1
|
Li Y, Peng S, Xu J, Liu W, Luo Q. Integrin signaling in tumor biology: mechanisms of intercellular crosstalk and emerging targeted therapies. PeerJ 2025; 13:e19328. [PMID: 40352270 PMCID: PMC12065456 DOI: 10.7717/peerj.19328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 03/25/2025] [Indexed: 05/14/2025] Open
Abstract
Integrins, a family of transmembrane cell adhesion receptors, mediate intercellular and cell-extracellular matrix crosstalk via outside-in and inside-out signaling pathways. Integrins, categorized into 24 distinct combinations of α and β subunits, exhibit tissue-specific expression and perform unique or overlapping roles in physiological and pathophysiological processes. These roles encompass embryonic angiogenesis, tissue repair, and the modulation of tumor cell angiogenesis, progression, invasion, and metastasis. Notably, integrins are significant contributors to tumor development, offering valuable insights into the potential of integrin-targeted diagnostics and therapeutics. Currently, there are various preclinical and clinical trials aiming to harness integrin antagonists that are safe, efficacious, and exhibit low toxicity. Owing to the functional redundancy across integrin types and the complexity of the mechanisms of integrin-mediated multiple key processes associated with tumor biology, challenges exist that impede advancements in integrin-targeted therapy. Nevertheless, innovative strategies focused on integrin modulation represent significant breakthroughs for improving patient care and promoting comprehensive insights into the underlying mechanisms of tumor biology. This review elucidates the impact of integrins on three distinct cell types in multiple key processes associated with tumor biology and explores the emerging integrin-targeted therapeutic approaches for the treatment of tumors, which will provide ideas for optimal therapeutic approaches in the future.
Collapse
Affiliation(s)
- Yifan Li
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Shantong Peng
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiatong Xu
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Wenjie Liu
- The First Clinical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Luo
- College of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Korbecki J, Bosiacki M, Szatkowska I, Kupnicka P, Chlubek D, Baranowska-Bosiacka I. The Clinical Significance and Involvement in Molecular Cancer Processes of Chemokine CXCL1 in Selected Tumors. Int J Mol Sci 2024; 25:4365. [PMID: 38673949 PMCID: PMC11050300 DOI: 10.3390/ijms25084365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Chemokines play a key role in cancer processes, with CXCL1 being a well-studied example. Due to the lack of a complete summary of CXCL1's role in cancer in the literature, in this study, we examine the significance of CXCL1 in various cancers such as bladder, glioblastoma, hemangioendothelioma, leukemias, Kaposi's sarcoma, lung, osteosarcoma, renal, and skin cancers (malignant melanoma, basal cell carcinoma, and squamous cell carcinoma), along with thyroid cancer. We focus on understanding how CXCL1 is involved in the cancer processes of these specific types of tumors. We look at how CXCL1 affects cancer cells, including their proliferation, migration, EMT, and metastasis. We also explore how CXCL1 influences other cells connected to tumors, like promoting angiogenesis, recruiting neutrophils, and affecting immune cell functions. Additionally, we discuss the clinical aspects by exploring how CXCL1 levels relate to cancer staging, lymph node metastasis, patient outcomes, chemoresistance, and radioresistance.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Iwona Szatkowska
- Department of Ruminants Science, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29 St., 71-270 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.K.); (M.B.); (D.C.)
