1
|
Romano E, Perut F, Avnet S, Di Pompo G, Silvestri S, Roffo F, Baldini N, Netti PA, Torino E. Mesenchymal Stem Cells-Derived Small Extracellular Vesicles and Their Validation as a Promising Treatment for Chondrosarcoma in a 3D Model in Vitro. Biotechnol Bioeng 2025; 122:667-676. [PMID: 39690717 PMCID: PMC11808436 DOI: 10.1002/bit.28909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
Chondrosarcomas (CHS) constitute approximately 20% of all primary malignant bone tumors, characterized by a slow growth rate with initial manifestation of few signs and symptoms. These malignant cartilaginous neoplasms, particularly those with dedifferentiated histological subtypes, pose significant therapeutic challenges, as they exhibit high resistance to both radiation and chemotherapy. Ranging from relatively benign, low-grade tumors (grade I) to aggressive high-grade tumors with the potential for lung metastases and a grim prognosis, there is a critical need for innovative diagnostic and therapeutic approaches, particularly for patients with more aggressive forms. Herein, small extracellular vesicles (sEVs) derived from mesenchymal stem cells are presented as an efficient nanodelivery tool to enhance drug penetration in an in vitro 3D model of CHS. Employing high-pressure homogenization (HPH), we achieved unprecedented encapsulation efficiency of doxorubicin (DXR) in sEVs derived from mesenchymal stem cells (MSC-EVs). Subsequently, a comparative analysis between free DXR and MSC-EVs encapsulated with DXR (DXR-MSC-EVs) was conducted to assess their penetration and uptake efficacy in the 3D model. The results unveiled a higher incidence of necrotic cells and a more pronounced toxic effect with DXR-MSC-EVs compared to DXR alone. This underscores the remarkable ability of MSC-EVs to deliver drugs in complex environments, highlighting their potential application in the treatment of aggressive CHS.
Collapse
Affiliation(s)
- Eugenia Romano
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LaboratoryIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Sofia Avnet
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Gemma Di Pompo
- Biomedical Science and Technologies and Nanobiotechnology LaboratoryIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Simona Silvestri
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
- Fondazione Istituto Italiano di Tecnologia, IITNaplesItaly
| | - Felicia Roffo
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
| | - Nicola Baldini
- Biomedical Science and Technologies and Nanobiotechnology LaboratoryIRCCS Istituto Ortopedico RizzoliBolognaItaly
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
- Fondazione Istituto Italiano di Tecnologia, IITNaplesItaly
| | - Enza Torino
- Interdisciplinary Research Centre on Biomaterials (CRIB)University of Naples Federico IINaplesItaly
- Department of Chemical, Materials and Production Engineering (DICMaPI)University of Naples Federico IINaplesItaly
- Fondazione Istituto Italiano di Tecnologia, IITNaplesItaly
| |
Collapse
|
2
|
Tang S, Li S, Shi X, Sheng L, Mu Q, Wang Y, Zhu H, Xu K, Zhou M, Xu Z, Wu A, Ouyang G. CALCRL induces resistance to daunorubicin in acute myeloid leukemia cells through upregulation of XRCC5/TYK2/JAK1 pathway. Anticancer Drugs 2024; 35:163-176. [PMID: 37948318 DOI: 10.1097/cad.0000000000001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Chemotherapy is the main treatment option for acute myeloid leukemia (AML), but acquired resistance of leukemic cells to chemotherapeutic agents often leads to difficulties in AML treatment and disease relapse. High calcitonin receptor-like (CALCRL) expression is closely associated with poorer prognosis in AML patients. Therefore, this study was performed by performing CALCRL overexpression constructs in AML cell lines HL-60 and Molm-13 with low CALCRL expression. The results showed that overexpression of CALCRL in HL-60 and Molm-13 could confer resistance properties to AML cells and reduce the DNA damage and cell cycle G0/G1 phase blocking effects caused by daunorubicin (DNR) and others. Overexpression of CALCRL also reduced DNR-induced apoptosis. Mechanistically, the Cancer Clinical Research Database analyzed a significant positive correlation between XRCC5 and CALCRL in AML patients. Therefore, the combination of RT-PCR and Western blot studies further confirmed that the expression levels of XRCC5 and PDK1 genes and proteins were significantly upregulated after overexpression of CALCRL. In contrast, the phosphorylation levels of