteins in glycosylation changes have not been previously reported. Methods To determine the effect of the E6 and E7 oncoproteins on glycogene expression we partially silenced the E6 and E7 oncogenes in HeLa cells, we performed a microarray expression assay to identify altered glycogenes and quantified the mRNA levels of glycogenes by RT-qPCR. A protein-protein interaction network was constructed to identify potentially altered glycosylation pathways. Results The microarray analysis showed 9 glycogenes that were upregulated and 7 glycogenes that were downregulated in HeLa shE6/E7 cells. Some of these genes participate in glycosylation related to Notch proteins and O-glycans antigens. Conclusions Our results support that E6 and E7 oncoproteins could modify glycogene expression the products of which participate in the synthesis of structures implicated in proliferation, adhesion and apoptosis.
Collapse
Affiliation(s)
- Miguel Aco-Tlachi
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico.,2Posgrado en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Edificio 103-J Cd. Universitaria, Col. San Manuel, C.P. 72570 Puebla, Pue Mexico
| | - Ricardo Carreño-López
- 2Posgrado en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Edificio 103-J Cd. Universitaria, Col. San Manuel, C.P. 72570 Puebla, Pue Mexico
| | - Patricia L Martínez-Morales
- 4CONACYT- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Paola Maycotte
- 4CONACYT- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Adriana Aguilar-Lemarroy
- 3Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col Independencia, C.P. 44340 Guadalajara, Jalisco Mexico
| | - Luis Felipe Jave-Suárez
- 3Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Sierra Mojada 800, Col Independencia, C.P. 44340 Guadalajara, Jalisco Mexico
| | - Gerardo Santos-López
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Julio Reyes-Leyva
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| | - Verónica Vallejo-Ruiz
- 1Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Km. 4.5 Carretera Federal Atlixco-Metepec, Atlixco, C.P. 74360 Puebla, Mexico
| |
Collapse
|
13
|
Jiang Y, Liu Z, Xu F, Dong X, Cheng Y, Hu Y, Gao T, Liu J, Yang L, Jia X, Qian H, Wen T, An G. Aberrant O-glycosylation contributes to tumorigenesis in human colorectal cancer. J Cell Mol Med 2018; 22:4875-4885. [PMID: 29999571 PMCID: PMC6156240 DOI: 10.1111/jcmm.13752] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/29/2018] [Indexed: 12/14/2022] Open
Abstract
Aberrant O‐glycosylation is frequently observed in colorectal cancer (CRC) patients, but it is unclear if it contributes intrinsically to tumorigenesis. Here, we investigated the biological consequences of aberrant O‐glycosylation in CRC. We first detected the expression profile of Tn antigen in a serial of human CRC tissues and then explored the genetic and biosynthetic mechanisms. Moreover, we used a human CRC cell line (LS174T), which express Tn antigen, to assess whether aberrant O‐glycosylation can directly promote oncogenic properties. It showed that Tn antigen was detected in around 86% human primary and metastatic CRC tissues. Bio‐functional investigations showed that T‐synthase and Cosmc were both impaired in cancer tissues. A further analysis detected an occurrence of hypermethylation of Cosmc gene, which possibly caused its loss‐of‐function and a consequent inactive T‐synthase. Transfection of LS174T cells with WT Cosmc restored mature O‐glycosylation, which subsequently down‐regulated cancer cell proliferation, migration and apoptotic‐resistant ability. Significantly, the expression of MUC2, a heavily O‐glycosylated glycoprotein that plays an essential role in intestinal function, was uniformly reduced in human CRC tissues as well as in LS174T cells. These data suggest that aberrant O‐glycosylation contributes to the development of CRC through direct induction of oncogenic properties in cancer cells.