| |
Collapse
|
3
|
Guo L, Hua L, Hu B, Wang J. Pre-clinical Efficacy and Safety Pharmacology of PEGylated Recombinant Human Endostatin. Curr Mol Med 2024; 24:389-396. [PMID: 36999708 DOI: 10.2174/1566524023666230331091757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/08/2023] [Accepted: 02/13/2023] [Indexed: 04/01/2023]
Abstract
INTRODUCTION This study aimed to outline the pre-clinical efficacy and safety pharmacology of PEGylated recombinant human endostatin (M2ES) according to the requirements of new drug application. METHODS The purity of M2ES was evaluated by using silver staining. Transwell migration assay was applied to detect the bioactivity of M2ES in vitro. The antitumor efficacy of M2ES was evaluated in an athymic nude mouse xenograft model of pancreatic cancer (Panc-1) and gastric cancer (MNK45). BALB/C mice were treated with different doses of M2ES (6, 12 and 24 mg/kg) intravenously, both autonomic activity and cooperative sleep were monitored before and after drug administration. RESULTS The apparent molecular weight of M2ES was about 50 kDa, and the purity was greater than 98%. Compared with the control group, M2ES significantly inhibits human micro-vascular endothelial cells (HMECs) migration in vitro. Notably, weekly administration of M2ES showed a significant antitumor efficacy when compared with the control group. Treatment of M2ES (24mg/kg or below) showed no obvious effect on both autonomic activity and hypnosis. CONCLUSION On the basis of the pre-clinical efficacy and safety pharmacology data of M2ES, M2ES can be authorized to carry out further clinical studies.
Collapse
Affiliation(s)
- Lifang Guo
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Linbin Hua
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Bin Hu
- Department of Thoracic Surgery, Beijing Institute of Respiratory Medicine and Beijing Chao Yang Hospital, Capital Medical University, Beijing, China
| | - Jing Wang
- Department of Clinical Laboratory, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| |
Collapse
|
4
|
Siddhartha R, Garg M. Interplay Between Extracellular Matrix Remodeling and Angiogenesis in Tumor Ecosystem. Mol Cancer Ther 2023; 22:291-305. [PMID: 36861362 DOI: 10.1158/1535-7163.mct-22-0595] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/27/2022] [Accepted: 12/16/2022] [Indexed: 03/03/2023]
Abstract
Studying the complex mechanisms of tumorigenesis and examining the interactions of neoplastic cells within tumor ecosystem are critical to explore the possibility of effective cancer treatment modalities. Dynamic tumor ecosystem is constantly evolving and is composed of tumor cells, extracellular matrix (ECM), secreted factors, and stromal cancer-associated fibroblasts (CAF), pericytes, endothelial cells (EC), adipocytes, and immune cells. ECM remodeling by synthesis, contraction, and/or proteolytic degradation of ECM components and release of matrix-sequestered growth factors create a microenvironment that promotes EC proliferation, migration, and angiogenesis. Stromal CAFs release multiple angiogenic cues (angiogenic growth factors, cytokines, and proteolytic enzymes) which interact with ECM proteins, thus contribute to enhance proangiogenic/promigratory properties and support aggressive tumor growth. Targeting angiogenesis brings about vascular changes including reduced adherence junction proteins, basement membrane and pericyte coverage, and increased leakiness. This facilitates ECM remodeling, metastatic colonization and chemoresistance. Owing to significant role of denser and stiffer ECM in inducing chemoresistance, direct or indirect targeting of ECM components is being reported as major axis of anticancer treatment. Exploring the agents targeting angiogenesis and ECM in a context specific manner may lead to reduced tumor burden by promoting conventional therapeutic effectiveness and overcoming the hurdles of therapy resistance.
Collapse
Affiliation(s)
- Rohit Siddhartha
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
5
|
Belhabib I, Zaghdoudi S, Lac C, Bousquet C, Jean C. Extracellular Matrices and Cancer-Associated Fibroblasts: Targets for Cancer Diagnosis and Therapy? Cancers (Basel) 2021; 13:3466. [PMID: 34298680 PMCID: PMC8303391 DOI: 10.3390/cancers13143466] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Solid cancer progression is dictated by neoplastic cell features and pro-tumoral crosstalks with their microenvironment. Stroma modifications, such as fibroblast activation into cancer-associated fibroblasts (CAFs) and extracellular matrix (ECM) remodeling, are now recognized as critical events for cancer progression and as potential therapeutic or diagnostic targets. The recent appreciation of the key, complex and multiple roles of the ECM in cancer and of the CAF diversity, has revolutionized the field and raised innovative but challenging questions. Here, we rapidly present CAF heterogeneity in link with their specific ECM remodeling features observed in cancer, before developing each of the impacts of such ECM modifications on tumor progression (survival, angiogenesis, pre-metastatic niche, chemoresistance, etc.), and on patient prognosis. Finally, based on preclinical studies and recent results obtained from clinical trials, we highlight key mechanisms or proteins that are, or may be, used as potential therapeutic or diagnostic targets, and we report and discuss benefits, disappointments, or even failures, of recently reported stroma-targeting strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christine Jean
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM U1037, Université Toulouse III Paul Sabatier, ERL5294 CNRS, 31037 Toulouse, France; (I.B.); (S.Z.); (C.L.); (C.B.)
