1
|
Dai X, Azi F, Alnadari F, Yu Z. Developing organosulfur compounds in Allium as the next-generation flavor and bioactive ingredients for food and medicine. Crit Rev Food Sci Nutr 2025:1-19. [PMID: 40366718 DOI: 10.1080/10408398.2025.2500674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Organosulfur compounds (OSCs) are sulfur-containing compounds in Allium vegetables that possess multiple therapeutic effects and distinctive flavor characteristics. Clinical and pharmacological data on their efficacy as anticancer, anti-inflammatory, antidiabetic, immunomodulatory, and cardioprotective agents are increasing. Due to the growing concern about the future impact of climate change on traditional agricultural practices, our environment, crop yield, and global food security, continued reliance on chemical synthesis or solvent extraction for the commercial production of OSCs has become unsustainable. This review provides insights into strategies for developing OSCs as sustainable flavor-active and bioactive ingredients for food and medicine. The articles used for this study were sourced from Google Scholar and Academia.edu, PubMed, and Web of Science databases. Modern extraction and processing technologies to enhance the quality of OSCs obtained from Allium vegetables are discussed in detail. Strategies for developing novel analytical technologies for robust use in the standardization and quality control of OSCs in Allium products are illustrated. Updates on the growing number of new Allium-derived organosulfur products and compelling evidence of their efficacy as medicinal ingredients and food preservatives are provided. Critical information to guide the drafting of regulatory frameworks for the growing number of Allium-derived organosulfur products is also highlighted. Modern biotechnology tools to decipher OSC biosynthetic pathways in Allium and to express ACSOs biosynthetic genes in food-grade microbes are discussed.
Collapse
Affiliation(s)
- Xiaomei Dai
- Department of Food Science and Technology, Jiangsu Food & Pharmaceutical Science College, Huaian, P.R. China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Fidelis Azi
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, P.R. China
| | - Fawze Alnadari
- Research and Development Center of Jiangsu, Tianmeijian Nature Bioengineering Co., Ltd., Nanjing, P.R. China
| | - Zhifang Yu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
2
|
Lieb N, Tran A, Torres M, Bommareddy A. Modulation of Wnt/Beta-Catenin Pathway by Major Dietary Phytochemicals Against Breast Cancer Development. BIOLOGY 2025; 14:194. [PMID: 40001961 PMCID: PMC11851881 DOI: 10.3390/biology14020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Breast cancer is one of the most commonly diagnosed cancers and is the second leading cause of cancer-related deaths among women in the United States. Despite a decrease in mortality associated with breast cancer, there has been a steady increase in its incidence. Development of the mammary gland is normally regulated by such pathways including Wnt, Hedgehog, estrogen and Notch signaling. However, the deregulation of these pathways gives rise to tumor development, and upregulated Wnt activity along with high levels of beta-catenin is correlated with poor prognosis of breast cancer. In addition, beta-catenin-dependent Wnt signaling is enriched in triple-negative breast cancers and is associated with reduced overall survival in breast cancer patients. Various studies have investigated the ability of naturally occurring plant-based agents to reduce incidence and morbidity of breast cancer by regulating critical cell survival pathways to reverse or inhibit the occurrence of clinical disease. The present review focuses on summarizing the role of commonly consumed dietary phytochemicals and their role in regulating Wnt/β-catenin pathway against the development of breast cancer.
Collapse
Affiliation(s)
| | | | | | - Ajay Bommareddy
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
3
|
Lu L, Gao Z, Song J, Jin L, Liang Z. The potential of diallyl trisulfide for cancer prevention and treatment, with mechanism insights. Front Cell Dev Biol 2024; 12:1450836. [PMID: 39403128 PMCID: PMC11471646 DOI: 10.3389/fcell.2024.1450836] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/17/2024] [Indexed: 02/13/2025] Open
Abstract
Cancer has become an important public health problem worldwide, and there is currently a lack of effective treatment and prevention strategies. Natural plant active ingredients have been proven to be a safe and highly promising method for preventing and treating cancer. It has been found that diallyl trisulfide have anticancer effects in multiple types of cancer via inhibiting cancer proliferation, enhancing chemotherapy sensitivity, inducing apoptosis/autophagy, suppressing invasion/migration, regulating microenvironment. With the deepening of research on new strategies for cancer prevention and treatment, the role of diallyl trisulfides in cancers occurrence, prognosis, and drug resistance is also receiving increasing attention. In order to better understand the relationship between diallyl trisulfides and various cancer, as well as the role and mechanism of diallyl trisulfides in cancer prevention and treatment, we briefly summarized the role and function of diallyl trisulfide in cancers.
Collapse
Affiliation(s)
- Ling Lu
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zihan Gao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jiajia Song
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Longtao Jin
- Child Healthcare Department, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhaofeng Liang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
4
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
El-Saadony MT, Saad AM, Korma SA, Salem HM, Abd El-Mageed TA, Alkafaas SS, Elsalahaty MI, Elkafas SS, Mosa WFA, Ahmed AE, Mathew BT, Albastaki NA, Alkuwaiti AA, El-Tarabily MK, AbuQamar SF, El-Tarabily KA, Ibrahim SA. Garlic bioactive substances and their therapeutic applications for improving human health: a comprehensive review. Front Immunol 2024; 15:1277074. [PMID: 38915405 PMCID: PMC11194342 DOI: 10.3389/fimmu.2024.1277074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Garlic (Allium sativum L.) is a widely abundant spice, known for its aroma and pungent flavor. It contains several bioactive compounds and offers a wide range of health benefits to humans, including those pertaining to nutrition, physiology, and medicine. Therefore, garlic is considered as one of the most effective disease-preventive diets. Many in vitro and in vivo studies have reported the sulfur-containing compounds, allicin and ajoene, for their effective anticancer, anti-diabetic, anti-inflammatory, antioxidant, antimicrobial, immune-boosting, and cardioprotective properties. As a rich natural source of bioactive compounds, including polysaccharides, saponins, tannins, linalool, geraniol, phellandrene, β-phellandrene, ajoene, alliin, S-allyl-mercapto cysteine, and β-phellandrene, garlic has many therapeutic applications and may play a role in drug development against various human diseases. In the current review, garlic and its major bioactive components along with their biological function and mechanisms of action for their role in disease prevention and therapy are discussed.
Collapse
Affiliation(s)
- Mohamed T. El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Sameh A. Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Heba M. Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Taia A. Abd El-Mageed
- Department of Soils and Water, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Mohamed I. Elsalahaty
- Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Menofia, Egypt
- Faculty of Control System and Robotics, Information Technologies, Mechanics and Optics (ITMO) University, Saint-Petersburg, Russia
| | - Walid F. A. Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Betty T. Mathew
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Noor A. Albastaki
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Aysha A. Alkuwaiti
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Synan F. AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Perth, WA, Australia
| | - Salam A. Ibrahim
- Food Microbiology and Biotechnology Laboratory, Food and Nutritional Science Program, North Carolina A&T State University, Greensboro, NC, United States
| |
Collapse
|
6
|
Zhi S, Chen C, Huang H, Zhang Z, Zeng F, Zhang S. Hypoxia-inducible factor in breast cancer: role and target for breast cancer treatment. Front Immunol 2024; 15:1370800. [PMID: 38799423 PMCID: PMC11116789 DOI: 10.3389/fimmu.2024.1370800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Globally, breast cancer stands as the most prevalent form of cancer among women. The tumor microenvironment of breast cancer often exhibits hypoxia. Hypoxia-inducible factor 1-alpha, a transcription factor, is found to be overexpressed and activated in breast cancer, playing a pivotal role in the anoxic microenvironment by mediating a series of reactions. Hypoxia-inducible factor 1-alpha is involved in regulating downstream pathways and target genes, which are crucial in hypoxic conditions, including glycolysis, angiogenesis, and metastasis. These processes significantly contribute to breast cancer progression by managing cancer-related activities linked to tumor invasion, metastasis, immune evasion, and drug resistance, resulting in poor prognosis for patients. Consequently, there is a significant interest in Hypoxia-inducible factor 1-alpha as a potential target for cancer therapy. Presently, research on drugs targeting Hypoxia-inducible factor 1-alpha is predominantly in the preclinical phase, highlighting the need for an in-depth understanding of HIF-1α and its regulatory pathway. It is anticipated that the future will see the introduction of effective HIF-1α inhibitors into clinical trials, offering new hope for breast cancer patients. Therefore, this review focuses on the structure and function of HIF-1α, its role in advancing breast cancer, and strategies to combat HIF-1α-dependent drug resistance, underlining its therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Zhang H, Wang H, Qin L, Lin S. Garlic-derived compounds: Epigenetic modulators and their antitumor effects. Phytother Res 2024; 38:1329-1344. [PMID: 38194996 DOI: 10.1002/ptr.8108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/26/2023] [Accepted: 12/09/2023] [Indexed: 01/11/2024]
Abstract
Cancer is a highly heterogeneous disease that poses a serious threat to human health worldwide. Despite significant advances in the diagnosis and treatment of cancer, the prognosis and survival rate of cancer remain poor due to late diagnosis, drug resistance, and adverse reactions. Therefore, it is very necessary to study the development mechanism of cancer and formulate effective therapeutic interventions. As widely available bioactive substances, natural products have shown obvious anticancer potential, especially by targeting abnormal epigenetic changes. The main active part of garlic is organic sulfur compounds, of which diallyl trisulfide (DATS) content is the highest, accounting for more than 40% of the total composition. The garlic-derived compounds have been recognized as an antioxidant for cancer prevention and treatment. However, the molecular mechanism of the antitumor effect of garlic-derived compounds remains unclear. Recent studies have identified garlic-derived compound DATS that plays critical roles in enhancing CpG demethylation or promoting histone acetylation as an epigenetic inhibitor. Here, we review the therapeutic progress of garlic-derived compounds against cancer through epigenetic pathways.
Collapse
Affiliation(s)
- Huan Zhang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Haichao Wang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, China
| | - Lin Qin
- Department of Endoscopic Diagnosis and Treatment, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Shuye Lin
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
8
|
Wang J, Chen C, Huang J, Xie Z, Chen X, Zheng Z, Li E, Zou H. The possibilities of LOXL4 as a prognostic marker for carcinomas. Amino Acids 2023; 55:1519-1529. [PMID: 37814029 DOI: 10.1007/s00726-023-03343-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/25/2023] [Indexed: 10/11/2023]
Abstract
Lysyl oxidase-like 4 (LOXL4), a member of lysyl oxidase family, is a copper and lysine tyrosylquinone-dependent amine oxidase that serves the role of catalyzing the cross-linking of elastin and collagen in the extracellular matrix. Numerous studies have shown a significant association between LOXL4 expression levels and tumor proliferation, migration, invasion and patients' prognosis and overall survival in different types of tumors. Here we review their relationship and the molecular pathogenesis behind them, aiming to explore the possibilities of LOXL4 as a prognostic marker for diverse carcinomas and provide some indications for further research in this field.