Collapse
Affiliation(s)
- Yuliang Jiang
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhe Liu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feng Xu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xichen Dong
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yurong Cheng
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yizhang Hu
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tianbo Gao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jian Liu
- Medical research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Lei Yang
- Medical research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xingyuan Jia
- Medical research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haili Qian
- Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Tao Wen
- Medical research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Guangyu An
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
14
|
Naser R, Aldehaiman A, Díaz-Galicia E, Arold ST. Endogenous Control Mechanisms of FAK and PYK2 and Their Relevance to Cancer Development. Cancers (Basel) 2018; 10:E196. [PMID: 29891810 PMCID: PMC6025627 DOI: 10.3390/cancers10060196] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 02/07/2023] Open
Abstract
Focal adhesion kinase (FAK) and its close paralogue, proline-rich tyrosine kinase 2 (PYK2), are key regulators of aggressive spreading and metastasis of cancer cells. While targeted small-molecule inhibitors of FAK and PYK2 have been found to have promising antitumor activity, their clinical long-term efficacy may be undermined by the strong capacity of cancer cells to evade anti-kinase drugs. In healthy cells, the expression and/or function of FAK and PYK2 is tightly controlled via modulation of gene expression, competing alternatively spliced forms, non-coding RNAs, and proteins that directly or indirectly affect kinase activation or protein stability. The molecular factors involved in this control are frequently deregulated in cancer cells. Here, we review the endogenous mechanisms controlling FAK and PYK2, and with particular focus on how these mechanisms could inspire or improve anticancer therapies.
Collapse
Affiliation(s)
- Rayan Naser
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Abdullah Aldehaiman
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Escarlet Díaz-Galicia
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan T Arold
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
15
|
Pearce OMT. Cancer glycan epitopes: biosynthesis, structure and function. Glycobiology 2018; 28:670-696. [DOI: 10.1093/glycob/cwy023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022] Open
Affiliation(s)
- Oliver M T Pearce
- Centre for Cancer & Inflammation, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| |
Collapse
|
16
|
Zhang Y, Yuan J, Zhang X, Yan F, Huang M, Wang T, Zheng X, Zhang M. Angiomotin promotes the malignant potential of colon cancer cells by activating the YAP-ERK/PI3K-AKT signaling pathway. Oncol Rep 2016; 36:3619-3626. [PMID: 27779692 DOI: 10.3892/or.2016.5194] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 06/07/2016] [Indexed: 11/06/2022] Open
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths with an increasing incidence in China. The aberrant expression of angiomotin (AMOT) has been confirmed in a variety of tumors and can interact with Yes-associated protein (YAP) to either promote or suppress the progression of cancer. Unfortunately, its role in CRC remains poorly elucidated. Herein, higher levels of AMOT were observed in CRC cell lines. Upregulation of AMOT in LoVo cells markedly increased cell proliferation and apoptotic resistance to 5-fluorouracil. Moreover, its increase also promoted cell invasion and migration. Simultaneously, AMOT silencing markedly attenuated the growth and metastatic potential of HCT116 cells. Notably, AMOT upregulation promoted the activity of YAP by decreasing the expression of phosphorylated YAP and YAP in the cytoplasm and increasing YAP levels in the nucleus. Further mechanistic analysis corroborated that transfection with YAP siRNA notably diminished cell growth, invasion and migration in the AMOT‑overexpressing LoVo cells. Additionally, upregulation of AMOT induced the activation of the ERK and AKT pathways by YAP expression, both associated with the development of CRC. Collectively, these results suggest that AMOT may function as an oncogene in the progression of CRC by activating the YAP-ERK/PI3K-AKT signaling pathway. Therefore, this study presents a promising therapeutic target for CRC.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| | - Jun Yuan
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xinli Zhang
- Radio Immunity Center, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Futang Yan
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Minggang Huang
- CT Department, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Tao Wang
- Department of Radiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Xiao Zheng
- Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Ming Zhang
- Department of Medical Imaging, The First Affiliated Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
17
|
Fu C, Zhao H, Wang Y, Cai H, Xiao Y, Zeng Y, Chen H. Tumor-associated antigens: Tn antigen, sTn antigen, and T antigen. HLA 2016; 88:275-286. [PMID: 27679419 DOI: 10.1111/tan.12900] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
Abstract
Glycosylation is one of the major posttranslational modifications of proteins. N-glycosylation (Asn-linked) and O-glycosylation (Ser/Thr-linked) are the two main forms. Abnormal O-glycosylation is frequently observed on the surface of tumor cells, and is associated with an adverse outcome and poor prognosis in patients with cancer. O-glycans (Tn, sTn, and T antigen) can be synthesized in the Golgi apparatus with the aid of several glycosyltransferases (such as T-synthase and ST6GalNAc-I) in a suitable environment. The unique molecular chaperone of T-synthase is Cosmc, which helps T-synthase to fold correctly in the endoplasmic reticulum. Dysregulation of these glycosyltransferases, molecular chaperones, or the environment is involved in the dysregulation of O-glycans. Tn, sTn, and T antigen neo- or over-expression occurs in many types of cancer including gastric, colon, breast, lung, esophageal, prostate, and endometrial cancer. This review discusses the major synthetic pathway of O-glycans and the mechanism by which Tn, sTn, and T antigens promote tumor metastasis.