| |
Collapse
|
6
|
Dong Q, Wang Z, Jiang M, Sun H, Wang X, Li Y, Zhang Y, Cheng H, Chai Y, Shao T, Shi L, Wang Z. Transcriptome analysis of the response provided by Lasiopodomys mandarinus to severe hypoxia includes enhancing DNA repair and damage prevention. Front Zool 2020; 17:9. [PMID: 32256671 PMCID: PMC7106638 DOI: 10.1186/s12983-020-00356-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/16/2020] [Indexed: 02/08/2023] Open
Abstract
Background Severe hypoxia induces a series of stress responses in mammals; however, subterranean rodents have evolved several adaptation mechanisms of energy metabolisms and O2 utilization for hypoxia. Mammalian brains show extreme aerobic metabolism. Following hypoxia exposure, mammals usually experience irreversible brain damage and can even develop serious diseases, such as hypoxic ischemic encephalopathy and brain edema. To investigate mechanisms underlying the responses of subterranean rodents to severe hypoxia, we performed a cross-species brain transcriptomic analysis using RNA sequencing and identified differentially expressed genes (DEGs) between the subterranean rodent Lasiopodomys mandarinus and its closely related aboveground species L. brandtii under severe hypoxia (5.0% O2, 6 h) and normoxia (20.9% O2, 6 h). Results We obtained 361 million clean reads, including 69,611 unigenes in L. mandarinus and 69,360 in L. brandtii. We identified 359 and 515 DEGs by comparing the hypoxic and normoxia groups of L. mandarinus and L. brandtii, respectively. Gene Ontology (GO) analysis showed that upregulated DEGs in both species displayed similar terms in response to severe hypoxia; the main difference is that GO terms of L. brandtii were enriched in the immune system. However, in the downregulated DEGs, GO terms of L. mandarinus were enriched in cell proliferation and protein transport and those of L. brandtii were enriched in nuclease and hydrolase activities, particularly in terms of developmental functions. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that upregulated DEGs in L. mandarinus were associated with DNA repair and damage prevention as well as angiogenesis and metastasis inhibition, whereas downregulated DEGs were associated with neuronal synaptic transmission and tumor-associated metabolic pathways. In L. brandtii, upregulated KEGG pathways were enriched in the immune, endocrine, and cardiovascular systems and particularly in cancer-related pathways, whereas downregulated DEGs were associated with environmental information processing and misregulation in cancers. Conclusions L. mandarinus has evolved hypoxia adaptation by enhancing DNA repair, damage prevention, and augmenting sensing, whereas L. brandtii showed a higher risk of tumorigenesis and promoted innate immunity toward severe hypoxia. These results reveal the hypoxic mechanisms of L. mandarinus to severe hypoxia, which may provide research clues for hypoxic diseases.
