1
|
Das PP, Gul MZ, Weber AM, Srivastava RK, Marathi B, Ryan EP, Ghazi IA. Rice Bran Extraction and Stabilization Methods for Nutrient and Phytochemical Biofortification, Nutraceutical Development, and Dietary Supplementation. Nutr Rev 2025; 83:692-712. [PMID: 39657228 PMCID: PMC11894254 DOI: 10.1093/nutrit/nuae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Rice is a global staple food crop for nearly half of the world's population. Rice bran along with the germ are essential components of whole-grain rice and have immense potential for enhancing human nutrition. Rice bran has a unique composition and distinct requirements for processing before it can be consumed by humans when compared with other cereal brans. The comprehensive overview and synthesis of rice bran processing include extending the shelf life for functional food product development and extraction of bioactive components. This narrative review highlights established and innovative stabilization approaches, including solvent extraction and enzymatic treatments, which are critical methods and technologies for wider rice bran availability. The nutrient and phytochemical profiles of rice bran may improve with new cultivar development and food-fortification strategies. The postharvest agricultural practices and processing techniques can reduce food waste while also supporting growers to produce novel pigmented cultivars that can enhance nutritional value for human health.
Collapse
Affiliation(s)
- Prajna Priyadarshini Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Mir Zahoor Gul
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| | - Annika M Weber
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, United States
| | - Rakesh K Srivastava
- Genomics, Pre-breeding, and Bioinformatics (GPB), Accelerated Crop Improvement (ACI), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana 502324, India
| | - Balram Marathi
- Department of Genetics and Plant Breeding, Agricultural College, Warangal, Telangana 506007, India
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University and Colorado School of Public Health, Fort Collins, CO 80523, United States
| | - Irfan A Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana 500046, India
| |
Collapse
|
2
|
Shen X, Zhang Y, Li J, Zhou Y, Butensky S, Zhang Y, Cai Z, DeWan AT, Khan SA, Yan H, Johnson CH, Zhu F. OncoSexome: the landscape of sex-based differences in oncologic diseases. Nucleic Acids Res 2025; 53:D1443-D1459. [PMID: 39535034 PMCID: PMC11701605 DOI: 10.1093/nar/gkae1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
The NIH policy on sex as biological variable (SABV) emphasized the importance of sex-based differences in precision oncology. Over 50% of clinically actionable oncology genes are sex-biased, indicating differences in drug efficacy. Research has identified sex differences in non-reproductive cancers, highlighting the need for comprehensive sex-based cancer data. We therefore developed OncoSexome, a multidimensional knowledge base describing sex-based differences in cancer (https://idrblab.org/OncoSexome/) across four key topics: antineoplastic drugs and responses (SDR), oncology-related biomarkers (SBM), risk factors (SRF) and microbial landscape (SML). SDR covers sex-based differences in 2051 anticancer drugs; SBM describes 12 551 sex-differential biomarkers; SRF illustrates 350 sex-dependent risk factors; SML demonstrates 1386 microbes with sex-differential abundances associated with cancer development. OncoSexome is unique in illuminating multifaceted influences of biological sex on cancer, providing both external and endogenous contributors to cancer development and describing sex-based differences for the broadest oncological classes. Given the increasing global research interest in sex-based differences, OncoSexome is expected to impact future precision oncology practices significantly.