Collapse
Affiliation(s)
- C Fu
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - H Zhao
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Wang
- The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - H Cai
- Department of Hematology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Xiao
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| | - Y Zeng
- Medical College of China Three Gorges University, Yichang, China
| | - H Chen
- Institute of Spinal Medicine and Trauma, Department of Spinal Surgery Ward/Center for Minimally Invasive Spine Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
18
|
Sindrewicz P, Lian LY, Yu LG. Interaction of the Oncofetal Thomsen-Friedenreich Antigen with Galectins in Cancer Progression and Metastasis. Front Oncol 2016; 6:79. [PMID: 27066458 PMCID: PMC4814717 DOI: 10.3389/fonc.2016.00079] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/21/2016] [Indexed: 11/20/2022] Open
Abstract
Aberrant glycosylation of cell membrane proteins is a universal feature of cancer cells. One of the most common glycosylation changes in epithelial cancer is the increased occurrence of the oncofetal Thomsen–Friedenreich disaccharide Galβ1–3GalNAc (T or TF antigen), which appears in about 90% of cancers but is rarely seen in normal epithelium. Over the past few years, increasing evidence has revealed that the increased appearance of TF antigen on cancer cell surface plays an active role in promoting cancer progression and metastasis by interaction with the β-galactoside-binding proteins, galectins, which themselves are also frequently overexpressed in cancer and pre-cancerous conditions. This review summarizes the current understanding of the molecular mechanism of the increased TF occurrence in cancer, the structural nature, and biological impact of TF interaction with galectins, in particular galectin-1 and -3, on cancer progression and metastasis.
Collapse
Affiliation(s)
- Paulina Sindrewicz
- Gastroenterology Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, Institute of Integrative Biology, University of Liverpool , Liverpool , UK
| | - Lu-Gang Yu
- Gastroenterology Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool , UK
| |
Collapse
|
19
|
Hu S, Bao H, Xu X, Zhou X, Qin W, Zeng C, Liu Z. Increased miR-374b promotes cell proliferation and the production of aberrant glycosylated IgA1 in B cells of IgA nephropathy. FEBS Lett 2015; 589:4019-25. [PMID: 26545495 DOI: 10.1016/j.febslet.2015.10.033] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 10/22/2022]
Abstract
The number of B cells is increased and the O-glycans of IgA1 are incompletely galactosylated in IgA nephropathy (IgAN). Here we report that expression of phosphatase and tensin homolog (PTEN) and Cosmc is decreased in B cells, and correlates with B cell number and the aberrant glycosylation of IgA1 in IgAN. Patients with IgAN exhibit higher miR-374b in B cells compared to controls. We show that miR-374b targets PTEN and Cosmc by luciferase assays and western blot analysis. Inhibition of miR-374b increased PTEN and Cosmc expression, and prevented cell proliferation and aberrant glycosylation of IgA1, thus representing a new therapeutic approach for IgAN.
Collapse
Affiliation(s)
- Shuai Hu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Hao Bao
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Xiaodong Xu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Xianguang Zhou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Weisong Qin
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Caihong Zeng
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| |
Collapse
|
20
|
Stowell SR, Ju T, Cummings RD. Protein glycosylation in cancer. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2015; 10:473-510. [PMID: 25621663 DOI: 10.1146/annurev-pathol-012414-040438] [Citation(s) in RCA: 620] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neoplastic transformation results in a wide variety of cellular alterations that impact the growth, survival, and general behavior of affected tissue. Although genetic alterations underpin the development of neoplastic disease, epigenetic changes can exert an equally significant effect on neoplastic transformation. Among neoplasia-associated epigenetic alterations, changes in cellular glycosylation have recently received attention as a key component of neoplastic progression. Alterations in glycosylation appear to not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Many of these changes may support neoplastic progression, and unique alterations in tumor-associated glycosylation may also serve as a distinct feature of cancer cells and therefore provide novel diagnostic and even therapeutic targets.