Collapse
Affiliation(s)
- Jiaming Wang
- Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Chaojian Chen
- Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Jiayi Huang
- Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Ziman Xie
- Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiaoxue Chen
- Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Ziqi Zheng
- Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Enmin Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Haiying Zou
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Shaposhnikov MV, Gorbunova AA, Zemskaya NV, Ulyasheva NS, Pakshina NR, Yakovleva DV, Moskalev A. Simultaneous activation of the hydrogen sulfide biosynthesis genes (CBS and CSE) induces sex-specific geroprotective effects in Drosophila melanogaster. Biogerontology 2023; 24:275-292. [PMID: 36662374 DOI: 10.1007/s10522-023-10017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) is one of the most important gasotransmitters that affect lifespan and provide resistance to adverse environmental conditions. Here we investigated geroprotective effects of the individual and simultaneous overexpression of genes encoding key enzymes of H2S biosynthesis - cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE) on D. melanogaster model. Simultaneous overexpression of CBS and CSE resulted in additive (in males) and synergistic (in females) beneficial effects on median lifespan. Individual overexpression of CBS was associated with increased thermotolerance and decreased transcription level of genes encoding stress-responsive transcription factors HIF1 and Hsf, while individual overexpression of CSE was associated with increased resistance to paraquat. Simultaneous overexpression of both genes increased resistance to hyperthermia in old females or paraquat in old males. The obtained results suggest sex-specific epistatic interaction of CBS and CSE overexpression effects on longevity and stress resistance.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Natalya R Pakshina
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982
| | - Alexey Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russian Federation, 119991.
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar, Russian Federation, 167982.
| |
Collapse
|
10
|
Avendaño-Ortiz J, Redondo-Calvo FJ, Lozano-Rodríguez R, Terrón-Arcos V, Bergón-Gutiérrez M, Rodríguez-Jiménez C, Rodríguez JF, del Campo R, Gómez LA, Bejarano-Ramírez N, Pérez-Ortiz JM, López-Collazo E. Thiosulfinate-Enriched Allium sativum Extract Exhibits Differential Effects between Healthy and Sepsis Patients: The Implication of HIF-1α. Int J Mol Sci 2023; 24:ijms24076234. [PMID: 37047205 PMCID: PMC10094690 DOI: 10.3390/ijms24076234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Garlic (Allium sativum) has historically been associated with antioxidant, immunomodulatory, and microbiocidal properties, mainly due to its richness in thiosulfates and sulfur-containing phytoconstituents. Sepsis patients could benefit from these properties because it involves both inflammatory and refractory processes. We evaluated the effects of thiosulfinate-enriched Allium sativum extract (TASE) on the immune response to bacterial lipopolysaccharide (LPS) by monocytes from healthy volunteers (HVs) and patients with sepsis. We also explored the TASE effects in HIF-1α, described as the key transcription factor leading to endotoxin tolerance in sepsis monocytes through IRAK-M expression. Our results showed TASE reduced the LPS-triggered reactive oxygen species (ROS) production in monocytes from both patients with sepsis and HVs. Moreover, this extract significantly reduced tumor necrosis factor (TNF)-α, interleukin-1β, and interleukin-6 production in LPS-stimulated monocytes from HVs. However, TASE enhanced the inflammatory response in monocytes from patients with sepsis along with increased expression of human leukocyte antigen-DR. Curiously, these dual effects of TASE on immune response were also found when the HV cohort was divided into low- and high-LPS responders. Although TASE enhanced TNFα production in the LPS-low responders, it decreased the inflammatory response in the LPS-high responders. Furthermore, TASE decreased the HIF-1α pathway-associated genes IRAK-M, VEGFA and PD-L1 in sepsis cells, suggesting HIF-1α inhibition by TASE leads to higher cytokine production in these cells as a consequence of IRAK-M downregulation. The suppression of this pathway by TASE was confirmed in vitro with the prolyl hydroxylase inhibitor dimethyloxalylglycine. Our data revealed TASE’s dual effect on monocyte response according to status/phenotype and suggested the HIF-1α suppression as the possible underlying mechanism.
Collapse
Affiliation(s)
- José Avendaño-Ortiz
- Department of Microbiology, University Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.A.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Anesthesiology and Critical Care Medicine, University General Hospital, 13004 Ciudad Real, Spain;
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13071 Ciudad Real, Spain
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Roberto Lozano-Rodríguez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.)
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
| | - Verónica Terrón-Arcos
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.)
| | - Marta Bergón-Gutiérrez
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.)
| | - Concepción Rodríguez-Jiménez
- Department of Microbiology, University Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.A.-O.)
| | - Juan Francisco Rodríguez
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.F.R.)
| | - Rosa del Campo
- Department of Microbiology, University Hospital Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain; (J.A.-O.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Antonio Gómez
- Department of Chemical Engineering, Institute of Chemical and Environmental Technology, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain; (J.F.R.)
| | - Natalia Bejarano-Ramírez
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13071 Ciudad Real, Spain
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Department of Pediatrics, University General Hospital, 13004 Ciudad Real, Spain
| | - José Manuel Pérez-Ortiz
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13071 Ciudad Real, Spain
- Faculty of Medicine, Universidad de Castilla-La Mancha, 13071 Ciudad Real, Spain
- Correspondence: (J.M.P.-O.); (E.L.-C.)
| | - Eduardo López-Collazo
- The Innate Immune Response Group, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain; (R.L.-R.); (V.T.-A.)
- Tumor Immunology Laboratory, IdiPAZ, La Paz University Hospital, 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (J.M.P.-O.); (E.L.-C.)
| |
Collapse
|
11
|
Astrain-Redin N, Sanmartin C, Sharma AK, Plano D. From Natural Sources to Synthetic Derivatives: The Allyl Motif as a Powerful Tool for Fragment-Based Design in Cancer Treatment. J Med Chem 2023; 66:3703-3731. [PMID: 36858050 PMCID: PMC10041541 DOI: 10.1021/acs.jmedchem.2c01406] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Since the beginning of history, natural products have been an abundant source of bioactive molecules for the treatment of different diseases, including cancer. Many allyl derivatives, which have shown anticancer activity both in vitro and in vivo in a large number of cancers, are bioactive molecules found in garlic, cinnamon, nutmeg, or mustard. In addition, synthetic products containing allyl fragments have been developed showing potent anticancer properties. Of particular note is the allyl derivative 17-AAG, which has been evaluated in Phase I and Phase II/III clinical trials for the treatment of multiple myeloma, metastatic melanoma, renal cancer, and breast cancer. In this Perspective, we compile extensive literature evidence with descriptions and discussions of the most recent advances in different natural and synthetic allyl derivatives that could generate cancer drug candidates in the near future.
Collapse
Affiliation(s)
- Nora Astrain-Redin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Carmen Sanmartin
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, E-31008 Pamplona, Spain
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, 500 University Drive, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
12
|
Pandey P, Khan F, Alshammari N, Saeed A, Aqil F, Saeed M. Updates on the anticancer potential of garlic organosulfur compounds and their nanoformulations: Plant therapeutics in cancer management. Front Pharmacol 2023; 14:1154034. [PMID: 37021043 PMCID: PMC10067574 DOI: 10.3389/fphar.2023.1154034] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/02/2023] [Indexed: 03/22/2023] Open
Abstract
Garlic (Allium sativum L.) possesses numerous pharmacological potential, including antibacterial, antiarthritic, antithrombotic, anticancer, hypoglycemic, and hypolipidemic effects. The anti-cancer action of garlic is likely the best researched of the many advantageous pharmacological effects, and its use offers significant protection against the risk of developing cancer. A few active metabolites of garlic have been reported to be essential in the destruction of malignant cells due to their multi-targeted activities and lack of significant toxicity. The bioactive compounds in garlic having anticancer properties include diallyl trisulfide, allicin, allyl mercaptan diallyl disulfide, and diallyl sulphide. Different garlic-derived constituents and their nanoformulations have been tested for their effects against various cancers including skin, ovarian, prostate, gastric, breast, and lung, colorectal, liver, oral, and pancreatic cancer. The objective of this review is to summarize the antitumor activity and associated mechanisms of the organosulfur compounds of garlic in breast carcinoma. Breast cancer continues to have a significant impact on the total number of cancer deaths worldwide. Global measures are required to reduce its growing burden, particularly in developing nations where incidence is increasing quickly and fatality rates are still high. It has been demonstrated that garlic extract, its bioactive compounds, and their use in nanoformulations can prevent breast cancer in all of its stages, including initiation, promotion, and progression. Additionally, these bioactive compounds affect cell signaling for cell cycle arrest and survival along with lipid peroxidation, nitric oxide synthase activity, epidermal growth factor receptor, nuclear factor kappa B (NF-κB), and protein kinase C in breast carcinoma. Hence, this review deciphers the anticancer potential of garlic components and its nanoformulations against several breast cancer thereby projecting it as a potent drug candidate for efficient breast cancer management.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, Uttar Pradesh, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Noida, Uttar Pradesh, India
- *Correspondence: Fahad Khan, ; Mohd Saeed,
| | - Nawaf Alshammari
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
| | - Amir Saeed
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| | - Farrukh Aqil
- Department of Medicine and Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Molecular Diagnostics and Personalized Therapeutics Unit, University of Hail, Hail, Saudi Arabia
- *Correspondence: Fahad Khan, ; Mohd Saeed,
| |
Collapse
|
13
|
Sanie-Jahromi F, Zia Z, Afarid M. A review on the effect of garlic on diabetes, BDNF, and VEGF as a potential treatment for diabetic retinopathy. Chin Med 2023; 18:18. [PMID: 36803536 PMCID: PMC9936729 DOI: 10.1186/s13020-023-00725-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/09/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND Garlic is one of the favorite herbs in traditional medicine that has been reported to have many medicinal features. The aim of the current study is to review the latest documents on the effect of garlic on diabetes, VEGF, and BDNF and, finally, to review the existing studies on the effect of garlic on diabetic retinopathy. MAIN TEXT The therapeutic effect of garlic on diabetes has been investigated in various studies. Diabetes, especially in advanced stages, is associated with complications such as diabetic retinopathy, which is caused by the alteration in the expression of molecular factors involved in angiogenesis, neurodegeneration, and inflammation in the retina. There are different in-vitro and in-vivo reports on the effect of garlic on each of these processes. Considering the present concept, we extracted the most related English articles from Web of Science, PubMed, and Scopus English databases from 1980 to 2022. All in-vitro and animal studies, clinical trials, research studies, and review articles in this area were assessed and classified. RESULT AND CONCLUSION According to previous studies, garlic has been confirmed to have beneficial antidiabetic, antiangiogenesis, and neuroprotective effects. Along with the available clinical evidence, it seems that garlic can be suggested as a complementary treatment option alongside common treatments for patients with diabetic retinopathy. However, more detailed clinical studies are needed in this field.
