1
|
Smirnova OA, Bartosch B, Zakirova NF, Kochetkov SN, Ivanov AV. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology. Int J Mol Sci 2018; 19:1219. [PMID: 29673197 PMCID: PMC5979612 DOI: 10.3390/ijms19041219] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 04/03/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) are produced in various cell compartments by an array of enzymes and processes. An excess of ROS production can be hazardous for normal cell functioning, whereas at normal levels, ROS act as vital regulators of many signal transduction pathways and transcription factors. ROS production is affected by a wide range of viruses. However, to date, the impact of viral infections has been studied only in respect to selected ROS-generating enzymes. The role of several ROS-generating and -scavenging enzymes or cellular systems in viral infections has never been addressed. In this review, we focus on the roles of biogenic polyamines and oxidative protein folding in the endoplasmic reticulum (ER) and their interplay with viruses. Polyamines act as ROS scavengers, however, their catabolism is accompanied by H₂O₂ production. Hydrogen peroxide is also produced during oxidative protein folding, with ER oxidoreductin 1 (Ero1) being a major source of oxidative equivalents. In addition, Ero1 controls Ca2+ efflux from the ER in response to e.g., ER stress. Here, we briefly summarize the current knowledge on the physiological roles of biogenic polyamines and the role of Ero1 at the ER, and present available data on their interplay with viral infections.
Collapse
Affiliation(s)
- Olga A Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Birke Bartosch
- Cancer Research Center Lyon, INSERM U1052 and CNRS 5286, Lyon University, 69003 Lyon, France.
- DevWeCan Laboratories of Excellence Network (Labex), Lyon 69003, France.
| | - Natalia F Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Sergey N Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| | - Alexander V Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov str. 32, Moscow 119991, Russia.
| |
Collapse
|
2
|
Seldeen KL, McDonald CB, Deegan BJ, Bhat V, Farooq A. DNA plasticity is a key determinant of the energetics of binding of Jun-Fos heterodimeric transcription factor to genetic variants of TGACGTCA motif. Biochemistry 2010; 48:12213-22. [PMID: 19921846 DOI: 10.1021/bi901392k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Jun-Fos heterodimeric transcription factor is a target of a diverse array of signaling cascades that initiate at the cell surface and converge in the nucleus and ultimately result in the expression of genes involved in a multitude of cellular processes central to health and disease. Here, using isothermal titration calorimetry in conjunction with circular dichroism, we report the effect of introducing single nucleotide variations within the TGACGTCA canonical motif on the binding of bZIP domains of Jun-Fos heterodimer to DNA. Our data reveal that the Jun-Fos heterodimer exhibits differential energetics in binding to such genetic variants in the physiologically relevant micromolar to submicromolar range with the TGACGTCA canonical motif affording the highest affinity. Although binding energetics are largely favored by enthalpic forces and accompanied by entropic penalty, neither the favorable enthalpy nor the unfavorable entropy correlates with the overall free energy of binding in agreement with the enthalpy-entropy compensation phenomenon widely observed in biological systems. However, a number of variants including the TGACGTCA canonical motif bind to the Jun-Fos heterodimer with high affinity through having overcome such enthalpy-entropy compensation barrier, arguing strongly that better understanding of the underlying invisible forces driving macromolecular interactions may be the key to future drug design. Our data also suggest that the Jun-Fos heterodimer has a preference for binding to TGACGTCA variants with higher AT content, implying that the DNA plasticity may be an important determinant of protein-DNA interactions. This notion is further corroborated by the observation that the introduction of genetic variations within the TGACGTCA motif allows it to sample a much greater conformational space. Taken together, these new findings further our understanding of the role of DNA sequence and conformation on protein-DNA interactions in thermodynamic terms.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
3
|
Qin C, Samudio I, Ngwenya S, Safe S. Estrogen-dependent regulation of ornithine decarboxylase in breast cancer cells through activation of nongenomic cAMP-dependent pathways. Mol Carcinog 2004; 40:160-170. [PMID: 15224348 DOI: 10.1002/mc.20030] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
17beta-estradiol (E2) induces ornithine decarboxylase (ODC) activity in several E2-responsive tissues/cells, and this study investigated the mechanism of hormone-induced transactivation in MCF-7 human breast cancer cells. E2-induced reporter gene (luciferase) activity in MCF-7 cells transfected with a construct (pODC1) containing the -164 to +29 region of the human ODC gene promoter linked to bacterial luciferase. This promoter sequence contains GC-rich Sp1 binding sites, CAAT, LSF, cAMP response element (CRE), and TATA motifs. Deletion and mutational analysis of the ODC promoter showed that both CAAT and LSF sites were required for hormone-induced transactivation. Gel mobility shift and DNA footprinting assays indicated that NFYA and LSF bound the CAAT and LSF motifs, respectively, and GAL4-NFYA/GAL4-LSF chimeras were also activated by E2, 8-bromo-cAMP, and protein kinase A (PKA) expression plasmid. However, E2-induced transactivation of GAL4-NFYA and GAL4-LSF was blocked by the PKA inhibitor SQ22356 indicating that the mechanism of ODC induction by E2 involves upregulation of cAMP/PKA through nongenomic pathways of estrogen action.