Collapse
|
21
|
Hofmann BT, Schlüter L, Lange P, Mercanoglu B, Ewald F, Fölster A, Picksak AS, Harder S, El Gammal AT, Grupp K, Güngör C, Drenckhan A, Schlüter H, Wagener C, Izbicki JR, Jücker M, Bockhorn M, Wolters-Eisfeld G. COSMC knockdown mediated aberrant O-glycosylation promotes oncogenic properties in pancreatic cancer. Mol Cancer 2015; 14:109. [PMID: 26021314 PMCID: PMC4447007 DOI: 10.1186/s12943-015-0386-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 05/12/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Human pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal malignancies in the world and despite great efforts in research types of treatment remain limited. A frequently detected alteration in PDACs is a truncated O-linked N-acetylgalactosamine (GalNAc) glycosylation with expression of the Tn antigen. Changes in O-glycosylation affect posttranslationally modified O-GalNAc proteins resulting in profound cellular alterations. Tn antigen is a tumor associated glycan detected in 75-90 % of PDACs and up to 67 % in its precursor lesions. Since the role of Tn antigen expression in PDAC is insufficiently understood we analyzed the impact of COSMC mediated Tn antigen expression in two human PDAC cell lines on cellular oncogenic properties. METHODS Forced expression of Tn antigen on O-glycosylated proteins in pancreatic cancer cells was induced by lentiviral-mediated knockdown of the COSMC chaperone, which prevented O-glycan elongation beyond the initial GalNAcα1- residue on O-linked glycoproteins. Altered O-GalNAc glycosylation was analyzed in human pancreatic cancer cell lines Panc-1 and L3.6pl using Western and Far-Western blot as well as immunocytochemical techniques. To assess the biological implications of COSMC function on oncogenic properties, cell viability assays, scratch assays combined with live cell imaging, migration and apoptosis assays were performed. Lectin based glycoprotein enrichment with subsequent mass spectrometric analysis identified new cancer O-GalNAc modified proteins. Expression of Tn antigen bearing Nucleolin in patient derived PDAC tumor specimens was evaluated and correlated with clinicopathological data. RESULTS Tn antigen expression was induced on various O-GalNAc glycoproteins in COSMC deficient cell lines compared to the control. Proliferation was reduced (p < 0.001) in COSMC knockdown cells, whereas migration was increased (p < 0.001) and apoptosis was decreased (p = 0.03), highlighting the importance of Tn antigen expression on metastatic and anti-apoptotic behavior of PDAC derived cells. Nucleolin was identified as O-GalNAc modified protein in COSMC deficient PDAC cell lines. Interestingly, immunohistochemical staining and co-localization studies of patient derived PDACs revealed poor survival for patients with strong co-localization of Tn antigen and Nucleolin (p = 0.037). CONCLUSION This study substantiates the influence of altered O-glycan (Tn/STn) expression on oncogenic properties in pancreatic cancer and identifies O-GalNAc modified Nucleolin as novel prognostic marker.