Collapse
Affiliation(s)
- Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Zahra Zia
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| | - Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Zand Boulevard, Poostchi Street, Shiraz, Iran
| |
Collapse
|
14
|
Zhang Y, Jing M, Cai C, Zhu S, Zhang C, Wang Q, Zhai Y, Ji X, Wu D. Role of hydrogen sulphide in physiological and pathological angiogenesis. Cell Prolif 2022; 56:e13374. [PMID: 36478328 PMCID: PMC9977675 DOI: 10.1111/cpr.13374] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The role of hydrogen sulphide (H2 S) in angiogenesis has been widely demonstrated. Vascular endothelial growth factor (VEGF) plays an important role in H2 S-induced angiogenesis. H2 S promotes angiogenesis by upregulating VEGF via pro-angiogenic signal transduction. The involved signalling pathways include the mitogen-activated protein kinase pathway, phosphoinositide-3 kinase pathway, nitric oxide (NO) synthase/NO pathway, signal transducer and activator of transcription 3 (STAT3) pathway, and adenosine triphosphate (ATP)-sensitive potassium (KATP ) channels. H2 S has been shown to contribute to tumour angiogenesis, diabetic wound healing, angiogenesis in cardiac and cerebral ischaemic tissues, and physiological angiogenesis during the menstrual cycle and pregnancy. Furthermore, H2 S can exert an anti-angiogenic effect by inactivating Wnt/β-catenin signalling or blocking the STAT3 pathway in tumours. Therefore, H2 S plays a double-edged sword role in the process of angiogenesis. The regulation of H2 S production is a promising therapeutic approach for angiogenesis-associated diseases. Novel H2 S donors and/or inhibitors can be developed in the treatment of angiogenesis-dependent diseases.
Collapse
Affiliation(s)
- Yan‐Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Mi‐Rong Jing
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chun‐Bo Cai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Shuai‐Gang Zhu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Chao‐Jing Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Qi‐Meng Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina
| | - Yuan‐Kun Zhai
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical SciencesHenan UniversityKaifengHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical SciencesHenan UniversityKaifengHenanChina,Kaifeng Municipal Key Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular MedicineHenan UniversityKaifengHenanChina,School of StomatologyHenan UniversityKaifengHenanChina
| |
Collapse
|
15
|
Liu Q, Guan C, Liu C, Li H, Wu J, Sun C. Targeting hypoxia-inducible factor-1alpha: A new strategy for triple-negative breast cancer therapy. Biomed Pharmacother 2022; 156:113861. [DOI: 10.1016/j.biopha.2022.113861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022] Open
|
16
|
Lowe L, LaValley JW, Felsher DW. Tackling heterogeneity in treatment-resistant breast cancer using a broad-spectrum therapeutic approach. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:917-925. [PMID: 36627896 PMCID: PMC9771755 DOI: 10.20517/cdr.2022.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/29/2022] [Accepted: 08/02/2022] [Indexed: 06/17/2023]
Abstract
Tumor heterogeneity can contribute to the development of therapeutic resistance in cancer, including advanced breast cancers. The object of the Halifax project was to identify new treatments that would address mechanisms of therapeutic resistance through tumor heterogeneity by uncovering combinations of therapeutics that could target the hallmarks of cancer rather than focusing on individual gene products. A taskforce of 180 cancer researchers, used molecular profiling to highlight key targets responsible for each of the hallmarks of cancer and then find existing therapeutic agents that could be used to reach those targets with limited toxicity. In many cases, natural health products and re-purposed pharmaceuticals were identified as potential agents. Hence, by combining the molecular profiling of tumors with therapeutics that target the hallmark features of cancer, the heterogeneity of advanced-stage breast cancers can be addressed.
Collapse
Affiliation(s)
- Leroy Lowe
- Getting to Know Cancer (NGO), Truro, Nova Scotia B2N 1X5, Canada
| | | | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University, CA CCSR 1105, USA
| |
Collapse
|
17
|
Marni R, Kundrapu DB, Chakraborti A, Malla R. Insight into drug sensitizing effect of diallyl disulfide and diallyl trisulfide from Allium sativum L. on paclitaxel-resistant triple-negative breast cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115452. [PMID: 35690339 DOI: 10.1016/j.jep.2022.115452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ayurvedic practitioners and herbal healers in India and China have extensively used garlic (Allium sativum L.) to treat cancers. Diallyl disulfide (DADS) and diallyl trisulfide (DATS) are major volatile organosulfur phytochemical constituents found in garlic. AIM OF THE STUDY To find new insight into the drug sensitizing effect of DADS and DATS on paclitaxel (PTX)-resistant triple-negative breast cancer cells (TNBC/PR). MATERIALS AND METHODS This study estimates the non-toxic concentration of DADS and DATS against normal healthy breast epithelial cell line (MCF-12A) by using a trypan blue viability assay. Also, it evaluates the effect of DADS and DATS on the sensitization of established stable TNBC/PR cell clones (MDA-MB 231 PR and MDA-MB 468 PR) by MTT, BrdU incorporation, intracellular ROS, cell cycle, and apoptosis assays. RESULTS The results show that DADS and DATS are non-cytotoxicity against MCF-12A cells. Nevertheless, DADS and DATS have shown significantly high cytotoxicity against MDA-MB 231 PR and MDA-MB 468 PR cells. They also inhibited PTX-resistant cell proliferation by blocking the cell cycle. Further, they induced apoptosis by activation of caspase 3 and 9. N-acetyl cysteine pre-treatment inhibited DADS and DATS-induced intracellular ROS release. In silico study shows that DADS and DATS interact with a large extracellular loop (LEL) of CD151 with a binding energy of -4.0 kcal/mol and transmembrane domain (TM) with a binding affinity of 11.7 and 13.6 kcal/mol, respectively. They also inhibited the surface expression of CD151 in TNBC/PR cells. CONCLUSION This study implies that DADS and DATS could be considered for sensitizing drug-resistant breast cancers.
Collapse
Affiliation(s)
- Rakshmitha Marni
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, A.P, India.
| | - Durga Bhavani Kundrapu
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, A.P, India.
| | | | - RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam, 530045, A.P, India.
| |
Collapse
|
18
|
Mitra S, Das R, Emran TB, Labib RK, Noor-E-Tabassum, Islam F, Sharma R, Ahmad I, Nainu F, Chidambaram K, Alhumaydhi FA, Chandran D, Capasso R, Wilairatana P. Diallyl Disulfide: A Bioactive Garlic Compound with Anticancer Potential. Front Pharmacol 2022; 13:943967. [PMID: 36071845 PMCID: PMC9441672 DOI: 10.3389/fphar.2022.943967] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/21/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is a life-threatening disease caused by the uncontrolled division of cells, which culminates in a solid mass of cells known as a tumor or liquid cancer. It is the leading cause of mortality worldwide, and the number of cancer patients has been increasing at an alarming rate, with an estimated 20 million cases expected by 2030. Thus, the use of complementary or alternative therapeutic techniques that can help prevent cancer has been the subject of increased attention. Garlic, the most widely used plant medicinal product, exhibits a wide spectrum of biological activities, including antibacterial, hypo-lipidemic, antithrombotic, and anticancer effects. Diallyl disulfide (DADS) is a major organosulfur compound contained within garlic. Recently, several experimental studies have demonstrated that DADS exhibits anti-tumor activity against many types of tumor cells, including gynecological cancers (cervical cancer, ovarian cancer), hematological cancers (leukemia, lymphoma), lung cancer, neural cancer, skin cancer, prostate cancer, gastrointestinal tract and associated cancers (esophageal cancer, gastric cancer, colorectal cancer), hepatocellular cancer cell line, etc. The mechanisms behind the anticancer action of DADS include epithelial-mesenchymal transition (EMT), invasion, and migration. This article aims to review the available information regarding the anti-cancer potential of DADS, as well as summarize its mechanisms of action, bioavailability, and pharmacokinetics from published clinical and toxicity studies.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rafiuddin Khan Labib
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Noor-E-Tabassum
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Islamudin Ahmad
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Mulawarman University, Samarinda, Indonesia
| | - Firzan Nainu
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Deepak Chandran
- Department of Veterinary Sciences and Animal Husbandry, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Targeting HIF-1α by Natural and Synthetic Compounds: A Promising Approach for Anti-Cancer Therapeutics Development. Molecules 2022; 27:molecules27165192. [PMID: 36014432 PMCID: PMC9413992 DOI: 10.3390/molecules27165192] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/19/2022] Open
Abstract
Advancement in novel target detection using improved molecular cancer biology has opened up new avenues for promising anti-cancer drug development. In the past two decades, the mechanism of tumor hypoxia has become more understandable with the discovery of hypoxia-inducible factor-1α (HIF-1α). It is a major transcriptional regulator that coordinates the activity of various transcription factors and their downstream molecules involved in tumorigenesis. HIF-1α not only plays a crucial role in the adaptation of tumor cells to hypoxia but also regulates different biological processes, including cell proliferation, survival, cellular metabolism, angiogenesis, metastasis, cancer stem cell maintenance, and propagation. Therefore, HIF-1α overexpression is strongly associated with poor prognosis in patients with different solid cancers. Hence, pharmacological targeting of HIF-1α has been considered to be a novel cancer therapeutic strategy in recent years. In this review, we provide brief descriptions of natural and synthetic compounds as HIF-1α inhibitors that have the potential to accelerate anticancer drug discovery. This review also introduces the mode of action of these compounds for a better understanding of the chemical leads, which could be useful as cancer therapeutics in the future.