Collapse
Affiliation(s)
- Chunhua Qin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | |
Collapse
|
4
|
Zhao B, Butler AP. Core promoter involvement in the induction of rat ornithine decarboxylase by phorbol esters. Mol Carcinog 2001; 32:92-9. [PMID: 11746821 DOI: 10.1002/mc.1068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Overexpression of ornithine decarboxylase (ODC) is an important oncogenic event in tumorigenesis. Although ODC was one of the first genes described whose product is inducible by 12-O-tetradecanoylphorbol-13-acetate (TPA), the mechanisms of ODC transcriptional regulation have remained elusive. In this study, we systematically analyzed the rat ODC core promoter region for novel TPA response elements. Analysis of linker scanning mutants of the ODC promoter from the TATA box to the transcription start site demonstrated that mutation of the TATA box reduced the TPA induction ratio by 40%, while the basal ODC promoter activity was not significantly changed. A novel region between nt - 20 to - 10 was shown to be critical for both basal promoter activity and induction by TPA. Random mutagenesis of this region showed that conversion of the GC-rich wild-type sequence into a T-rich sequence could either substantially increase the basal promoter activity and decrease the TPA induction ratio or dramatically reduce the basal promoter activity, depending on the T content. Mutant R5, containing an ATTT sequence at nt - 15 to - 12, caused a more than twofold increase of basal promoter activity and 80% reduction of TPA induction ratio. We suggest that this region interacts with components of the general transcription machinery and that the strength of this interaction is mediated by the T-content in this region.
Collapse
Affiliation(s)
- B Zhao
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | |
Collapse
|
5
|
Dawson MI, Park JH, Chen G, Chao W, Dousman L, Waleh N, Hobbs PD, Jong L, Toll L, Zhang X, Gu J, Agadir A, Merchant JL, Bai L, Verma AK, Thacher SM, Chandraratna RA, Shroot B, Hill DL. Retinoic acid (RA) receptor transcriptional activation correlates with inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase (ODC) activity by retinoids: a potential role for trans-RA-induced ZBP-89 in ODC inhibition. Int J Cancer 2001; 91:8-21. [PMID: 11149424 DOI: 10.1002/1097-0215(20010101)91:1<8::aid-ijc1007>3.0.co;2-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evaluation of retinoic acid receptor (RAR) subtype-selective alpha and gamma agonists and antagonists and a retinoid X receptor (RXR) class-selective agonist for efficacy at inhibiting both induction of ornithine decarboxylase (ODC) by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse epidermis and rat tracheal epithelial cells and the appearance of papillomas in mouse epidermis treated in the 2-stage tumor initiation-promotion model indicated that (i) RXR class-selective transcriptional agonists, such as MM11246, were not involved in ODC inhibition; (ii) RAR-selective agonists that induce gene transcription from RA-responsive elements (RAREs) were active at low concentrations; (iii) RAR-selective antagonists that bind RARs and inhibit AP-1 activation on the collagenase promoter but do not activate RAREs to induce gene transcription were less effective inhibitors; and (iv) RARgamma-selective retinoid agonists were more effective inhibitors of TPA-induced ODC activity than RARalpha-selective agonists. These results suggest that RARE activation has a more important role in inhibition of ODC activity than RXR activation or AP-1 inhibition and that RARgamma-selective agonists would be the most useful inhibitors of epithelial cell proliferation induced by tumor promoters. The natural retinoid all-trans-RA induced expression of transcription factor ZBP-89, which represses activation of the GC box in the ODC promoter by the transcription factor Sp1.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Northern
- Blotting, Western
- Carcinogens
- Cell Survival/drug effects
- Collagenases/genetics
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Epidermis/metabolism
- Epithelial Cells/metabolism
- Female
- HeLa Cells
- Humans
- Mice
- Mice, Hairless
- Neoplasms, Experimental/metabolism
- Ornithine Decarboxylase Inhibitors
- Papilloma/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Kinases/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/metabolism
- Response Elements
- Retinoic Acid Receptor alpha
- Retinoids/metabolism
- Retinoids/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Time Factors
- Trachea/metabolism
- Transcription Factor AP-1/antagonists & inhibitors
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Ultraviolet Rays
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- M I Dawson
- Molecular Medicine Research Institute, Mountain View, CA 94043, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Schleiffer R, Duranton B, Gossé F, Bergmann C, Raul F. Nitric oxide synthase inhibition promotes carcinogen-induced preneoplastic changes in the colon of rats. Nitric Oxide 2000; 4:583-9. [PMID: 11139366 DOI: 10.1006/niox.2000.0310] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
