1
|
Lu X, Li J, Lou H, Cao Z, Fan X. Genome-Wide DNA Methylation Alterations and Potential Risk Induced by Subacute and Subchronic Exposure to Food-Grade Nanosilica in Mice. ACS NANO 2021; 15:8225-8243. [PMID: 33938728 DOI: 10.1021/acsnano.0c07323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The intensive application of nanomaterials in the food industry has raised concerns about their potential risks to human health. However, limited data are available on the biological safety of nanomaterials in food, especially at the epigenetic level. This study examined the implications of two types of synthetic amorphous silica (SAS), food-grade precipitated silica (S200) and fumed silica Aerosil 200F (A200F), which are nanorange food additives. After 28-day continuous and intermittent subacute exposure to these SAS via diet, whole-genome methylation levels in mouse peripheral leukocytes and liver were significantly altered in a dose- and SAS type-dependent manner, with minimal toxicity detected by conventional toxicological assessments, especially at a human-relevant dose (HRD). The 84-day continuous subchronic exposure to all doses of S200 and A200F induced liver steatosis where S200 accumulated in the liver even at HRD. Genome-wide DNA methylation sequencing revealed that the differentially methylated regions induced by both SAS were mainly located in the intron, intergenic, and promoter regions after 84-day high-dose continuous exposure. Bioinformatics analysis of differentially methylated genes indicated that exposure to S200 or A200F may lead to lipid metabolism disorders and cancer development. Pathway validation experiments indicated both SAS types as potentially carcinogenic. While S200 inhibited the p53-mediated apoptotic pathway in mouse liver, A200F activated the HRAS-mediated MAPK signaling pathway, which is a key driver of hepatocarcinogenesis. Thus, caution must be paid to the risk of long-term exposure to food-grade SAS, and epigenetic parameters should be included as end points during the risk assessment of food-grade nanomaterials.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junying Li
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - He Lou
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeya Cao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Center in Zhejiang University, State Key Laboratory of Component-Based Chinese Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Abstract
Epigenetic modes of gene regulation are important for physiological conditions and its aberrant changes can lead to disease like cancer. 5-hydroxymethylcytosine (5hmC) is an oxidized form of 5-methylcytosine (5mC) catalyzed by Ten Eleven Translocation (TET) enzymes. 5hmC is considered to be a demethylation intermediate and is emerging as a stable and functional base modification. The global loss of 5hmC level is commonly observed in cancers and tumorigenic germline mutations in IDH, SDH and FH are found to be inhibiting TET activity. Although a global loss of 5hmC is characteristic in cancers, locus-specific 5hmC gain implicates selective gene expression control. The definitive role of 5hmC as a tumor suppressing or promoting modification can be deduced by identifying locus-specific 5hmC modification in different types of cancer. Determining the genes carrying 5hmC modifications and its selective variation will open up new therapeutic targets. This review outlines the role of global and locus-specific changes of 5hmC in cancers and the possible mechanisms underlying such changes. We have described major cellular factors that influence 5hmC levels and highlighted the significance of 5hmC in tumor micro environmental condition like hypoxia.
Collapse
|
3
|
Thomson JP, Ottaviano R, Buesen R, Moggs JG, Schwarz M, Meehan RR. Defining baseline epigenetic landscapes in the rat liver. Epigenomics 2017; 9:1503-1527. [PMID: 29130343 PMCID: PMC5957268 DOI: 10.2217/epi-2017-0029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim Characterization of the hepatic epigenome following exposure to chemicals and therapeutic drugs provides novel insights into toxicological and pharmacological mechanisms, however appreciation of genome-wide inter- and intra-strain baseline epigenetic variation, particularly in under-characterized species such as the rat is limited. Material & methods To enhance the utility of epigenomic endpoints safety assessment, we map both DNA modifications (5-methyl-cytosine and 5-hydroxymethyl-cytosine) and enhancer related chromatin marks (H3K4me1 and H3K27ac) across multiple male and female rat livers for two important outbred laboratory rat strains (Sprague–Dawley and Wistar). Results & conclusion Integration of DNA modification, enhancer chromatin marks and gene expression profiles reveals clear gender-specific chromatin states at genes which exhibit gender-specific transcription. Taken together this work provides a valuable baseline liver epigenome resource for rat strains that are commonly used in chemical and pharmaceutical safety assessment.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Raffaele Ottaviano
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Roland Buesen
- BASF SE, Experimental Toxicology & Ecology, 67056 Ludwigshafen, Germany
| | - Jonathan G Moggs
- Preclinical Safety, Translational Medicine, Novartis Institutes for BioMedical Research, CH-4057 Basel, Switzerland
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental & Clinical Pharmacology & Toxicology, University of Tübingen, 72074 Tübingen, Germany
| | - Richard R Meehan
- MRC Human Genetics Unit, Genome Regulation, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
4
|
Thomson JP, Meehan RR. The application of genome-wide 5-hydroxymethylcytosine studies in cancer research. Epigenomics 2016; 9:77-91. [PMID: 27936926 DOI: 10.2217/epi-2016-0122] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Early detection and characterization of molecular events associated with tumorgenesis remain high priorities. Genome-wide epigenetic assays are promising diagnostic tools, as aberrant epigenetic events are frequent and often cancer specific. The deposition and analysis of multiple patient-derived cancer epigenomic profiles contributes to our appreciation of the underlying biology; aiding the detection of novel identifiers for cancer subtypes. Modifying enzymes and co-factors regulating these epigenetic marks are frequently mutated in cancers, and as epigenetic modifications themselves are reversible, this makes their study very attractive with respect to pharmaceutical intervention. Here we focus on the novel modified base, 5-hydoxymethylcytosine, and discuss how genome-wide 5-hydoxymethylcytosine profiling expedites our molecular understanding of cancer, serves as a lineage tracer, classifies the mode of action of potentially carcinogenic agents and clarifies the roles of potential novel cancer drug targets; thus assisting the development of new diagnostic/prognostic tools.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| |