Collapse
|
20
|
Hahm ER, Mathan SV, Singh RP, Singh SV. Breast Cancer Selective Disruption of Actin Cytoskeleton by Diallyl Trisulfide. J Cancer Prev 2022; 27:101-111. [PMID: 35864856 PMCID: PMC9271405 DOI: 10.15430/jcp.2022.27.2.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022] Open
Abstract
Diallyl trisulfide (DATS) is an attractive anti-cancer phytochemical with in vitro and in vivo growth inhibitory effects against different solid tumors including breast cancer. We have shown previously that an immortalized mammary epithelial cell line (MCF-10A) is resistant to growth inhibition by DATS. In this study, we performed RNA-seq analysis using a breast cancer cell line (SK-BR-3) and MCF-10A cells to gain insights into cancer selective effects of DATS. The Gene Ontology analysis revealed upregulation of genes associated with actin cytoskeleton but downregulation of mitochondria-related genes in the SK-BR-3 human breast cancer cell line but not in the non-oncogenic MCF-10A cell line upon treatment with DATS. Quantitative real-time reverse transcription polymerase chain reaction confirmed DATS-mediated upregulation of several actin cytoskeleton-related genes in the SK-BR-3 cell line. The DATS treatment dose-dependently disrupted actin cytoskeleton in the SK-BR-3 cell line, whereas the MCF-10A cell line was more resistant to this effect. The DATS treatment caused a marked increase in phosphorylation of dynamin-1-like (DRP1) protein in the SK-BR-3 cell line. However, the DATS-mediated apoptosis was not affected by genetic deletion of DRP1 protein. The Reactome pathway analysis showed downregulation of genes associated with citric acid cycle in the SK-BR-3 cell line but not in the MCF-10A cells. However, expression of aconitase 2 or dihydrolipoamide S-succinyltransferase was not affected by DATS treatment. In conclusion, this study reveals that actin cytoskeleton is a novel target of DATS in the SK-BR-3 cell line, which may explain its inhibitory effect on breast cancer cell migration.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sivapar V. Mathan
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Rana P. Singh
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
21
|
Zhou Y, Li X, Luo W, Zhu J, Zhao J, Wang M, Sang L, Chang B, Wang B. Allicin in Digestive System Cancer: From Biological Effects to Clinical Treatment. Front Pharmacol 2022; 13:903259. [PMID: 35770084 PMCID: PMC9234177 DOI: 10.3389/fphar.2022.903259] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Allicin is the main active ingredient in freshly-crushed garlic and some other allium plants, and its anticancer effect on cancers of digestive system has been confirmed in many studies. The aim of this review is to summarize epidemiological studies and in vitro and in vivo investigations on the anticancer effects of allicin and its secondary metabolites, as well as their biological functions. In epidemiological studies of esophageal cancer, liver cancer, pancreatic cancer, and biliary tract cancer, the anticancer effect of garlic has been confirmed consistently. However, the results obtained from epidemiological studies in gastric cancer and colon cancer are inconsistent. In vitro studies demonstrated that allicin and its secondary metabolites play an antitumor role by inhibiting tumor cell proliferation, inducing apoptosis, controlling tumor invasion and metastasis, decreasing angiogenesis, suppressing Helicobacter pylori, enhancing the efficacy of chemotherapeutic drugs, and reducing the damage caused by chemotherapeutic drugs. In vivo studies further demonstrate that allicin and its secondary metabolites inhibit cancers of the digestive system. This review describes the mechanisms against cancers of digestive system and therapeutic potential of allicin and its secondary metabolites.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- The Second Clinical College, China Medical University, Shenyang, China
| | - Xingxuan Li
- The Second Clinical College, China Medical University, Shenyang, China
| | - Wenyu Luo
- The Second Clinical College, China Medical University, Shenyang, China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Bing Chang,
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
22
|
Gökalp F. Therapeutic effect of some natural active compounds for breast cancer. Med Oncol 2022; 39:115. [PMID: 35674845 DOI: 10.1007/s12032-022-01704-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 05/10/2023]
Abstract
The extracts obtained from plants have been used in the treatment of many diseases since the earliest times. Today, it is of great importance to investigate the effects of the active molecules in these plant extracts at the molecular level together with the analysis. The effect of certain active compounds found in some plants, widely used as medicinal plants, on breast cancer has been investigated using docking. As a result of the docking scores obtained, it can be understood that the active molecules used in this study can be quite effective in controlling breast cancer. Promyelocytic leukemia is an important checkpoint from the literature for breast cancer and the docking energy values of Thymoquinone, Piperine and Carvacrol, as the active molecules in the control of this pathway. This study is very important when evaluated in terms of directing experimental studies by determining the most suitable active substances by comparing the activities of molecules in a short time.
Collapse
Affiliation(s)
- Faik Gökalp
- Department of Mathematics and Science Education, Science Education, Education Faculty, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey.
| |
Collapse
|
23
|
Kim SH, Singh SV. Monocarboxylate transporter 1 is a novel target for breast cancer stem like-cell inhibition by diallyl trisulfide. Mol Carcinog 2022; 61:752-763. [PMID: 35512572 PMCID: PMC9262868 DOI: 10.1002/mc.23415] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/07/2022] [Accepted: 02/15/2022] [Indexed: 11/06/2022]
Abstract
Diallyl trisulfide (DATS) is a promising small molecule phytochemical that exhibits in vitro and in vivo activity in multiple preclinical solid tumor models including breast cancer, but the underlying mechanism is not fully understood. We have shown previously that forkhead box Q1 (FoxQ1) transcription factor is a novel target for breast cancer stem-like cells (bCSC) inhibition by DATS. Analysis of the breast TCGA (The Cancer Genome Atlas) data revealed that FoxQ1 expression was positively associated with that of SLC16A1/monocarboxylate transporter 1 (MCT1). Western blot analysis confirmed increased expression of MCT1 protein in SUM159 (basal-like) and MCF-7 cells (luminal-type) stably transfected to overexpress FoxQ1. Furthermore, FoxQ1 was recruited to the promoter of SLC16A1/MCT1. Treatment of SUM159 and MCF-7 cell lines with DATS resulted in suppression of MCT1 protein level that was accompanied by a decrease in intracellular and secreted levels of lactate. Overexpression or knockdown of MCT1 protein failed to alter DATS-mediated inhibition of colony formation or cell migration when compared to corresponding control cells. On the other hand, overexpression of MCT1 protein conferred partial but statistically significant protection against DATS-mediated inhibition of bCSC fraction (CD49fhigh /CD44high and aldehyde dehydrogenase 1 activity). The size of the mammospheres was relatively smaller in the DATS-treated group compared to control group. Inhibition of bCSC upon DATS treatment was augmented by knockdown of the MCT1 protein. In conclusion, the present study reveals that MCT1 is a novel target for bCSC inhibition by DATS treatment.
Collapse
Affiliation(s)
- Su-Hyeong Kim
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shivendra V Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Hillman Cancer Center Research Pavilion, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Jabbarzadeh Kaboli P, Luo S, Chen Y, Jomhori M, Imani S, Xiang S, Wu Z, Li M, Shen J, Zhao Y, Wu X, Hin Cho C, Xiao Z. Pharmacotranscriptomic profiling of resistant triple-negative breast cancer cells treated with lapatinib and berberine shows upregulation of PI3K/Akt signaling under cytotoxic stress. Gene X 2022; 816:146171. [PMID: 35026293 DOI: 10.1016/j.gene.2021.146171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 11/27/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most incurable type of breast cancer, accounting for 15-20% of breast cancer cases. Lapatinib is a dual tyrosine kinase inhibitor targeting EGFR and Her2, and berberine (BBR) is a plant-based alkaloid suggested to inhibit several cancer signaling pathways. We previously reported that lapatinib activates the Akt oncoprotein in MDA-MB231 TNBC cells. The present study determined the mechanism(s) of Akt activation in response to lapatinib, BBR, and capivasertib (Akt inhibitor) as well as the role of Akt signaling in chemoresistance in TNBC cells. Genetic profiles of 10 TNBC cell lines and patients were analyzed using datasets obtained from Gene Expression Omnibus and The Cancer Genome Atlas Database. Then, the effects of lapatinib, BBR, and capivasertib on treated MDA-MB231 and MCF-7 cell lines were studied using cytotoxicity, immunoblot, and RNA-sequencing analyses. For further confirmation, we also performed real-time PCR for genes associated with PI3K signaling. MDA-MB231 and MCF-7 cell lines were both strongly resistant to capivasertib largely due to significant Akt activation in both breast cancer cell lines, while lapatinib and BBR only enhanced Akt signaling in MDA-MB231 cells. Next-generation sequencing, functional enrichment analysis, and immunoblot revealed downregulation of CDK6 and DNMT1 in response to lapatinib and BBR lead to a decrease in cell proliferation. Expression of placental, fibroblast growth factor, and angiogenic biomarker genes, which are significantly associated with Akt activation and/or dormancy in breast cancer cells, was significantly upregulated in TNBC cells treated with lapatinib and BBR. Lapatinib and BBR activate Akt through upregulation of alternative signaling, which lead to chemoresistance in TNBC cell. In addition, lapatinib overexpresses genes related to PI3K signaling in resistant TNBC cell model.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan, ROC.
| | - Shuang Luo
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yao Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Masume Jomhori
- Department of Biotechnology Research, Razi Vaccine and Serum Research Institute, Mashhad, Iran
| | - Saber Imani
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhigui Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China; Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China; South Sichuan Institution for Translational Medicine, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
25
|
Hahm ER, Singh SV. Gene Expression Changes by Diallyl Trisulfide Administration in Chemically-induced Mammary Tumors in Rats. J Cancer Prev 2022; 27:22-30. [PMID: 35419300 PMCID: PMC8984650 DOI: 10.15430/jcp.2022.27.1.22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 11/06/2022] Open
Abstract
Diallyl trisulfide (DATS) was shown to be a potent inhibitor of luminal-type MCF-7 xenograft growth in vivo. The present study was conducted to determine the preventive effect of DATS administration using an N-methyl-N-nitrosourea (MNU)-induced rat mammary tumor model, which shares molecular resemblance to luminal-type human breast cancers. The DATS administration (50 mg/kg body weight, 5 times/week) was safe, but did not reduce mammary tumor latency, incidence, burden or multiplicity. Therefore, we conducted RNA-seq analysis using mammary tumors from control and DATS-treated rats (n = 3 for each group) to gain insights into lack of mammary tumor prevention by this phytochemical. The gene ontology and the Kyoto encyclopedia of genes and genomes pathway analyses of the RNA-seq data revealed upregulation of genes associated with ribosomes, translation, peptide biosynthetic/metabolic process, and oxidative phosphorylation but downregulation of genes associated with mitogen-activated protein kinases. A total of 33 genes associated with ribosomes were significantly upregulated by DATS treatment, including RPL11 and RPS14. Western blotting confirmed upregulation of RPL11 and neurofascin protein expression in mammary tumors from DATS-treated rats when compared to controls. A statistically significant increase in protein level of c-Jun N-terminal kinase 2 was also observed in tumors from DATS-treated rats when compared to controls. On the other hand, expression of complex I subunits NDUFV1 or NDUFS1 was not affected by DATS treatment. These results offer potential explanations for ineffectiveness of DATS in the chemically-induced rat mammary tumor model. Inhibitors of the proteins upregulated by DATS may be needed to improve chemopreventive efficacy of this phytochemical.