l-Arginine is metabolized either to polyamines through arginase and ornithine decarboxylase (ODC) activities or to citrulline and nitric oxide (NO, nitrogen monoxide) through the NO synthase (NOS) pathway. Polyamine levels and ODC activity are high in tumor cells. The aim of this study was to test whether N(G)-nitro-l-arginine methyl ester (l-NAME), an inhibitor of NOS, modulates colon carcinogenesis. Adult male Wistar rats were treated with azoxymethane (AOM, 15 mg/kg ip), a chemical carcinogen, once a week for 2 weeks. One week after the second injection the rats were randomly divided into two groups. One group (n = 8) received l-NAME (10 mg/kg body wt/day) in drinking water. The control group (n = 8) received tap water. After 5 weeks, the rats receiving l-NAME showed enhanced mean basal arterial blood pressure, decreased heart rate, and a significant decrease of the cGMP content in the colonic mucosa. In both groups, AOM induced the formation of colonic aberrant crypt foci (ACF). In l-NAME-treated rats, the number of ACF was higher than in controls by 47%. ODC activity was enhanced by 11-fold. S-Adenosyl-methionine-decarboxylase activity and putrescine concentration were significantly increased in the colonic mucosa of l-NAME-treated rats. The data suggest that l-NAME promotes carcinogen-induced preneoplastic changes in the colon by inhibiting NOS activity and by stimulating polyamine biosynthesis.
Collapse
Affiliation(s)
- R Schleiffer
- ULP/CJF INSERM 95-09, Laboratoire du Contrôle Métabolique et Nutritionnel en Oncologie Digestive, IRCAD, 1, Place de l'Hôpital, 67091 Strasbourg-Cedex, France
| | | | | | | | | |
Collapse
|
7
|
Zhao B, Kumar AP, Butler AP. A negative regulatory element within the proximal promoter region of the rat ornithine decarboxylase gene. Mol Carcinog 2000; 29:212-8. [PMID: 11170259 DOI: 10.1002/1098-2744(200012)29:4<212::aid-mc1003>3.0.co;2-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A putative Ets site with a core of GGAA located at nt -88 to -85 of the rat ornithine decarboxylase (ODC) gene was characterized by site-directed mutagenesis and transient expression assays. Mutation of this site, when in pODClux2m, which contains a cluster of four Sp1-binding sites, resulted in a 2.6-fold increase in basal promoter activity in untreated cells, whereas the ratio of activity in 12-O-tetradecanoylphorbol-13-acetate (TPA)-treated cells relative to the ratio in untreated cells (the induction ratio) remained largely unchanged. However, when the mutation was in pODClux168, which contains only a single Sp1-binding site (GC box V), it caused little alteration to either basal promoter activity or TPA induction ratio. A protein of 55-60 kDa was found specifically bound to this site, as shown by ultraviolet cross-linking assay. In competition assay and methylation interference assay, this protein was shown to occupy the GGAA core, although it showed no antigenic relation to c-Ets-1 in an supershift assay. We suggest that this protein binds specifically to the GGAA core and functions to inhibit activation of the ODC promoter by distal elements, including the upstream Sp1 sites.
Collapse
Affiliation(s)
- B Zhao
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, Texas 78957, USA
| | | | | |
Collapse
|
8
|
Jansen AP, Colburn NH, Verma AK. Tumor promoter-induced ornithine decarboxylase gene expression occurs independently of AP-1 activation. Oncogene 1999; 18:5806-13. [PMID: 10523861 DOI: 10.1038/sj.onc.1202965] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Activator protein 1 (AP-1) transactivation and ornithine decarboxylase (ODC) activity have been established as essential downstream effectors of mouse skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate (TPA). Previous studies have shown that inhibition of either AP-1 transactivation or ODC activity suppressed tumor promoter-induced transformation. By utilizing the JB6 mouse epidermal cell system, the present study determined whether TPA-induced ODC gene expression and activity is independent of AP-1 transactivation. In three independent JB6 (P+) clones, stably expressing dominant negative c-jun, TPA-induced ODC gene expression and activity were similar compared to JB6 P+ cells expressing vector-control alone, while AP-1-dependent transcription was inhibited. Transformation-insensitive JB6 (P-) cells, which lack TPA-inducible c-jun expression, also exhibited similar induction of ODC activity by TPA. alpha-Difluoromethylornithine, an irreversible inhibitor of ODC, attenuated, at an equivalent IC50, both TPA-induced ODC activity and anchorage-independent growth of JB6 P+ cells, despite no inhibition of AP-1 transactivation. Taken together, the results presented indicate that TPA-induced ODC gene expression and activity are independent of AP-1 transactivation. Because inhibition of either AP-1 or ODC precludes TPA-induced transformation, and because ODC is independent of AP-1, we propose that there are at least two pathways to transformation. Each pathway is required but not sufficient for transformation.