Collapse
Affiliation(s)
- Qianqian Dong
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Zishi Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Mengwan Jiang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Hong Sun
- 2College of Physical Education (main campus), Zhengzhou University, Zhengzhou, Henan Province China
| | - Xuqin Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Yangwei Li
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China.,3Central Laboratory, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008 Henan Province China
| | - Yifeng Zhang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Han Cheng
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Yurong Chai
- 4School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Tian Shao
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Luye Shi
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| | - Zhenlong Wang
- 1School of Life Sciences, Zhengzhou University, Zhengzhou, 450001 Henan Province China
| |
Collapse
|
7
|
Guo L, Li Z, Xu B, Yu M, Fu Y, Liu L, Wang J, Luo Y. Pharmacokinetics of PEGylated recombinant human endostatin in rhesus monkeys. Life Sci 2019; 238:116967. [DOI: 10.1016/j.lfs.2019.116967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/05/2019] [Accepted: 10/13/2019] [Indexed: 10/25/2022]
|
8
|
Extracellular matrix-cell interactions: Focus on therapeutic applications. Cell Signal 2019; 66:109487. [PMID: 31778739 DOI: 10.1016/j.cellsig.2019.109487] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
Extracellular matrix (ECM) macromolecules together with a multitude of different molecules residing in the extracellular space play a vital role in the regulation of cellular phenotype and behavior. This is achieved via constant reciprocal interactions between the molecules of the ECM and the cells. The ECM-cell interactions are mediated via cell surface receptors either directly or indirectly with co-operative molecules. The ECM is also under perpetual remodeling process influencing cell-signaling pathways on its part. The fragmentation of ECM macromolecules provides even further complexity for the intricate environment of the cells. However, as long as the interactions between the ECM and the cells are in balance, the health of the body is retained. Alternatively, any dysregulation in these interactions can lead to pathological processes and finally to various diseases. Thus, therapeutic applications that are based on retaining normal ECM-cell interactions are highly rationale. Moreover, in the light of the current knowledge, also concurrent multi-targeting of the complex ECM-cell interactions is required for potent pharmacotherapies to be developed in the future.
Collapse
|
9
|
Xing L, Sun F, Wang Z, Li Y, Yang Z, Wang F, Zhai G, Tan H. Characterization and bioactivity of self-assembled anti-angiogenic chondroitin sulfate-ES2-AF nanoparticle conjugate. Int J Nanomedicine 2019; 14:2573-2589. [PMID: 31040673 PMCID: PMC6462165 DOI: 10.2147/ijn.s195934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND In the past few years, significant progress has been made in inhibiting neovascularization at the tumor site, cutting off the nutrient supply of the tumor, and inhibiting tumor growth and metastasis. However, many proteins/peptides have the disadvantage of poor stability, short half-life, and uncertain targeting ability. Chemical modification can be used to overcome these disadvantages; many polyethylene glycol-modified proteins/peptides have been approved by US FDA. The purpose of this study was to obtain a novel anti-angiogenic chondroitin sulfate (CS)-peptide nanoparticle conjugate with efficient anti-neovascularization and tumor targeting ability and an acceptable half-life. MATERIALS AND METHODS The CS-ES2-AF nanoparticle conjugate was synthesized and characterized using 1H-nuclear magnetic resonance spectroscopy, transmission electron microscopy, and particle size and zeta potential analyzer. The anti-angiogenic ability was studied using MTT, migration, tube formation, and chick chorioallantoic membrane assays. The targeting ability of CS-ES2-AF was studied by ELISA, surface plasmon resonance, and bioimaging. The pharmacokinetics was also studied. RESULTS The CS-ES2-AF could self-assemble into stable nanoparticles in aqueous solution, which significantly enhances its anti-neovascularization activity, tumor targeting more explicit, and prolongs its half-life. CONCLUSION CS is an effective protein/peptide modifier, and CS-ES2-AF displayed good potential in tumor targeting therapy.