AKT/PKCε protein, a downstream pathway of XRCC5/PDK1, were significantly upregulated. In the response study, transfection of overexpressed CALCRL cells with XRCC5 siRNA significantly upregulated the drug sensitivity of AML to DNR. The expression levels of PDK1 protein and AKT/PKCε phosphorylated protein in the downstream pathway were inhibited considerably, and the expression of apoptosis-related proteins Bax and cleaved caspase-3 were upregulated. Animal experiments showed that the inhibitory effect of DNR on the growth of HL-60 cells and the number of bone marrow invasions were significantly reversed after overexpression of CALCRL in nude mice. However, infection of XCRR5 shRNA lentivirus in HL-60 cells with CALCRL overexpression attenuated the effect of CALCRL overexpression and upregulated the expression of apoptosis-related proteins induced by DNR. This study provides a preliminary explanation for the relationship between high CALCRL expression and poor prognosis of chemotherapy in AML patients. It offers a more experimental basis for DNR combined with molecular targets for precise treatment in subsequent studies.
Collapse
Affiliation(s)
- Shanhao Tang
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Shuangyue Li
- Department of Hematology, the Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Xiaowei Shi
- Department of Hematology, the Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Lixia Sheng
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Qitian Mu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Yi Wang
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Huiling Zhu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Kaihong Xu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Miao Zhou
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Zhijuan Xu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - An Wu
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| | - Guifang Ouyang
- Department of Hematology, the First Affiliated Hospital of Ningbo University
| |
Collapse
|
3
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
4
|
Liao S, Li J, Gao S, Han Y, Han X, Wu Y, Bi J, Xu M, Bi W. Sulfatinib, a novel multi-targeted tyrosine kinase inhibitor of FGFR1, CSF1R, and VEGFR1-3, suppresses osteosarcoma proliferation and invasion via dual role in tumor cells and tumor microenvironment. Front Oncol 2023; 13:1158857. [PMID: 37361567 PMCID: PMC10286821 DOI: 10.3389/fonc.2023.1158857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Tumor progression is driven by intrinsic malignant behaviors caused by gene mutation or epigenetic modulation, as well as crosstalk with the components in the tumor microenvironment (TME). Considering the current understanding of the tumor microenvironment, targeting the immunomodulatory stromal cells such as cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs) could provide a potential therapeutic strategy. Here, we investigated the effect of sulfatinib, a multi-targeted tyrosine kinase inhibitor (TKI) of FGFR1, CSF1R, and VEGFR1-3, on the treatment of osteosarcoma (OS). Methods In vitro, the antitumor effect was tested by clony formation assay and apoptosis assay.The inhibition of tumor migration and invasion was detected by Transwell assay, and the de-polarization of macrophage was detected by flow cytometry.In vivo, subcutaneous and orthotopic tumor models were established to verify antitumor effect, and the underlying mechanism was verified by immunohistochemistry(IHC), immunofluorescence(IF) and flow cytometry. Results Sulfatinib suppressed OS cell migration and invasion by inhibiting epithelial-mesenchymal transition (EMT) by blocking the secretion of basic fibroblast growth factor (bFGF) in an autocrine manner. In addition, it regulated immune TME via inhibition of the migration of skeletal stem cells (SSCs) to the TME and the differentiation from SSCs to CAFs. Moreover, sulfatinib can suppress OS by modulation of the TME by inhibiting M2 polarization of macrophages. Systemic treatment of sulfatinib can reduce immunosuppression cells M2-TAMs, Tregs, and myeloid-derived suppressor cells (MDSCs) and increase cytotoxic T-cell infiltration in tumors, the lungs, and the spleens. Discussion Our preclinical experiments have shown that sulfatinib can inhibit the proliferation, migration, and invasion of OS by playing a dual role on tumor cells and the tumor microenvironment simultaneously and systematically reverse immunosuppression to immune activation status, which could be translated into clinical trials.