Collapse
Affiliation(s)
- Bianca T Hofmann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Laura Schlüter
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Philip Lange
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Florian Ewald
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Aljonna Fölster
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Aeint-Steffen Picksak
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Sönke Harder
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Alexander T El Gammal
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Katharina Grupp
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Astrid Drenckhan
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Hartmut Schlüter
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Christoph Wagener
- Department of Clinical Chemistry, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Jakob R Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Manfred Jücker
- Institute for Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| |
Collapse
|
22
|
Hung JS, Huang J, Lin YC, Huang MJ, Lee PH, Lai HS, Liang JT, Huang MC. C1GALT1 overexpression promotes the invasive behavior of colon cancer cells through modifying O-glycosylation of FGFR2. Oncotarget 2015; 5:2096-106. [PMID: 24758762 PMCID: PMC4039148 DOI: 10.18632/oncotarget.1815] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Core 1 β1,3-galactosyltransferase (C1GALT1) transfers galactose (Gal) to N-acetylgalactosamine (GalNAc) to form Galβ1,3GalNAc (T antigen). Aberrant O-glycans, such as T antigen, are commonly found in colorectal cancer. However, the role of C1GALT1 in colorectal cancer remains unclear. Here we showed that C1GALT1 was frequently overexpressed in colorectal tumors and is associated with poor survival. C1GALT1 overexpression promoted cell survival, migration, invasion, and sphere formation as well as tumor growth and metastasis of colon cancer cells. Conversely, knockdown of C1GALT1 with small interference (si) RNA was sufficient to suppress these malignant phenotypes in vitro and in vivo. Moreover, we are the first to show that fibroblast growth factor receptor (FGFR) 2 carried O-glycans in colon cancer cells. Mechanistic investigations showed that C1GALT1 modified the O-glycans on FGFR2 and enhanced bFGF-triggered activation of FGFR2 as well as increased bFGF-mediated malignant phenotypes. In addition, BGJ398, a selective inhibitor of FGFR, blocked the effects of C1GALT1. These findings suggest that C1GALT1 overexpression modifies O-glycans on FGFR2 and enhances its phosphorylation to promote the invasive behavior and cancer stem-like property in colon cancer cells, indicating a critical role of O-glycosylation in the pathogenesis of colorectal cancer.
Collapse
Affiliation(s)
- Ji-Shiang Hung
- Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | - Min-Chuan Huang
- ²Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
23
|
Umesalma S, Nagendraprabhu P, Sudhandiran G. Ellagic acid inhibits proliferation and induced apoptosis via the Akt signaling pathway in HCT-15 colon adenocarcinoma cells. Mol Cell Biochem 2014; 399:303-13. [PMID: 25355159 DOI: 10.1007/s11010-014-2257-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/17/2014] [Indexed: 12/13/2022]
Abstract
Chemoprevention is regarded as one of the most promising and realistic approaches in the prevention of human cancer. Ellagic acid (EA) has been known for its chemopreventive activity against various cancers and numerous investigations have shown its apoptotic activity both in vivo and in vitro. The present study was focused to elucidate the anticancerous effect and the mode of action of EA against HCT-15 colon adenocarcinoma cells. Cell viability was assessed using trypan blue assay at different concentrations. EA also promoted cell cycle arrest substantially at G2/M phase in HCT-15 cells. The activities of alkaline phosphatase and lactate dehydrogenase were decreased upon EA treatment, which shows the antiproliferative and the cytotoxic effects, respectively. The production of reactive oxygen intermediates, which were examined by 2,7-dichlorodihydrofluorescein diacetate (H2DCF-DA), increased with time, after treatment with EA. In further studies, EA inhibited proliferation-associated markers proliferating cell nuclear antigen and cyclin D1. The induction of apoptosis was accompanied by a strong inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt pathway by EA. The expression of PI3K and pAkt was down-regulated in EA-treated cells, compared to normal cells. Further, EA promoted the expression of Bax, caspase-3, and cytochrome c, and suppression of Bcl-2 activity in HCT-15 cells that was determined by western blot analysis. Increased annexin V apoptotic cells and DNA fragmentation also accompanied EA-induced apoptosis. In conclusion, EA increased the production of ROS, decreased cell proliferation, and induced apoptosis in HCT-15 cells, and thus can be used as an agent against colon cancer.