Collapse
Affiliation(s)
- Eun-Ryeong Hahm
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shivendra V. Singh
- Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Metastasis prevention: targeting causes and roots. Clin Exp Metastasis 2022; 39:505-519. [PMID: 35347574 DOI: 10.1007/s10585-022-10162-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022]
Abstract
The spread of tumor cells from the primary focus, metastasis, is the main cause of cancer mortality. Therefore, anticancer therapy should be focused on the prevention of metastatic disease. Key targets can be conditions in the primary tumor that are favorable for the appearance of metastatic cells and the first steps of the metastatic cascade. Here, we discuss different approaches for targeting metastasis causes (hypoxia, metabolism changes, and tumor microenvironment) and roots (angiogenesis, epithelial-mesenchymal transition, migration, and invasion). Also, we emphasize the challenges of the existing approaches for metastasis prevention and suggest opportunities to overcome them. In conclusion, we highlight the importance of clinical evaluation of the agents showing antimetastatic effects in vivo, especially in patients with early-stage cancers, the identification of metastatic seeds, and the development of therapeutics for their eradication.
Collapse
|
27
|
Wu W, Chen H, Wang R, Chen J, Yu H, Wei Z, Liu X, Xue M, Chen Q, Zhou H, Fu Z. Estrogen receptor-α36 is involved in diallyl sulfide-induced inhibition of malignant growth of HepG2 and Huh7 hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:270-281. [PMID: 34724321 DOI: 10.1002/tox.23396] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant disease that currently lacks effective treatment. Epidemiological studies have suggested the preventive role of raw garlic intake in different tumors, such as HCC. Although diallyl sulfide (DAS), the main component of garlic extracts, has been reported to inhibit the growth of HCC cells, the underlying mechanism remains elusive. This study aimed to investigate the inhibitory effect of DAS on the growth of HepG2 and Huh7 hepatocellular carcinoma cells and its underlying mechanism. HepG2 and Huh7 cells were treated with DAS and nude mice were intrahepatically injected with human HCC HepG2 cells and maintained with or without DAS administration for 28 days. MTS and clonogenic assays revealed that DAS inhibited the growth and clonogenicity of HepG2 and Huh7 hepatocellular carcinoma cells. Furthermore, DAS inhibited the growth of xenograft tumors accompanied by a decreased rate of pathological karyomitosis as observed by H&E staining. The expression levels of estrogen receptor-α36 (ER-α36) and epidermal growth factor receptor (EGFR) in HepG2 and Huh7 cells and in xenograft tumors derived from HepG2 cells after DAS treatment were detected by immunohistochemistry and western blotting. We found that DAS disrupted the positive regulatory loop between ER-α36 and EGFR, and decreased the phosphorylation of AKT at Ser 473 both in vivo and in vitro. DAS also induced cell apoptosis, as evidenced by Hoechst and TUNEL staining. Western blotting revealed activation of caspase3, increased BAX and decreased Bcl-2 expression. However, the ER-α36 expression knockdown attenuated DAS-induced ERK and AKT phosphorylation in HCC cells. DAS was also able to inhibit ER-α36-mediated activation of the MAPK/ERK signaling induced by estrogen. Thus, our results indicate that ER-α36 signaling is involved in DAS-induced inhibition of HCC cell growth both in vitro and in vivo.
Collapse
Affiliation(s)
- Weiqi Wu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Hongfei Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Ruobing Wang
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Jiaming Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Haiyan Yu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xiaotian Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Mingru Xue
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Qiongxia Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| |
Collapse
|
28
|
Lu Y, Zhang M, Huang D. Dietary Organosulfur-Containing Compounds and Their Health-Promotion Mechanisms. Annu Rev Food Sci Technol 2022; 13:287-313. [DOI: 10.1146/annurev-food-052720-010127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuyun Lu
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Molan Zhang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
| | - Dejian Huang
- Department of Food Science and Technology, Faculty of Science, National University of Singapore, Singapore
- National University of Singapore (Suzhou) Research Institute, Jiangsu, China
| |
Collapse
|
29
|
Du H, Tang Y, Ren X, Zhang F, Yang W, Cheng L, Gao Y. A prognostic model for cervical cancer based on ferroptosis-related genes. Front Endocrinol (Lausanne) 2022; 13:991178. [PMID: 36313765 PMCID: PMC9614331 DOI: 10.3389/fendo.2022.991178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Ferroptosis is widely involved in the occurrence and development of various cancers, but a specific mechanism involving ferroptosis in cervical cancer is still unclear. METHODS Based on the expressions of ferroptosis-related genes, a prognostic model was constructed using lasso regression, and the overall predictive performance of this model was verified. An in-depth analysis of the prognostic model was then conducted. RESULTS The prognostic model showed good predictive performance in both the validation and test sets. Mechanism analysis indicated that differences in the tumor microenvironment were the basis of the predictive ability of the model. Notably, CA9 mRNA was significantly overexpressed in cervical carcinoma, tissues but not in normal cervix tissues. A pair of ceRNAs (CA9/ULBP2) could be involved in the carcinogenesis and development of cervical cancer, and the potential target might be hsa-miR-34a. In addition, predicted miRNAs and drugs for these DEGs were identified. CONCLUSIONS We constructed a prognostic model with good predictive performance, based on the expression of ferroptosis-related genes. Further research found that the ceRNA pairs of ULBP2/CA9 could regulate cervical cancer through hsa-miR-34a. These results identified the mechanism of ferroptosis in cervical cancer, and might provide novel therapeutics for cervical cancer patients.
Collapse
Affiliation(s)
- Huijun Du
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yumei Tang
- School of Basic Medical Sciences, Dali University, Dali, China
- Shanxi Keda Research Institute, Taiyuan, Shanxi, China
| | - Xiaoying Ren
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Zhang
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Yang
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Cheng
- BGI-Yunnan, Kunming, China
- *Correspondence: Le Cheng, ; Yunan Gao,
| | - Yunan Gao
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Le Cheng, ; Yunan Gao,
| |
Collapse
|
30
|
Lam CKC, Truong K. Design of a synthesis-friendly hypoxia-responsive promoter for cell-based therapeutics. Eng Life Sci 2021; 21:848-856. [PMID: 34899121 PMCID: PMC8638314 DOI: 10.1002/elsc.202100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 10/16/2021] [Indexed: 11/24/2022] Open
Abstract
Towards the goal of making 'smart' cell therapies, one that recognizes disease conditions (e.g. hypoxia) and then produces mitigating biologics, it is important to develop suitable promoters. Currently, hypoxia responsive promoters are composed of strongly repeated sequences containing hypoxia response elements upstream of a minimal core promoter. Unfortunately, such repeated sequences have inherent genomic instability that may compromise the long-term consistency of cell-based therapeutics. Thus, we designed a synthesis-friendly hypoxia-inducible promoter (named SFHp) that has GC content between 25% and 75% and no repeats greater than 9 base pairs. In HEK293 cells stably integrated with genes regulated by synthetic SFHp, we demonstrated inducible reporter expression with fluorescent proteins, cell morphology rewiring with our previously engineered RhoA protein and intercellular cell signalling with secreted cytokines. These experiments exemplify the potential usage of SFHp in cell-based therapeutics with integrated genetic circuits that inducibly respond to the disease microenvironment.
Collapse
Affiliation(s)
| | - Kevin Truong
- Institute of Biomedical EngineeringUniversity of TorontoTorontoONCanada
- Edward S. RogersSr. Department of Electrical and Computer EngineeringUniversity of TorontoTorontoONCanada
| |
Collapse
|
31
|
Kumar G, Du B, Chen J. Effects and mechanisms of dietary bioactive compounds on breast cancer prevention. Pharmacol Res 2021; 178:105974. [PMID: 34818569 DOI: 10.1016/j.phrs.2021.105974] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/17/2022]
Abstract
Breast cancer (BC) is the most often diagnosed cancer among females globally and has become an increasing global health issue over the last decades. Despite the substantial improvement in screening methods for initial diagnosis, effective therapy remains lacking. Still, there has been high recurrence and disease progression after treatment of surgery, endocrine therapy, chemotherapy, and radiotherapy. Considering this view, there is a crucial requirement to develop safe, freely accessible, and effective anticancer therapy for BC. The dietary bioactive compounds as auspicious anticancer agents have been recognized to be active and their implications in the treatment of BC with negligible side effects. Hence, this review focused on various dietary bioactive compounds as potential therapeutic agents in the prevention and treatment of BC with the mechanisms of action. Bioactive compounds have chemo-preventive properties as they inhibit the proliferation of cancer cells, downregulate the expression of estrogen receptors, and cell cycle arrest by inducing apoptotic settings in tumor cells. Therapeutic drugs or natural compounds generally incorporate engineered nanoparticles with ideal sizes, shapes, and enhance their solubility, circulatory half-life, and biodistribution. All data of in vitro, in vivo, and clinical studies of dietary bioactive compounds and their impact on BC were collected from Science Direct, PubMed, and Google Scholar. The data of chemopreventive and anticancer activity of dietary bioactive compounds were collected and orchestrated in a suitable place in the review. These shreds of data will be extremely beneficial to recognize a series of additional diet-derived bioactive compounds to treat BC with the lowest side effects.