Collapse
Affiliation(s)
- Song Liao
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jianxiong Li
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Song Gao
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuchen Han
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xinli Han
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yanan Wu
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingyou Bi
- Medical School of Chinese PLA, Beijing, China
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Meng Xu
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wenzhi Bi
- Senior Department of Orthopedics, The Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
5
|
Gallego B, Murillo D, Rey V, Huergo C, Estupiñán Ó, Rodríguez A, Tornín J, Rodríguez R. Addressing Doxorubicin Resistance in Bone Sarcomas Using Novel Drug-Resistant Models. Int J Mol Sci 2022; 23:ijms23126425. [PMID: 35742867 PMCID: PMC9224263 DOI: 10.3390/ijms23126425] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Bone sarcomas have not shown a significant improvement in survival for decades, due, in part, to the development of resistance to current systemic treatments, such as doxorubicin. To better understand those mechanisms mediating drug-resistance we generated three osteosarcoma and one chondrosarcoma cell lines with a stable doxorubicin-resistant phenotype, both in vitro and in vivo. These resistant strains include a pioneer model generated from a patient-derived chondrosarcoma line. The resistant phenotype was characterized by a weaker induction of apoptosis and DNA damage after doxorubicin treatment and a lower migratory capability. In addition, all resistant lines expressed higher levels of ABC pumps; meanwhile, no clear trends were found in the expression of anti-apoptotic and stem cell-related factors. Remarkably, upon the induction of resistance, the proliferation potential was reduced in osteosarcoma lines but enhanced in the chondrosarcoma model. The exposure of resistant lines to other anti-tumor drugs revealed an increased response to cisplatin and/or methotrexate in some models. Finally, the ability to retain the resistant phenotype in vivo was confirmed in an osteosarcoma model. Altogether, this work evidenced the co-existence of common and case-dependent phenotypic traits and mechanisms associated with the development of resistance to doxorubicin in bone sarcomas.
Collapse
Affiliation(s)
- Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Verónica Rey
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
| | - Carmen Huergo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Óscar Estupiñán
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
| | - Juan Tornín
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma, s/n 33011 Oviedo, Spain; (B.G.); (D.M.); (V.R.); (C.H.); (Ó.E.); (A.R.); (J.T.)
- Instituto Universitario de Oncología del Principado de Asturias, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-985-101-399
| |
Collapse
|
6
|
Abegg D, Tomanik M, Qiu N, Pechalrieu D, Shuster A, Commare B, Togni A, Herzon SB, Adibekian A. Chemoproteomic Profiling by Cysteine Fluoroalkylation Reveals Myrocin G as an Inhibitor of the Nonhomologous End Joining DNA Repair Pathway. J Am Chem Soc 2021; 143:20332-20342. [PMID: 34817176 DOI: 10.1021/jacs.1c09724] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chemoproteomic profiling of cysteines has emerged as a powerful method for screening the proteome-wide targets of cysteine-reactive fragments, drugs, and natural products. Herein, we report the development and an in-depth evaluation of a tetrafluoroalkyl benziodoxole (TFBX) as a cysteine-selective chemoproteomic probe. We show that this probe features numerous key improvements compared to the traditionally used cysteine-reactive probes, including a superior target occupancy, faster labeling kinetics, and broader proteomic coverage, thus enabling profiling of cysteines directly in live cells. In addition, the fluorine "signature" of probe 7 constitutes an additional advantage resulting in a more confident adduct-amino acid site assignment in mass-spectrometry-based identification workflows. We demonstrate the utility of our new probe for proteome-wide target profiling by identifying the cellular targets of (-)-myrocin G, an antiproliferative fungal natural product with a to-date unknown mechanism of action. We show that this natural product and a simplified analogue target the X-ray repair cross-complementing protein 5 (XRCC5), an ATP-dependent DNA helicase that primes DNA repair machinery for nonhomologous end joining (NHEJ) upon DNA double-strand breaks, making them the first reported inhibitors of this biomedically highly important protein. We further demonstrate that myrocins disrupt the interaction of XRCC5 with DNA leading to sensitization of cancer cells to the chemotherapeutic agent etoposide as well as UV-light-induced DNA damage. Altogether, our next-generation cysteine-reactive probe enables broader and deeper profiling of the cysteinome, rendering it a highly attractive tool for elucidation of targets of electrophilic small molecules.