Collapse
Affiliation(s)
- Liang Xing
- National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, Shandong, People's Republic of China,
| | - Feng Sun
- National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, Shandong, People's Republic of China,
| | - Zhendong Wang
- National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, Shandong, People's Republic of China,
| | - Yan Li
- National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, Shandong, People's Republic of China,
| | - Zhifang Yang
- National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, Shandong, People's Republic of China,
| | - Fengshan Wang
- National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
| | - Guangxi Zhai
- School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
| | - Haining Tan
- National Glycoengineering Research Center, School of Pharmaceutical Sciences, Shandong University, Jinan 250012, Shandong, People's Republic of China,
- Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, Shandong, People's Republic of China,
| |
Collapse
|
10
|
Guo L, Geng X, Liu L, Miao Y, Lin Z, Yu M, Fu Y, Liu L, Li B, Luo Y. Quality, bioactivity study, and preclinical acute toxicity, safety pharmacology evaluation of PEGylated recombinant human endostatin (M 2 ES). J Biochem Mol Toxicol 2018; 33:e22257. [PMID: 30536793 DOI: 10.1002/jbt.22257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/18/2018] [Accepted: 10/02/2018] [Indexed: 12/28/2022]
Abstract
Endostar, a potent endogenous antiangiogenic factor, is wildly used in clinics. However, it was easily degraded by enzymes and rapidly cleared by the kidneys. To overcome these shortcomings, PEGylated recombinant human endostatin was developed. In this study, the purity of M2 ES was evaluated by silver stain and reversed-phase high-performance liquid chromatography. Ultraviolet spectrum was used to examine the structural of M2 ES and endostar. The bioactivity and antitumor efficacy of M2 ES were evaluated using an in vitro endothelial cell migration model and athymic nude mouse xenograft model of a heterogeneous lung adenocarcinoma, respectively. A preclinical study was performed to evaluate the acute toxicity and safety pharmacology in rhesus monkeys. The purity of M2 ES was more than 98%; PEG modification has no effect on endostatin structure. Compared with the control group, M2 ES dramatically retards endothelial cell migration and tumor growth. After intravenous (IV) infusions of M2 ES at a dose level of three and 75 mg/kg in rhesus monkeys, there was no observable serious adverse event in both acute toxicity and safety pharmacology study. On the basis of the quality and bioactivity study data of M2 ES and the absence of serious side effect in rhesus monkeys, M2 ES was authorized to initiate a phase I clinical trial.
Collapse
Affiliation(s)
- Lifang Guo
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Li Liu
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Yufa Miao
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Zhi Lin
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Min Yu
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Yan Fu
- National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Bo Li
- National Center for Safety Evaluation of Drugs, National Institute for Food and Drug Control, Beijing, China
| | - Yongzhang Luo
- National Engineering Laboratory for Anti-Tumor Protein Therapeutics, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
11
|
Sun F, Yu Y, Yang Z, Wang Z, Li Y, Wang F, Tan H. Hyaluronic acid-endostatin2-alft1 (HA-ES2-AF) nanoparticle-like conjugate for the target treatment of diseases. J Control Release 2018; 288:1-13. [DOI: 10.1016/j.jconrel.2018.08.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023]
|
12
|
Ricard-Blum S, Vallet SD. Fragments generated upon extracellular matrix remodeling: Biological regulators and potential drugs. Matrix Biol 2017; 75-76:170-189. [PMID: 29133183 DOI: 10.1016/j.matbio.2017.11.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/13/2022]
Abstract
The remodeling of the extracellular matrix (ECM) by several protease families releases a number of bioactive fragments, which regulate numerous biological processes such as autophagy, angiogenesis, adipogenesis, fibrosis, tumor growth, metastasis and wound healing. We review here the proteases which generate bioactive ECM fragments, their ECM substrates, the major bioactive ECM fragments, together with their biological properties and their receptors. The translation of ECM fragments into drugs is challenging and would take advantage of an integrative approach to optimize the design of pre-clinical and clinical studies. This could be done by building the contextualized interaction network of the ECM fragment repertoire including their parent proteins, remodeling proteinases, and their receptors, and by using mathematical disease models.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| | - Sylvain D Vallet
- Univ Lyon, University Claude Bernard Lyon 1, CNRS, INSA Lyon, CPE, Institute of Molecular and Supramolecular Chemistry and Biochemistry, UMR 5246, F-69622 Villeurbanne cedex, France.