Collapse
Affiliation(s)
- Ganesan Kumar
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510640, China
| | - Jianping Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
32
|
Malla R, Marni R, Chakraborty A, Kamal MA. Diallyl disulfide and diallyl trisulfide in garlic as novel therapeutic agents to overcome drug resistance in breast cancer. J Pharm Anal 2021; 12:221-231. [PMID: 35582397 PMCID: PMC9091922 DOI: 10.1016/j.jpha.2021.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer-related deaths in women worldwide. It is a cancer that originates from the mammary ducts and involves mutations in multiple genes. Recently, the treatment of breast cancer has become increasingly challenging owing to the increase in tumor heterogeneity and aggressiveness, which gives rise to therapeutic resistance. Epidemiological, population-based, and hospital-based case-control studies have demonstrated an association between high intake of certain Allium vegetables and a reduced risk in the development of breast cancer. Diallyl disulfide (DADS) and diallyl trisulfide (DATS) are the main allyl sulfur compounds present in garlic, and are known to exhibit anticancer activity as they interfere with breast cancer cell proliferation, tumor metastasis, and angiogenesis. The present review highlights multidrug resistance mechanisms and their signaling pathways in breast cancer. This review discusses the potential anticancer activities of DADS and DATS, with emphasis on drug resistance in triple-negative breast cancer (TNBC). Understanding the anticancer activities of DADS and DATS provides insights into their potential in targeting drug resistance mechanisms of TNBC, especially in clinical studies. The review describes the causes of drug resistance in TNBC. The effects of DADS and DATS on drug resistance mechanisms in TNBC are presented. The impacts of DADS and DATS on metastasis of TNBC are discussed. Antitumor immune activities of DADS and DATS against TNBC are illustrated.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, India
- Corresponding author.
| | - Rakshmitha Marni
- Cancer Biology Lab, Department of Biochemistry and Bioinformatics, Institute of Science, Gandhi Institute of Technology and Management, Visakhapatnam, 530045, India
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Enzymoics, Hebersham, Novel Global Community Educational Foundation, New South Wales, 2770, Australia
| |
Collapse
|
33
|
Mendiola PJ, Naik JS, Bosc LVG, Gardiner AS, Birg A, Kanagy NL. Hydrogen Sulfide Actions in the Vasculature. Compr Physiol 2021; 11:2467-2488. [PMID: 34558672 PMCID: PMC11758848 DOI: 10.1002/cphy.c200036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hydrogen sulfide (H2 S) is a small, gaseous molecule with poor solubility in water that is generated by multiple pathways in many species including humans. It acts as a signaling molecule in many tissues with both beneficial and pathological effects. This article discusses its many actions in the vascular system and the growing evidence of its role to regulate vascular tone, angiogenesis, endothelial barrier function, redox, and inflammation. Alterations in some disease states are also discussed including potential roles in promoting tumor growth and contributions to the development of metabolic disease. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
Affiliation(s)
| | - Jay S. Naik
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | | | - Amy S. Gardiner
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Aleksandr Birg
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Nancy L. Kanagy
- University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
34
|
Yun BD, Son SW, Choi SY, Kuh HJ, Oh TJ, Park JK. Anti-Cancer Activity of Phytochemicals Targeting Hypoxia-Inducible Factor-1 Alpha. Int J Mol Sci 2021; 22:ijms22189819. [PMID: 34575983 PMCID: PMC8467787 DOI: 10.3390/ijms22189819] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Hypoxia-inducible factor-1 alpha (HIF-1α) is overexpressed in cancer, leading to a poor prognosis in patients. Diverse cellular factors are able to regulate HIF-1α expression in hypoxia and even in non-hypoxic conditions, affecting its progression and malignant characteristics by regulating the expression of the HIF-1α target genes that are involved in cell survival, angiogenesis, metabolism, therapeutic resistance, et cetera. Numerous studies have exhibited the anti-cancer effect of HIF-1α inhibition itself and the augmentation of anti-cancer treatment efficacy by interfering with HIF-1α-mediated signaling. The anti-cancer effect of plant-derived phytochemicals has been evaluated, and they have been found to possess significant therapeutic potentials against numerous cancer types. A better understanding of phytochemicals is indispensable for establishing advanced strategies for cancer therapy. This article reviews the anti-cancer effect of phytochemicals in connection with HIF-1α regulation.
Collapse
Affiliation(s)
- Ba Da Yun
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Seung Wan Son
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
| | - Hyo Jeong Kuh
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Tae-Jin Oh
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 31460, Korea;
| | - Jong Kook Park
- Department of Biomedical Science and Research Institute for Bioscience & Biotechnology, Hallym University, Chunchon 24252, Korea; (B.D.Y.); (S.W.S.); (S.Y.C.)
- Correspondence: ; Tel.: +82-33-248-2114
| |
Collapse
|
35
|
Brugnoli F, Tedeschi P, Grassilli S, Maietti A, Brandolini V, Bertagnolo V. Ethanol-based garlic extract prevents malignant evolution of non-invasive breast tumor cells induced by moderate hypoxia. Biomed Pharmacother 2021; 142:112052. [PMID: 34426261 DOI: 10.1016/j.biopha.2021.112052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND In breast cancer, low oxygen availability is associated with a more aggressive phenotype and with malignant evolution of non-invasive cells. Natural compounds have long attracted attention in cancer treatment, and in recent years garlic (Allium sativum) organosulfur derivatives have been shown to negatively affect growth and invasion of tumor cells. METHODS Homemade ethanol-based garlic extract (GE) was administered to MCF7 and MCF10DCIS breast tumor cell lines grown under moderate hypoxia. Cell cycle, epithelial-to-mesenchymal transition and cancer stem cell markers were evaluated. RESULTS We revealed that, in the non-invasive MCF10DCIS cells but not in the post-EMT MCF7 cells, low oxygen availability induced the decrease of E-cadherin and the increase of vimentin and motility, that were prevented by GE administration. In both cell lines, treatment with GE counteracted the up-modulation of CD133 positive cells induced by hypoxia. CONCLUSIONS Overall, our data firstly revealed anti-cancer properties of garlic in non-invasive breast cancer cells. In particular, they demonstrated a protective role of this natural product against the hypoxia-induced increase of molecules that play crucial roles in tumor evolution, suggesting that garlic derivatives can be considered in new approaches for preventing progression of breast tumors from non-invasive to infiltrating lesions.
Collapse
Affiliation(s)
- Federica Brugnoli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Tedeschi
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Grassilli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Annalisa Maietti
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Vincenzo Brandolini
- Department of Chemical, Pharmaceutical and Agricultural Sciences (DOCPAS), University of Ferrara, 44121 Ferrara, Italy
| | - Valeria Bertagnolo
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
36
|
Garlic constituents for cancer prevention and therapy: From phytochemistry to novel formulations. Pharmacol Res 2021; 175:105837. [PMID: 34450316 DOI: 10.1016/j.phrs.2021.105837] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Garlic (Allium sativum L.) is one of the oldest plants cultivated for its dietary and medicinal values. This incredible plant is endowed with various pharmacological attributes, such as antimicrobial, antiarthritic, antithrombotic, antitumor, hypoglycemic, and hypolipidemic activities. Among the various beneficial pharmacological effects of garlic, the anticancer activity is presumably the most studied. The consumption of garlic provides strong protection against cancer risk. Taking into account the multi-targeted actions and absence of considerable toxicity, a few active metabolites of garlic are probably to play crucial roles in the killing of cancerous cells. Garlic contains several bioactive molecules with anticancer actions and these include diallyl trisulfide, allicin, diallyl disulfide, diallyl sulfide, and allyl mercaptan. The effects of various garlic-derived products, their phytoconstituents and nanoformulations have been evaluated against skin, prostate, ovarian, breast, gastric, colorectal, oral, liver, and pancreatic cancers. Garlic extract, its phytocompounds and their nanoformulations have been shown to inhibit the different stages of cancer, including initiation, promotion, and progression. Besides, these bioactive metabolites alter the peroxidation of lipid, activity of nitric oxide synthetase, nuclear factor-κB, epidermal growth factor receptor, and protein kinase C, cell cycle, and survival signaling. The current comprehensive review portrays the functions of garlic, its bioactive constituents and nanoformulations against several types of cancers and explores the possibility of developing these agents as anticancer pharmaceuticals.
Collapse
|
37
|
Li J, Zou W, Yu K, Liu B, Liang W, Wang L, Lu Y, Jiang Z, Wang A, Zhu J. Discovery of the natural product 3',4',7,8-tetrahydroxyflavone as a novel and potent selective BRD4 bromodomain 2 inhibitor. J Enzyme Inhib Med Chem 2021; 36:903-913. [PMID: 33820450 PMCID: PMC8032343 DOI: 10.1080/14756366.2021.1906663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bromodomain-containing protein 4 (BRD4) binds acetylated lysine residues on the N-terminal tails of histones through two bromodomains (BD1 and BD2) to regulate gene transcription. Inhibiting one or both of bromodomains resulted in different phenotypes, suggesting BD1 and BD2 may have different functions. Here we report the characterisation of a natural product 3',4',7,8-tetrahydroxyflavone as a novel and potent selective BRD4 inhibitor. The compound is 100-fold more selective for BRD4-BD2 (IC50 = 204 nM) than BRD4-BD1 (IC50=17.9 µM). Co-crystal structures show 3',4',7,8-tetrahydroxyflavone binds to the acetylated lysine binding pocket of BRD4-BD1 or BRD4-BD2, but establishes more interactions with BRD4-BD2 than BRD4-BD1. Our data suggest 3',4',7,8-tetrahydroxyflavone as a potent selective inhibitor of BRD4-BD2 with a novel chemical scaffold. Given its distinct chemical structure from current BRD4 inhibitors, this compound may open the door for a novel class of anti-BRD4 inhibitors by serving as a lead compound.
Collapse
Affiliation(s)
- Jiao Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Koukou Yu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Bing Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weifeng Liang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lisha Wang
- Department of Medicinal Chemistry, PharmaBlock Sciences (Nanjing), Inc., Nanjing, China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zequn Jiang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiapeng Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Ma Z, Wang LZ, Cheng JT, Lam WST, Ma X, Xiang X, Wong ALA, Goh BC, Gong Q, Sethi G, Wang L. Targeting Hypoxia-Inducible Factor-1-Mediated Metastasis for Cancer Therapy. Antioxid Redox Signal 2021; 34:1484-1497. [PMID: 33198508 DOI: 10.1089/ars.2019.7935] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Significance: Hypoxia is emerging as a crucial regulator of the tumor microenvironment; it governs the metastatic potential of multiple primary cancers. It is also potentially involved in the regulation of tumorigenesis, tumor metabolism, and proangiogenic activity. Recent Advances: A wealth of clinical data across a wide range of cancer types has revealed strong correlations between hypoxia or the overexpression of hypoxia-inducible transcription factors and the rates of distant metastases and poor prognoses. Hypoxia-inducible factor (HIF)-1α, one of the key regulatory molecules of the HIF-1 signaling pathways, is involved in multiple crucial steps in the metastatic cascade. Critical Issues: Here, we present recent findings on the roles of the HIF-1 complex in tumor metastasis and highlight the potential of HIF-1α as a target for abrogating tumor metastasis. Moreover, we systematically describe the regulatory role of HIF-1 at each step of the metastatic cascade. Finally, we present the most recent advances in potential pharmacological interventions and the development of specific HIF-1 inhibitors for blocking tumor metastasis. Future Directions: Well-designed clinical trials are urgently needed to validate the anti-metastatic activity of HIF-1 inhibitors discovered in preclinical models. Antioxid. Redox Signal. 34, 1484-1497.