Collapse
Affiliation(s)
- Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Martin Tomanik
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Dany Pechalrieu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Anton Shuster
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Bruno Commare
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Antonio Togni
- Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
7
|
FGF/FGFR-Dependent Molecular Mechanisms Underlying Anti-Cancer Drug Resistance. Cancers (Basel) 2021; 13:cancers13225796. [PMID: 34830951 PMCID: PMC8616288 DOI: 10.3390/cancers13225796] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Deregulation of the FGF/FGFR axis is associated with many types of cancer and contributes to the development of chemoresistance, limiting the effectiveness of current treatment strategies. There are several mechanisms involved in this phenomenon, including cross-talks with other signaling pathways, avoidance of apoptosis, stimulation of angiogenesis, and initiation of EMT. Here, we provide an overview of current research and approaches focusing on targeting components of the FGFR/FGF signaling module to overcome drug resistance during anti-cancer therapy. Abstract Increased expression of both FGF proteins and their receptors observed in many cancers is often associated with the development of chemoresistance, limiting the effectiveness of currently used anti-cancer therapies. Malfunctioning of the FGF/FGFR axis in cancer cells generates a number of molecular mechanisms that may affect the sensitivity of tumors to the applied drugs. Of key importance is the deregulation of cell signaling, which can lead to increased cell proliferation, survival, and motility, and ultimately to malignancy. Signaling pathways activated by FGFRs inhibit apoptosis, reducing the cytotoxic effect of some anti-cancer drugs. FGFRs-dependent signaling may also initiate angiogenesis and EMT, which facilitates metastasis and also correlates with drug resistance. Therefore, treatment strategies based on FGF/FGFR inhibition (using receptor inhibitors, ligand traps, monoclonal antibodies, or microRNAs) appear to be extremely promising. However, this approach may lead to further development of resistance through acquisition of specific mutations, metabolism switching, and molecular cross-talks. This review brings together information on the mechanisms underlying the involvement of the FGF/FGFR axis in the generation of drug resistance in cancer and highlights the need for further research to overcome this serious problem with novel therapeutic strategies.
Collapse
|
8
|
Lee IN, Yang JT, Huang C, Huang HC, Wu YP, Chen JC. Elevated XRCC5 expression level can promote temozolomide resistance and predict poor prognosis in glioblastoma. Oncol Lett 2021; 21:443. [PMID: 33868481 PMCID: PMC8045174 DOI: 10.3892/ol.2021.12704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Drug resistance and disease recurrence are important contributors for the poor prognosis of glioblastoma multiforme (GBM). Temozolomide (TMZ), the standard chemotherapy for GBM treatment, can methylate DNA and cause the formation of double-strand breaks (DSBs). X-ray repair cross complementing 5 (XRCC5), also known as Ku80 or Ku86, is required for the repair of DSBs. The present study identified novel determinants that sensitize cells to TMZ, using an array-based short hairpin (sh)RNA library. Then, cBioportal, Oncomine, and R2 databases were used to analyze the association between gene expression levels and clinical characteristics. Subsequently, lentiviral shRNA or pCMV was used to knockdown or overexpress the gene of interest, and the effects on TMZ sensitivity were determined using a MTT assay and western blot analysis. TMZ-resistant cells were also established and were used in in vitro and in vivo experiments to analyze the role of the gene of interest in TMZ resistance. The results indicated that XRCC5 was effective in enhancing TMZ cytotoxicity. The results from the bioinformatics analysis revealed that XRCC5 mRNA expression levels were associated with clinical deterioration and lower overall survival rates. In addition, XRCC5 knockdown could significantly increase TMZ sensitivity in GBM cells, while XRCC5 overexpression caused the cancer cells to be resistant to TMZ. Both the in vivo and in vitro experiments showed that TMZ treatment could induce expression of XRCC5 in TMZ-resistant cells. Taken together these findings suggested that XRCC5 could be a promising target for GBM treatment and could also be used as a diagnostic marker for refractory GBM.