Collapse
Affiliation(s)
- Syed Umesalma
- Department of Biochemistry, Cell Biology Unit, University of Madras, Maraimalai Campus (Guindy), Chennai, 600 025, Tamil Nadu, India,
| | | | | |
Collapse
|
24
|
Chik JHL, Zhou J, Moh ESX, Christopherson R, Clarke SJ, Molloy MP, Packer NH. Comprehensive glycomics comparison between colon cancer cell cultures and tumours: implications for biomarker studies. J Proteomics 2014; 108:146-62. [PMID: 24840470 DOI: 10.1016/j.jprot.2014.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/28/2014] [Accepted: 05/09/2014] [Indexed: 01/27/2023]
Abstract
UNLABELLED Altered glycosylation is commonly observed in colorectal cancer. In vitro models are frequently used to study this cancer but little is known about the differences that may exist between these model cell systems and tumour tissue. We have compared the membrane protein glycosylation of five colorectal cancer cell lines (SW1116, SW480, SW620, SW837, LS174T) with epithelial cells from colorectal tumours using liquid chromatography tandem mass spectrometry. Remarkably, there were five abundant O-glycans in the tumour cells that were undetected in the low-mucin producing cell lines, although two were found in the mucinous LS174T cells. The O-glycans included the well-known glycan cancer marker, sialyl-Tn, which has been associated with mucins. Using qRT-PCR, sialyl-Tn expression was found to be associated with an increase in α2,6-sialyltransferase gene (ST6GALNAC1) and a decrease in core 1 synthase gene (C1GALT1) in LS174T cells. The expression of a subset of mucins (MUC2, MUC6, MUC5B) was also correlated with sialyl-Tn expression in LS174T cells. Overall, the membrane protein glycosylation of the model cell lines was found to differ from each other and from the epithelial cells of tumour tissue. These findings should be noted in the design of biomarker discovery experiments particularly when cell surface targets are being investigated. BIOLOGICAL SIGNIFICANCE The extent of protein glycosylation differences between in vitro cell lines and ex vivo tumours in colorectal cancer research is unknown. Our study expands current knowledge by characterising the membrane protein glycosylation profiles of five different colorectal cancer cell lines and of epithelial cells derived from resected colorectal cancer tumour tissue, using liquid chromatography tandem mass spectrometry. The detailed structural differences found in both N- and O-linked glycan structures on the membrane glycoproteins were determined and correlated with the mRNA expression of the relevant proteins in the cell lines. The glycosylation differences found between cultured cancer cell lines and epithelial cells from tumour tissue have important implications for glycan biomarker discovery.
Collapse
Affiliation(s)
- Jenny H L Chik
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | - Jerry Zhou
- School of Molecular Bioscience, University of Sydney, Sydney, Australia
| | - Edward S X Moh
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia
| | | | - Stephen J Clarke
- Department of Medicine, Royal North Shore Hospital, University of Sydney, Australia
| | - Mark P Molloy
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia; Australian Proteome Analysis Facility, Macquarie University, Sydney, Australia
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, Macquarie University, Sydney, Australia.
| |
Collapse
|
25
|
Aryal RP, Ju T, Cummings RD. Identification of a novel protein binding motif within the T-synthase for the molecular chaperone Cosmc. J Biol Chem 2014; 289:11630-11641. [PMID: 24616093 DOI: 10.1074/jbc.m114.555870] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Prior studies suggested that the core 1 β3-galactosyltransferase (T-synthase) is a specific client of the endoplasmic reticulum chaperone Cosmc, whose function is required for T-synthase folding, activity, and consequent synthesis of normal O-glycans in all vertebrate cells. To explore whether the T-synthase encodes a specific recognition motif for Cosmc, we used deletion mutagenesis to identify a cryptic linear and relatively hydrophobic peptide in the N-terminal stem region of the T-synthase that is essential for binding to Cosmc (Cosmc binding region within T-synthase, or CBRT). Using this sequence information, we synthesized a peptide containing CBRT and found that it directly interacts with Cosmc and also inhibits Cosmc-assisted in vitro refolding of denatured T-synthase. Moreover, engineered T-synthase carrying mutations within CBRT exhibited diminished binding to Cosmc that resulted in the formation of inactive T-synthase. To confirm the general recognition of CBRT by Cosmc, we performed a domain swap experiment in which we inserted the stem region of the T-synthase into the human β4GalT1 and found that the CBRT element can confer Cosmc binding onto the β4GalT1 chimera. Thus, CBRT is a unique recognition motif for Cosmc to promote its regulation and formation of active T-synthase and represents the first sequence-specific chaperone recognition system in the ER/Golgi required for normal protein O-glycosylation.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Tongzhong Ju
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| | - Richard D Cummings
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|