Collapse
Affiliation(s)
- Xinyi Shen
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Jiamin Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | | | - Yechi Zhang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
- School of Public Health, Zhejiang University, Hangzhou 310058, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Sajid A Khan
- Yale School of Medicine, Yale University, New Haven 06510, USA
- Division of Surgical Oncology, Department of Surgery, Yale School of Medicine, New Haven 06510, USA
| | - Hong Yan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China
| | - Caroline H Johnson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
3
|
Celiberto F, Aloisio A, Girardi B, Pricci M, Iannone A, Russo F, Riezzo G, D’Attoma B, Ierardi E, Losurdo G, Di Leo A. Fibres and Colorectal Cancer: Clinical and Molecular Evidence. Int J Mol Sci 2023; 24:13501. [PMID: 37686308 PMCID: PMC10488173 DOI: 10.3390/ijms241713501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading causes of mortality for cancer in industrialized countries. The link between diet and CRC is well-known, and presumably CRC is the type of cancer which is most influenced by dietary habits. In Western countries, an inadequate dietary intake of fibers is endemic, and this could be a driving factor in the increase of CRC incidence. Indeed, several epidemiologic studies have elucidated an inverse relationship between daily fiber intake and risk of CRC. Long-term prognosis in CRC survivors is also dependent on dietary fibers. Several pathogenetic mechanisms may be hypothesized. Fibers may interfere with the metabolism of bile acids, which may promote colon carcinogenesis. Further, fibers are often contained in vegetables which, in turn, contain large amounts of antioxidant agents like resveratrol, polyphenols, or phytoestrogens. Moreover, fibers can be digested by commensal flora, thus producing compounds such as butyrate, which exerts an antiproliferative effect. Finally, fibers may modulate gut microbiota, whose composition has shown to be associated with CRC onset. In this regard, dietary interventions based on high-fiber-containing diets are ongoing to prevent CRC development, especially in patients with high potential for this type of tumor. Despite the fact that outcomes are preliminary, encouraging results have been observed.
Collapse
Affiliation(s)
- Francesca Celiberto
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
- Ph.D. Course in Organs and Tissues Transplantation and Cellular Therapies, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Adriana Aloisio
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | | | | | - Andrea Iannone
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Francesco Russo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.R.); (G.R.); (B.D.)
| | - Giuseppe Riezzo
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.R.); (G.R.); (B.D.)
| | - Benedetta D’Attoma
- Functional Gastrointestinal Disorders Research Group, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy; (F.R.); (G.R.); (B.D.)
| | - Enzo Ierardi
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Giuseppe Losurdo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| | - Alfredo Di Leo
- Section of Gastroenterology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari, 70124 Bari, Italy
| |
Collapse
|
4
|
Zhu Q, Qi N, Shen L, Lo CC, Xu M, Duan Q, Ollberding NJ, Wu Z, Hui DY, Tso P, Liu M. Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Nutrients 2023; 15:2175. [PMID: 37432375 PMCID: PMC10180580 DOI: 10.3390/nu15092175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiome plays an essential role in regulating lipid metabolism. However, little is known about how gut microbiome modulates sex differences in lipid metabolism. The present study aims to determine whether gut microbiota modulates sexual dimorphism of lipid metabolism in mice fed a high-fat diet (HFD). Conventional and germ-free male and female mice were fed an HFD for four weeks, and lipid absorption, plasma lipid profiles, and apolipoprotein levels were then evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. After 4-week HFD consumption, the females exhibited less body weight gain and body fat composition and significantly lower triglyceride levels in very-low-density lipoprotein (VLDL) and cholesterol levels in high-density lipoprotein (HDL) compared to male mice. The fecal microbiota analysis revealed that the male mice were associated with reduced gut microbial diversity. The female mice had considerably different microbiota composition compared to males, e.g., enriched growth of beneficial microbes (e.g., Akkermansia) and depleted growth of Adlercreutzia and Enterococcus. Correlation analyses suggested that the different compositions of the gut microbiota were associated with sexual dimorphism in body weight, fat mass, and lipid metabolism in mice fed an HFD. Our findings demonstrated significant sex differences in lipid metabolism and the microbiota composition at baseline (during LFD), along with sex-dependent responses to HFD. A comprehensive understanding of sexual dimorphism in lipid metabolism modulated by microbiota will help to develop more sex-specific effective treatment options for dyslipidemia and metabolic disorders in females.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Chunmin C. Lo