Collapse
Affiliation(s)
- I-Neng Lee
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C.,College of Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan, R.O.C
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 11221, Taiwan, R.O.C.,Department of Earth and Life Sciences, University of Taipei, Taipei 11153, Taiwan, R.O.C
| | - Hsiu-Chen Huang
- Department of Applied Science, National Tsing Hua University South Campus, Hsinchu 30014, Taiwan, R.O.C
| | - Yu-Ping Wu
- Department of Medical Research, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan, R.O.C
| | - Jui-Chieh Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 60004, Taiwan, R.O.C
| |
Collapse
|
9
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
10
|
Hu Y, Zhao QW, Wang ZC, Fang QQ, Zhu H, Hong DS, Liang XG, Lou D, Tan WQ. Co-transfection with BMP2 and FGF2 via chitosan nanoparticles potentiates osteogenesis in human adipose-derived stromal cells in vitro. J Int Med Res 2021; 49:300060521997679. [PMID: 33769121 PMCID: PMC8166400 DOI: 10.1177/0300060521997679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE To investigate if co-transfection of human bone morphogenetic protein 2 (BMP-2, BMP2) and human fibroblast growth factor 2 (FGF2, FGF2) via chitosan nanoparticles promotes osteogenesis in human adipose tissue-derived stem cells (ADSCs) in vitro. MATERIALS AND METHODS Recombinant BMP2 and/or FGF2 expression vectors were constructed and packaged into chitosan nanoparticles. The chitosan nanoparticles were characterized by atomic force microscopy. Gene and protein expression levels of BMP-2 and FGF2 in ADSCs in vitro were evaluated by real-time polymerase chain reaction (PCR), western blot, and enzyme-linked immunosorbent assay. Osteocalcin (OCN) and bone sialoprotein (BSP) gene expression were also evaluated by real-time PCR to assess osteogenesis. RESULTS The prepared chitosan nanoparticles were spherical with a relatively homogenous size distribution. The BMP2 and FGF2 vectors were successfully transfected into ADSCs. BMP-2 and FGF2 mRNA and protein levels were significantly up-regulated in the co-transfection group compared with the control group. OCN and BSP mRNA levels were also significantly increased in the co-transfection group compared with cells transfected with BMP2 or FGF2 alone, suggesting that co-transfection significantly enhanced osteogenesis. CONCLUSIONS Co-transfection of human ADSCs with BMP2/FGF2 via chitosan nanoparticles efficiently promotes the osteogenic properties of ADSCs in vitro.
Collapse
Affiliation(s)
- Ying Hu
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qing-Wei Zhao
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zheng-Cai Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Qing-Qing Fang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - He Zhu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dong-Sheng Hong
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xing-Guang Liang
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Dong Lou
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| |
Collapse
|
11
|
Abstract
Secretory proteins in tumor tissues are important components of the tumor microenvironment. Secretory proteins act on tumor cells or stromal cells or mediate interactions between tumor cells and stromal cells, thereby affecting tumor progression and clinical treatment efficacy. In this paper, recent research advances in secretory proteins in malignant tumors are reviewed.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiajie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Mingrong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|