Collapse
Affiliation(s)
- Zhaowu Ma
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Louis Zizhao Wang
- SingHealth Internal Medicine Residency Programme, Singapore General Hospital, Singapore, Singapore
| | - Jun-Ting Cheng
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Walter Sze Tung Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiang Ma
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, P.R. China
| | - Andrea Li-Ann Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
| | - Quan Gong
- Department of Immunology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Nanhuan Road, Jingzhou, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| |
Collapse
|
39
|
Sokolov AS, Nekrasov PV, Shaposhnikov MV, Moskalev AA. Hydrogen sulfide in longevity and pathologies: Inconsistency is malodorous. Ageing Res Rev 2021; 67:101262. [PMID: 33516916 DOI: 10.1016/j.arr.2021.101262] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/18/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) is one of the biologically active gases (gasotransmitters), which plays an important role in various physiological processes and aging. Its production in the course of methionine and cysteine catabolism and its degradation are finely balanced, and impairment of H2S homeostasis is associated with various pathologies. Despite the strong geroprotective action of exogenous H2S in C. elegans, there are controversial effects of hydrogen sulfide and its donors on longevity in other models, as well as on stress resistance, age-related pathologies and aging processes, including regulation of senescence-associated secretory phenotype (SASP) and senescent cell anti-apoptotic pathways (SCAPs). Here we discuss that the translation potential of H2S as a geroprotective compound is influenced by a multiplicity of its molecular targets, pleiotropic biological effects, and the overlapping ranges of toxic and beneficial doses. We also consider the challenges of the targeted delivery of H2S at the required dose. Along with this, the complexity of determining the natural levels of H2S in animal and human organs and their ambiguous correlations with longevity are reviewed.
Collapse
|
40
|
Gao J, Hou D, Hu P, Mao G. Curcumol increases the sensitivity of colon cancer to 5-FU by regulating Wnt/β-catenin signaling. Transl Cancer Res 2021; 10:2437-2450. [PMID: 35116559 PMCID: PMC8798486 DOI: 10.21037/tcr-21-689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Background 5-fluorouracil (5-FU) resistance is the leading cause of treatment failure in colon cancer. Combination therapy is an effective strategy to inhibit cancer cells and prevent drug resistance. Therefore, we studied the antitumor effect of curcumol alone or combined with 5-FU on human colon cancer drug-resistant cells. Methods The 5-FU resistant HCT116 cell line (HCT116/5-FU) was established by repeated exposure to gradually increasing concentrations of 5-FU; Cell viability was measured by cell counting kit-8 (CCK-8); apoptosis rate of HCT116 cells was detected using Annexin V-fluorescein isothiocyanate (FITC) assay kit; cell proliferation and invasion were detected using colony formation assays, wound healing assay and transwell invasion assays; activity of transplanted tumor in vivo in specific pathogen free (SPF) BALB/c nude mice (6 weeks old, male) was monitored by bioluminescence imaging, immunohistochemistry and western blot analysis. Results Our study showed the potent antitumor effect of curcumol by induction of apoptosis, inhibition of proliferation, invasion, migration, and improvement of the therapeutic efficacy of 5-FU toward human colon cancer HCT116 cells. From our results, curcumol could chemosensitize 5-FU-resistant HCT116 cells. The combination of curcumol and 5-FU exerted a synergistic inhibitory effect on the induction of apoptosis. Also, this combination inhibited the proliferation, invasion, and migration of both chemo-resistant and sensitive cells. Curcumol treatment decreased multidrug resistance-associated protein 2 (MRP-2), P-glycoprotein (P-gp), survivin, and β-catenin expression, which correlated with multidrug resistance (MDR) and the target genes of Wnt/β-catenin. It significantly increased the p-β-catenin level and Bad/Bcl-2 ratio in HCT116/5-FU cells compared with 5-FU treatment. In vivo, curcumol significantly inhibited the growth of transplanted tumors and the expression of Ki-67, proliferating cell nuclear antigen (PCNA), and vascular endothelial growth factor (VEGF) in colon cancer cells. Conclusions Curcumol as a potential chemotherapeutic agent combined with 5-FU can overcome colon cancer resistance.
Collapse
Affiliation(s)
- Jinfeng Gao
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Daorong Hou
- Animal Core Facility, Nanjing Medical University, Nanjing, China
| | - Ping Hu
- Department of Oncology, Affiliated Nanjing Jiangbei Hospital to Nantong University, Nanjing, China
| | - Guoxin Mao
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
41
|
Kammath AJ, Nair B, P S, Nath LR. Curry versus cancer: Potential of some selected culinary spices against cancer with in vitro, in vivo, and human trials evidences. J Food Biochem 2021; 45:e13285. [PMID: 32524639 DOI: 10.1111/jfbc.13285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023]
Abstract
Spices are dietary agents with immense potential for cancer chemo-prevention. A wide variety of spices are extensively used as food flavoring agents which possess potent antioxidant, anti-inflammatory, and anticancer properties due to the presence of certain bio-active compounds in them. In vitro, in vivo studies and clinical trials of selected spices against various types of cancer are being specified in this review. Effect of certain putative dietary spices namely turmeric, clove, garlic, ginger, fennel, black cumin, cinnamon, pepper, saffron, rosemary, and chilli along with its role in cancer are being discussed. Literature search was conducted through PubMed, Google scholar, Science direct, and Scopus using the keywords "spice," "cancer," "natural medicine," "herbal compound," "bioactive compounds." About 4,000 published articles and 127 research papers were considered to grab the brief knowledge on spices and their anticancer potential on a predefined inclusion and exclusion criteria. PRACTICAL APPLICATION: Historically, spices and herbs are known for its traditional flavor, odor, and medicinal properties. Intensified risk of chronic and pervasive clinical conditions and increased cost of advanced drug treatments have developed a keen interest among researchers to explore the miscellaneous properties of herbal spices. Cancer is one of the deleterious causes of mortality affecting a huge number of populations worldwide. Arrays of cancer treatments including surgery, chemotherapy, and radiation therapy are used to compromise the disease but effective only when the size of the tumor is small. So, an effective treatment need to be developed that produces less side effects and herbal spices are found to be the promising agents. In this review, we illustrate about different in vitro, in vivo, and clinical studies of wide range of culinary spices having antineoplastic potential.
Collapse
Affiliation(s)
- Adithya J Kammath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Bhagyalakshmi Nair
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Sreelekshmi P
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Lekshmi R Nath
- Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, India
| |
Collapse
|
42
|
Liu Y, Fu R, Tu S, Qu D, Liu C, Li X, Zhao Y, Ma C, Chen Y, Tao L. Extracellular Microparticles Encapsulated with Diallyl Trisulfide Interfere with the Inflammatory Tumor Microenvironment and Lung Metastasis of Invasive Melanoma. Mol Pharm 2021; 18:822-835. [PMID: 33586986 DOI: 10.1021/acs.molpharmaceut.0c00696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lung metastasis is a fatal and late-stage event for many solid tumors. Multiple lines of evidence have demonstrated that diallyl trisulfide (DATS), an active ingredient of garlic, possesses striking antimetastatic effects. However, the lack of highly efficient organ-compatible carriers restricts its application. In the present study, we showed that extracellular microparticles encapsulated with DATS (DATS-MPs) were capable of interfering with the prometastatic inflammatory microenvironment in local tissues. DATS-MPs were successfully prepared and exhibited typical characteristics of B16BL6-derived extracellular vesicles. The DATS-MPs preferentially fused with cancer cells and endogenous cells (mouse lung epithelial MLE-12 cells) from the metastatic organs in vitro. More interestingly, the systemically administered MPs predominantly accumulated in the lung tissue that serves as their main metastatic organ. The drug-loaded MPs exerted higher antimetastatic effects than DATS alone in both the spontaneous and the experimental metastasis models in mice (*p < 0.05). Additionally, we found that DATS-MPs inhibited tumor cell migration and interfered with the prometastatic inflammatory microenvironment via decreasing the release of S100A8/A9, serum amyloid A (SAA), and interleukin-6 (IL-6) and inhibiting the expression of fibronectin, MRP8, myeloperoxidase (MPO), and the toll-like receptor 4 (TLR4)-Myd88 in the lung tissues. Collectively, DATS-MPs appeared to enhance the antimetastatic efficiency of DATS in animal models under study.
Collapse
Affiliation(s)
- Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Rongping Fu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Shumei Tu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Congyan Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Xiaoqi Li
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chengyao Ma
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China.,Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, China
| |
Collapse
|
43
|
Evaluation of Bioactive and Physicochemical Properties of White and Black Garlic (Allium sativum L.) from Conventional and Organic Cultivation. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020874] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The aim of this study was to evaluate the bioactive and physicochemical properties of white and black garlic (Allium sativum L.) from conventional and organic cultivation. Both white conventional (G) and organic (EG) garlic were processed during 45 days heat treatment at 70 °C temperature and 80% relative humidity. In black garlic (BG) samples the content of soluble solids, total reducing sugars, total polyphenol as well as antioxidant activity significantly (p < 0.05) increased (by about 33.5%, 60.5%, 118.4%, 125.8%, respectively), while a pH significantly (p < 0.05) decreased (by about 41.1%) as compared to white garlic samples. The study showed significant differences between colour of white and black garlic, both in the L*a*b* and RGB colour space, especially in the case of the L* parameter, indicating that the colour of garlic changed from white to dark brown or black during the thermal processing. All organic garlic samples had improved bioactive ingredients and antioxidant activity compared to conventional garlic for both fresh (unprocessed) and heat-treated black garlic. The production of black garlic, especially organic (EBG), allows one to obtain a product with higher amount of bioactive compounds, which can be widely used in the design of health-promoting functional food.
Collapse
|
44
|
De Greef D, Barton EM, Sandberg EN, Croley CR, Pumarol J, Wong TL, Das N, Bishayee A. Anticancer potential of garlic and its bioactive constituents: A systematic and comprehensive review. Semin Cancer Biol 2020; 73:219-264. [PMID: 33301861 DOI: 10.1016/j.semcancer.2020.11.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
Vegetables of the Allium genus, such as garlic (Allium sativum L.), onions, shallots, leaks, and chives, have been used for many years for food consumption and for medicinal purposes. Historical medical texts have indicated the therapeutic applications of garlic as an antitumor, laxative, diuretic, antibacterial and antifungal agent. Specifically, garlic's antitumor abilities have been traced back 3500 years as a chemotherapeutic agent used in Egypt. Other beneficial effects of garlic consumption include lowering blood pressure, blood cholesterol, sugar and lipids. The processing and aging of garlic result in the production of non-toxic organosulfur by-products. These sulfur-containing compounds, such as allicin, diallyl sulfide, diallyl disulfide, diallyl trisulfide, alliin, S-allylcysteine, and S-allylmercaptocysteine, impact various stages of carcinogenesis. The anticancer mechanisms of action of these garlic-derived phytochemicals include altering mitochondrial permeability, inhibiting angiogenesis, enhancing antioxidative and proapoptotic properties, and regulating cell proliferation. All these effects of garlic's sulfur-compounds have been demonstrated in various human cancers. The intent of this literature research is to explore the potential of garlic-derived products and bioactive organosulfur compounds as cancer chemopreventive and chemotherapeutic agents. This investigation employs criteria for systematic review and critically analyzes published in vitro, in vivo and clinical studies. Concerns and limitations that have arisen in past studies regarding standards of measurement, bioavailability, and method of delivery are addressed. Overall, it is hoped that through this systematic and comprehensive review, future researchers can be acquainted with the updated data assembled on anticancer properties of garlic and its phytoconstituents.