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Zhe Wu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| |
Collapse
|
5
|
Weber AM, Ibrahim H, Baxter BA, Kumar R, Maurya AK, Kumar D, Agarwal R, Raina K, Ryan EP. Integrated Microbiota and Metabolite Changes following Rice Bran Intake during Murine Inflammatory Colitis-Associated Colon Cancer and in Colorectal Cancer Survivors. Cancers (Basel) 2023; 15:2231. [PMID: 37190160 PMCID: PMC10136752 DOI: 10.3390/cancers15082231] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
Dietary rice bran-mediated inhibition of colon carcinogenesis was demonstrated previously for carcinogen-induced rodent models via multiple anti-cancer mechanisms. This study investigated the role of dietary rice bran-mediated changes to fecal microbiota and metabolites over the time course of colon carcinogenesis and compared murine fecal metabolites to human stool metabolic profiles following rice bran consumption by colorectal cancer survivors (NCT01929122). Forty adult male BALB/c mice were subjected to azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colitis-associated colon carcinogenesis and randomized to control AIN93M (n = 20) or diets containing 10% w/w heat-stabilized rice bran (n = 20). Feces were serially collected for 16S rRNA amplicon sequencing and non-targeted metabolomics. Fecal microbiota richness and diversity was increased in mice and humans with dietary rice bran treatment. Key drivers of differential bacterial abundances from rice bran intake in mice included Akkermansia, Lactococcus, Lachnospiraceae, and Eubacterium xylanophilum. Murine fecal metabolomics revealed 592 biochemical identities with notable changes to fatty acids, phenolics, and vitamins. Monoacylglycerols, dihydroferulate, 2-hydroxyhippurate (salicylurate), ferulic acid 4-sulfate, and vitamin B6 and E isomers significantly differed between rice bran- and control-fed mice. The kinetics of murine metabolic changes by the host and gut microbiome following rice bran consumption complemented changes observed in humans for apigenin, N-acetylhistamine, and ethylmalonate in feces. Increased enterolactone abundance is a novel diet-driven microbial metabolite fecal biomarker following rice bran consumption in mice and humans from this study. Dietary rice bran bioactivity via gut microbiome metabolism in mice and humans contributes to protection against colorectal cancer. The findings from this study provide compelling support for rice bran in clinical and public health guidelines for colorectal cancer prevention and control.
Collapse
Affiliation(s)
- Annika M. Weber
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA
| | - Hend Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Bridget A. Baxter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Robin Kumar
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
| | - Akhilendra K. Maurya
- Department of Pharmaceutical Sciences, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Dileep Kumar
- Department of Pharmaceutical Sciences, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD 57007, USA
- Department of Pharmaceutical Sciences, University of Colorado Denver—Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Elizabeth P. Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Yang H, Li S, Qu Y, Li L, Li Y, Wang D. Anti-Colorectal Cancer Effects of Inonotus hispidus (Bull.: Fr.) P. Karst. Spore Powder through Regulation of Gut Microbiota-Mediated JAK/STAT Signaling. Nutrients 2022; 14:nu14163299. [PMID: 36014805 PMCID: PMC9415721 DOI: 10.3390/nu14163299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/06/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Inonotus hispidus (Bull.: Fr.) P. Karst. spore powder (IHS) contains polyphenols and triterpenoids with pharmacological effects. Here, we analyzed its composition, and we investigated the effects of IHS on colorectal cancer (CRC) in B6/JGpt-Apcem1Cin(min)/Gpt (ApcMin/+) mice and its potential mechanisms by analyzing gut microbiota and serum metabolomics. The enzyme-linked immunosorbent assays and Western blotting were used to confirm the changes in the cytokine and protein levels associated with IHS administration. The IHS affected the abundance of gut microbiota and the level of L-arginine (L-Arg). Furthermore, the IHS influenced T cells in ApcMin/+ mice by increasing the interleukin (IL)-2 and decreasing the IL-5, -6, and -10 levels, thus suppressing tumor development. Overall, IHS showed anti-CRC properties in ApcMin/+ mice by affecting the gut microbiota and serum metabolites, which in turn affected the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling, and regulated the abundance of CD8+ T cells. These results provide experimental support for the potential future treatment of CRC with IHS.
Collapse
Affiliation(s)
- Hongxin Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Siyu Li
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
| | - Yu Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (D.W.)
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Y.L.); (D.W.)
| |
Collapse
|