Collapse
|
5
|
Thomson JP, Ottaviano R, Unterberger EB, Lempiäinen H, Muller A, Terranova R, Illingworth RS, Webb S, Kerr ARW, Lyall MJ, Drake AJ, Wolf CR, Moggs JG, Schwarz M, Meehan RR. Loss of Tet1-Associated 5-Hydroxymethylcytosine Is Concomitant with Aberrant Promoter Hypermethylation in Liver Cancer. Cancer Res 2016; 76:3097-108. [PMID: 27197233 PMCID: PMC5021200 DOI: 10.1158/0008-5472.can-15-1910] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 03/09/2016] [Indexed: 12/17/2022]
Abstract
Aberrant hypermethylation of CpG islands (CGI) in human tumors occurs predominantly at repressed genes in the host tissue, but the preceding events driving this phenomenon are poorly understood. In this study, we temporally tracked epigenetic and transcriptomic perturbations that occur in a mouse model of liver carcinogenesis. Hypermethylated CGI events in the model were predicted by enrichment of the DNA modification 5-hydroxymethylcytosine (5hmC) and the histone H3 modification H3K27me3 at silenced promoters in the host tissue. During cancer progression, selected CGIs underwent hypo-hydroxymethylation prior to hypermethylation, while retaining H3K27me3. In livers from mice deficient in Tet1, a tumor suppressor involved in cytosine demethylation, we observed a similar loss of promoter core 5hmC, suggesting that reduced Tet1 activity at CGI may contribute to epigenetic dysregulation during hepatocarcinogenesis. Consistent with this possibility, mouse liver tumors exhibited reduced Tet1 protein levels. Similar to humans, DNA methylation changes at CGI in mice did not appear to be direct drivers of hepatocellular carcinoma progression, rather, dynamic changes in H3K27me3 promoter deposition correlated strongly with tumor-specific activation and repression of transcription. Overall, our results suggest that loss of promoter-associated 5hmC in liver tumors licenses reprograming of DNA methylation at silent CGI during progression. Cancer Res; 76(10); 3097-108. ©2016 AACR.
Collapse
Affiliation(s)
- John P Thomson
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Raffaele Ottaviano
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Elif B Unterberger
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany
| | - Harri Lempiäinen
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Arne Muller
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Remi Terranova
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Robert S Illingworth
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom
| | - Shaun Webb
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair R W Kerr
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Marcus J Lyall
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Amanda J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - C Roland Wolf
- Medical Research Institute, University of Dundee, Ninewells Hospital & Medical School, Dundee, United Kingdom
| | - Jonathan G Moggs
- Preclinical Safety, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, University of Tübingen, Tübingen, Germany.
| | - Richard R Meehan
- MRC Human Genetics Unit at the Institute of Genetics and Molecular Medicine at the University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
6
|
Stoyanov E, Ludwig G, Mizrahi L, Olam D, Schnitzer-Perlman T, Tasika E, Sass G, Tiegs G, Jiang Y, Nie T, Kohler J, Schinazi RF, Vertino PM, Cedar H, Galun E, Goldenberg D. Chronic liver inflammation modifies DNA methylation at the precancerous stage of murine hepatocarcinogenesis. Oncotarget 2015; 6:11047-60. [PMID: 25918251 PMCID: PMC4484438 DOI: 10.18632/oncotarget.3567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2015] [Indexed: 02/07/2023] Open
Abstract
Chronic liver inflammation precedes the majority of hepatocellular carcinomas (HCC). Here, we explore the connection between chronic inflammation and DNA methylation in the liver at the late precancerous stages of HCC development in Mdr2(-/-) (Mdr2/Abcb4-knockout) mice, a model of inflammation-mediated HCC. Using methylated DNA immunoprecipitation followed by hybridization with "CpG islands" (CGIs) microarrays, we found specific CGIs in 76 genes which were hypermethylated in the Mdr2(-/-) liver compared to age-matched healthy controls. The observed hypermethylation resulted mainly from an age-dependent decrease of methylation of the specific CGIs in control livers with no decrease in mutant mice. Chronic inflammation did not change global levels of DNA methylation in Mdr2(-/-) liver, but caused a 2-fold decrease of the global 5-hydroxymethylcytosine level in mutants compared to controls. Liver cell fractionation revealed, that the relative hypermethylation of specific CGIs in Mdr2(-/-) livers affected either hepatocyte, or non-hepatocyte, or both fractions without a correlation between changes of gene methylation and expression. Our findings demonstrate that chronic liver inflammation causes hypermethylation of specific CGIs, which may affect both hepatocytes and non-hepatocyte liver cells. These changes may serve as useful markers of an increased regenerative activity and of a late precancerous stage in the chronically inflamed liver.
Collapse
Affiliation(s)
- Evgeniy Stoyanov
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Guy Ludwig
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Lina Mizrahi
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Devorah Olam
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Temima Schnitzer-Perlman
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elena Tasika
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriele Sass
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yong Jiang
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ting Nie
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA, USA
| | - James Kohler
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA, USA
| | - Raymond F. Schinazi
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Veterans Affairs Medical Center, Decatur, GA, USA
| | - Paula M. Vertino
- Department of Radiation Oncology and the Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Howard Cedar
- Department of Developmental Biology and Cancer Research, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Eithan Galun
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Daniel Goldenberg
- The Goldyne Savad Institute of Gene Therapy, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|