| |
Collapse
|
13
|
Zhu CC, Chen C, Xu ZQ, Zhao JK, Ou BC, Sun J, Zheng MH, Zong YP, Lu AG. CCR6 promotes tumor angiogenesis via the AKT/NF-κB/VEGF pathway in colorectal cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1864:387-397. [PMID: 29097259 DOI: 10.1016/j.bbadis.2017.10.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 10/22/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022]
Abstract
Chemokines and chemokine receptors play an important role in tumorigenesis. Angiogenesis is a vital part of the occurrence, development and metastasis of cancer. CCR6 is an important factor during tumor progression; however, its function in tumor angiogenesis is not fully understood. In our study, we found that CCR6 was significantly overexpressed in colorectal cancer (CRC) tissues and predicted a poor prognosis in CRC patients. We then verified the function of CCR6 on tumor angiogenesis in vivo and in vitro. We observed that silencing CCR6 could decrease angiogenesis by inhibiting the proliferation and migration of human umbilical vein endothelial cells (HUVECs), whereas overexpression of CCR6 can promote angiogenesis. Additionally, we investigated the molecular mechanisms and demonstrated that activation of the AKT/NF-κB pathway maybe involved in CCR6-mediated tumor angiogenesis, which was able to promote the secretion of vascular endothelial growth factor A (VEGF-A). In conclusion, CCR6 facilitates tumor angiogenesis via the AKT/NF-κB/VEGF pathway in colorectal cancer. CCR6 inhibition may be a novel option for anti-vascular treatment in CRC.
Collapse
Affiliation(s)
- Cong-Cong Zhu
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Chun Chen
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Zhuo-Qing Xu
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Jing-Kun Zhao
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Bao-Chi Ou
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China; Shanghai Institute of Digestive Surgery, Shanghai, PR China
| | - Jing Sun
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Min-Hua Zheng
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Ya-Ping Zong
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.
| | - Ai-Guo Lu
- Shanghai Minimally Invasive Surgery Center, Ruijin hospital, Shanghai Jiaotong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
14
|
Gu R, Sun X, Chi Y, Zhou Q, Xiang H, Bosco DB, Lai X, Qin C, So KF, Ren Y, Chen XM. Integrin β3/Akt signaling contributes to platelet-induced hemangioendothelioma growth. Sci Rep 2017; 7:6455. [PMID: 28744026 PMCID: PMC5527091 DOI: 10.1038/s41598-017-06927-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023] Open
Abstract
Hemangioendothelioma (HE) is a type of angiomatous lesions that features endothelial cell proliferation. Understanding the mechanisms orchestrating HE angiogenesis can provide therapeutic insights. It has been shown that platelets can support normal and malignant endothelial cells during angiogenesis. Using the mouse endothelial-derived EOMA cell line as a model of HE, we explored the regulatory effect of platelets. We found that platelets stimulated EOMA proliferation but did not mitigate apoptosis. Furthermore, direct platelet-EOMA cell contact was required and the proliferation was mediated via integrin β3/Akt signaling in EOMA cells. SiRNA knockdown of integrin β3 and inhibition of Akt activity significantly abolished platelet-induced EOMA cell proliferation in vitro and tumor development in vivo. These results provide a new mechanism by which platelets support HE progression and suggest integrin β3 as a potential target to treat HE.
Collapse
Affiliation(s)
- Rui Gu
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xin Sun
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong, China
| | - Yijie Chi
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qishuang Zhou
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongkai Xiang
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dale B Bosco
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Xinhe Lai
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Caixia Qin
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China.,Co-innovation Center of Neuroregeneration, Nantong, China
| | - Yi Ren
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Guangdong-Hong Kong-Macau Institute of CNS Regeneration (GHMICR), Joint International Research Laboratory of CNS Regeneration Ministry of Education, Guangdong Medical Key Laboratory of Brain Function and Diseases, Jinan University, Guangzhou, China. .,Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL, USA.