Collapse
Affiliation(s)
| | - Emily M Barton
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Elise N Sandberg
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | | | - Joshua Pumarol
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Tin Lok Wong
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Niranjan Das
- Department of Chemistry, Iswar Chandra Vidyasagar College, Belonia 799 155, Tripura, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
45
|
Xie J, Liao B, Tang RY. Functional Application of Sulfur-Containing Spice Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:12505-12526. [PMID: 33138361 DOI: 10.1021/acs.jafc.0c05002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sulfur-containing spice compounds possess diverse biological functions and play an important role in food, chemicals, pharmaceuticals, and agriculture. The development of functional spices has become increasingly popular, especially for medicinal functions for dietary health. Thus, this review focuses on the properties and functions of sulfur-containing spice compounds, including antioxidant, anti-inflammatory, antiobesity, anticancer, antibacterial, and insecticidal functions, among others. Developments over the last five years concerning the properties of sulfur-containing spice compounds are summarized and discussed.
Collapse
Affiliation(s)
- Jinxin Xie
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Benjian Liao
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ri-Yuan Tang
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Lingnan Guangdong Laboratory of Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
46
|
Gojon G, Morales GA. SG1002 and Catenated Divalent Organic Sulfur Compounds as Promising Hydrogen Sulfide Prodrugs. Antioxid Redox Signal 2020; 33:1010-1045. [PMID: 32370538 PMCID: PMC7578191 DOI: 10.1089/ars.2020.8060] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/15/2020] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
Significance: Sulfur has a critical role in protein structure/function and redox status/signaling in all living organisms. Although hydrogen sulfide (H2S) and sulfane sulfur (SS) are now recognized as central players in physiology and pathophysiology, the full scope and depth of sulfur metabolome's impact on human health and healthy longevity has been vastly underestimated and is only starting to be grasped. Since many pathological conditions have been related to abnormally low levels of H2S/SS in blood and/or tissues, and are amenable to treatment by H2S supplementation, development of safe and efficacious H2S donors deserves to be undertaken with a sense of urgency; these prodrugs also hold the promise of becoming widely used for disease prevention and as antiaging agents. Recent Advances: Supramolecular tuning of the properties of well-known molecules comprising chains of sulfur atoms (diallyl trisulfide [DATS], S8) was shown to lead to improved donors such as DATS-loaded polymeric nanoparticles and SG1002. Encouraging results in animal models have been obtained with SG1002 in heart failure, atherosclerosis, ischemic damage, and Duchenne muscular dystrophy; with TC-2153 in Alzheimer's disease, schizophrenia, age-related memory decline, fragile X syndrome, and cocaine addiction; and with DATS in brain, colon, gastric, and breast cancer. Critical Issues: Mode-of-action studies on allyl polysulfides, benzyl polysulfides, ajoene, and 12 ring-substituted organic disulfides and thiosulfonates led several groups of researchers to conclude that the anticancer effect of these compounds is not mediated by H2S and is only modulated by reactive oxygen species, and that their central model of action is selective protein S-thiolation. Future Directions: SG1002 is likely to emerge as the H2S donor of choice for acquiring knowledge on this gasotransmitter's effects in animal models, on account of its unique ability to efficiently generate H2S without byproducts and in a slow and sustained mode that is dose independent and enzyme independent. Efficient tuning of H2S donation characteristics of DATS, dibenzyl trisulfide, and other hydrophobic H2S prodrugs for both oral and parenteral administration will be achieved not only by conventional structural modification of a lead molecule but also through the new "supramolecular tuning" paradigm.
Collapse
|
47
|
Ma Z, Xiang X, Li S, Xie P, Gong Q, Goh BC, Wang L. Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Semin Cancer Biol 2020; 80:379-390. [PMID: 33002608 DOI: 10.1016/j.semcancer.2020.09.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 09/06/2020] [Accepted: 09/17/2020] [Indexed: 12/24/2022]
Abstract
Rapid progress in molecular cancer biology coupled with the discovery of novel oncology drugs has opened new horizons for cancer target discovery. As one of the crucial signaling pathways related to tumorigenesis, hypoxia-inducible factor-1 (HIF-1) coordinates the activity of many transcription factors and their downstream molecules that impact tumor growth and metastasis. Accumulating evidence suggests that the transcriptional responses to acute hypoxia are mainly attributable to HIF-1α. Moreover, the overexpression of HIF-1α in several solid cancers has been found to be strongly associated with poor prognosis. Thus, pharmacological targeting of the HIF-1 signaling pathways has been considered as a new strategy for cancer therapy in the recent years. Although over the past decade, tremendous efforts have been made in preclinical studies to develop new HIF-1 inhibitors from natural products (reservoirs of novel therapeutic agents), to date, these efforts have not been successfully translated into clinically available treatments. In this review, we provide new insights into the bio-pharmacological considerations for selecting natural compounds as potential HIF-1 inhibitors to accelerate anti-cancer drug development. In addition, we highlighted the importance of assessing the dependency of cancer on HIF1A to shortlist cancer types as suitable disease models. This may subsequently lead to new paradigms for discovering more HIF-1 inhibitors derived from natural products and facilitate the development of potent therapeutic agents targeting specific cancer types.
Collapse
Affiliation(s)
- Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; The First School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023k, China
| | - Xiaoqiang Xiang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shiya Li
- Dyson School of Design Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peng Xie
- School of Pharmacy, Fudan University, Shanghai 201203, China; China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Quan Gong
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China; The First School of Clinical Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023k, China.
| | - Boon-Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore 119228, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
48
|
Tumorigenesis and Progression As A Consequence of Hypoxic TME:A Prospective View upon Breast Cancer Therapeutic Targets. Exp Cell Res 2020; 395:112192. [PMID: 32738345 DOI: 10.1016/j.yexcr.2020.112192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/28/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
Intratumoral hypoxia has a significant impact on the development and progression of breast cancer (BC). Rather than exerting limited regional impact, hypoxia create an aggressive macroenvironment for BC. Hypoxia-inducible factors-1(HIF-1) is extensively induced under hypoxia condition of BC, activating the transcription of multiple oncogenes. Thereinto, CD73 is the one which could be secreted into the microenvironment and is in favor of the growth, metastasis, resistance to therapies, as well as the stemness maintenance of BC. In this review, we address the significance of hypoxia/HIF-1/CD73 axis for BC, and provide a novel perspective into BC therapeutic strategies.
Collapse
|
49
|
Elsherbiny NM, El-Sherbiny M, Zaitone SA. Diallyl trisulfide potentiates chemotherapeutic efficacy of doxorubicin in experimentally induced mammary carcinoma: Role of Notch signaling. Pathol Res Pract 2020; 216:153139. [PMID: 32853959 DOI: 10.1016/j.prp.2020.153139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
The prevalence of breast cancer is remarkably increasing worldwide. Therefore, introduction of new approaches along with improvement of the existing ones in cancer treatment field is of great demand. The present study was designated to investigate the anti-proliferative role of Diallyl trisulfide (DATS) alone or in combination with Doxorubicin (Doxo) in Ehrlich solid carcinoma (ESC)-bearing mice. ESC was induced in female albino mice as an experimental model for breast cancer. The anti-tumorigenic effect of DATS was mediated by suppression of Notch signaling proteins (Notch 1, JAG 1 and HES 1), attenuation of tumor inflammation (NFκB, TNF-α, IL-6, IL-1β) and proliferation (cyclin D1, Ki67) and enhancement of apoptosis (caspase 3, p53). DATS and Doxo mono-treatments displayed opposing effect regarding expression of Notch signaling proteins and cyclin D1 gene expression. However, DATS and Doxo co-treatment markedly decreased tumor volume and weight, increased animals' survival rate, and attenuated Doxo-induced tumor inflammation. In parallel, microscopic investigation displayed that ESC tumor tissues from animals treated with DATS and/or DOX showed shrinkage of tumor lesions and wider zones of apoptosis. In conclusion, DATS acts via multiple molecular targets to elicit anti-proliferative activity. Combination of DATS with Doxo -which exhibit different mechanisms of action- might be a potential novel strategy to augment Doxo-antitumor effect.
Collapse
Affiliation(s)
- Nehal M Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Mohamed El-Sherbiny
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Egypt; Almaarefa University, College of Medicine, Riyadh, Saudi Arabia
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
50
|
Zhuang X, Pedroza-Pacheco I, Nawroth I, Kliszczak AE, Magri A, Paes W, Rubio CO, Yang H, Ashcroft M, Mole D, Balfe P, Borrow P, McKeating JA. Hypoxic microenvironment shapes HIV-1 replication and latency. Commun Biol 2020; 3:376. [PMID: 32665623 PMCID: PMC7360605 DOI: 10.1038/s42003-020-1103-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 06/17/2020] [Indexed: 12/14/2022] Open
Abstract
Viral replication is defined by the cellular microenvironment and one key factor is local oxygen tension, where hypoxia inducible factors (HIFs) regulate the cellular response to oxygen. Human immunodeficiency virus (HIV) infected cells within secondary lymphoid tissues exist in a low-oxygen or hypoxic environment in vivo. However, the majority of studies on HIV replication and latency are performed under laboratory conditions where HIFs are inactive. We show a role for HIF-2α in restricting HIV transcription via direct binding to the viral promoter. Hypoxia reduced tumor necrosis factor or histone deacetylase inhibitor, Romidepsin, mediated reactivation of HIV and inhibiting HIF signaling-pathways reversed this phenotype. Our data support a model where the low-oxygen environment of the lymph node may suppress HIV replication and promote latency. We identify a mechanism that may contribute to the limited efficacy of latency reversing agents in reactivating HIV and suggest new strategies to control latent HIV-1.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Isabel Nawroth
- Institute of Immunity and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Anna E Kliszczak
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrea Magri
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | | | - Hongbing Yang
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH, UK
| | - David Mole
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Peter Balfe
- Institute of Immunity and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jane A McKeating
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK.
| |
Collapse
|