| | - Xiao-Ming Chen
- Institute of Inflammation and Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
15
|
Ricard-Blum S, Vallet SD. Matricryptins Network with Matricellular Receptors at the Surface of Endothelial and Tumor Cells. Front Pharmacol 2016; 7:11. [PMID: 26869928 PMCID: PMC4740388 DOI: 10.3389/fphar.2016.00011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a source of bioactive fragments called matricryptins or matrikines resulting from the proteolytic cleavage of extracellular proteins (e.g., collagens, elastin, and laminins) and proteoglycans (e.g., perlecan). Matrix metalloproteinases (MMPs), cathepsins, and bone-morphogenetic protein-1 release fragments, which regulate physiopathological processes including tumor growth, metastasis, and angiogenesis, a pre-requisite for tumor growth. A number of matricryptins, and/or synthetic peptides derived from them, are currently investigated as potential anti-cancer drugs both in vitro and in animal models. Modifications aiming at improving their efficiency and their delivery to their target cells are studied. However, their use as drugs is not straightforward. The biological activities of these fragments are mediated by several receptor families. Several matricryptins may bind to the same matricellular receptor, and a single matricryptin may bind to two different receptors belonging or not to the same family such as integrins and growth factor receptors. Furthermore, some matricryptins interact with each other, integrins and growth factor receptors crosstalk and a signaling pathway may be regulated by several matricryptins. This forms an intricate 3D interaction network at the surface of tumor and endothelial cells, which is tightly associated with other cell-surface associated molecules such as heparan sulfate, caveolin, and nucleolin. Deciphering the molecular mechanisms underlying the behavior of this network is required in order to optimize the development of matricryptins as anti-cancer agents.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| | - Sylvain D Vallet
- University Claude Bernard Lyon 1, UMR 5246 Centre National de la Recherche Scientifique - University Lyon 1 - Institut National des Sciences Appliquées de Lyon - École Supérieure de Chimie Physique Électronique de Lyon Villeurbanne, France
| |
Collapse
|
16
|
Pharmacokinetics of PEGylated recombinant human endostatin (M2ES) in rats. Acta Pharmacol Sin 2015; 36:847-54. [PMID: 26027657 DOI: 10.1038/aps.2015.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 02/27/2015] [Indexed: 12/13/2022]
Abstract
AIM M2ES is PEGylated recombinant human endostatin. In this study we investigated the pharmacokinetics, tissue distribution, and excretion of M2ES in rats. METHODS (125)I-radiolabeled M2ES was administered to rats by intravenous bolus injection at 3 mg/kg. The pharmacokinetics, tissue distribution and excretion of M2ES were investigated using the trichloroacetic acid (TCA) precipitation method. RESULTS The serum M2ES concentration-time curve after a single intravenous dose of 3 mg/kg in rats was fitted with a non-compartment model. The pharmacokinetic parameters were evaluated as follows: Cmax=28.3 μg·equ/mL, t1/2=71.5 h, AUC(0-∞)=174.6 μg·equ·h/mL, Cl=17.2 mL·h(-1)·kg(-1), MRT=57.6 h, and Vss=989.8 mL/kg for the total radioactivity; Cmax=30.3 μg·equ/mL, t1/2=60.1 h, AUC(0-∞)=146.2 μg·equ·h/mL, Cl=20.6 mL·h(-1)·kg(-1), MRT=47.4 h, and Vss=974.6 mL/kg for the TCA precipitate radioactivity. M2ES was rapidly and widely distributed in various tissues and showed substantial deposition in kidney, adrenal gland, lung, spleen, bladder and liver. The radioactivity recovered in the urine and feces by 432 h post-dose was 71.3% and 8.3%, respectively. Only 0.98% of radioactivity was excreted in the bile by 24 h post-dose. CONCLUSION PEG modification substantially prolongs the circulation time of recombinant human endostatin and effectively improves its pharmacokinetic behavior. M2ES is extensively distributed in most tissues of rats, including kidney, adrenal gland, lung, spleen, bladder and liver. Urinary excretion was the major elimination route for M2ES.
Collapse
|