Collapse
Affiliation(s)
- A P Jansen
- Department of Human Oncology, Medical School, University of Wisconsin, Madison, Wisconsin, WI 53792, USA
| | | | | |
Collapse
|
9
|
Kumar AP, Butler AP. Transcription factor Sp3 antagonizes activation of the ornithine decarboxylase promoter by Sp1. Nucleic Acids Res 1997; 25:2012-9. [PMID: 9115370 PMCID: PMC146696 DOI: 10.1093/nar/25.10.2012] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ornithine decarboxylase (ODC) expression is important for proliferation and is elevated in many tumor cells. We previously showed that Sp1 is a major positive regulator of ODC transcription. In this paper we have investigated transcriptional regulation of rat ODC by the closely related factor Sp3. While over-expression of Sp1 caused a dramatic activation of the ODC promoter, over-expression of Sp3 caused little or no activation in either Drosophila SL2 cells (lacking endogenous Sp1 or Sp3) or in H35 rat hepatoma cells. Furthermore, co-transfection studies demonstrated that Sp3 abolished trans -activation of the ODC promoter by Sp1. DNase I footprint studies and electrophoretic mobility shift assays demonstrated that both recombinant Sp1 and Sp3 bind specifically to several sites within the ODC promoter also protected by nuclear extracts, including overlapping GC and CT motifs located between -116 and -104. This CT element is a site of negative ODC regulation. Mutation of either element reduced binding, but mutation of both sites was required to eliminate binding of either Sp1 or Sp3. These results demonstrate that ODC is positively regulated by Sp1 and negatively regulated by Sp3, suggesting that the ratio of these transcription factors may be an important determinant of ODC expression during development or transformation.
Collapse
Affiliation(s)
- A P Kumar
- The University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville, TX 78957, USA
| | | |
Collapse
|
10
|
Xue GZ, Zheng ZS, Chen RZ, Lloyd MB, Prystowsky JH. Phorbol 12-myristate 13-acetate inhibits epidermal growth factor signalling in human keratinocytes, leading to decreased ornithine decarboxylase activity. Biochem J 1996; 319 ( Pt 2):641-8. [PMID: 8912706 PMCID: PMC1217815 DOI: 10.1042/bj3190641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Several studies have suggested that murine and human keratinocytes respond differently to phorbol 12-myristate 13-acetate (PMA). Using an in vitro assay, we found that in contrast to its effect on murine skin, PMA did not induce ornithine decarboxylase (ODC) activity in human skin biopsies. To explore the signalling induced by PMA and to determine whether an in vitro culture system could be used to predict biological activity of retinoids in human keratinocytes, we studied a simian virus 40 (SV40)-transformed human keratinocyte cell line. Epidermal growth factor (EGF) stimulates ODC activity and increases the steady-state level of ODC mRNA in a dose- and time-dependent manner in these cells [Prystowsky, Clevenger and Zheng (1993) Exp. Dermatol. 2, 125-132]. In this report, 10(-10) M-10(-7) M PMA induced ODC mRNA and enzyme synthesis at 7 h, but did not significantly induce ODC activity and inhibited the EGF induction of ODC activity. To explore the mechanism whereby PMA interfered with EGF signalling, the effect of PMA on EGF binding to its cell-surface receptor was studied; acute treatment with PMA (within 7 h) decreased EGF binding to 41-57% of the baseline level. In contrast, chronic treatment with PMA (24 h) increased EGF binding to 156% of the baseline level and was associated with an increase in quantity of EGF receptor protein. Protein kinase C (PKC) activation correlated with the acute decrease in EGF binding following PMA treatment. In summary, PMA induced ODC mRNA and ODC enzyme synthesis, while steady-state levels of immunoprecipitable ODC enzyme protein and ODC activity were not increased, demonstrating possible increased turnover of ODC enzyme protein. Additionally, PMA inhibited the induction of ODC by EGF through decreased EGF binding, possibly mediated by PKC activation. Finally treatment of the keratinocytes with retinoids including etretinate, Ro13-7410, etarotene, Ro40-8757, 13-cisretinoic acid, and acitretin blocked the PMA induction of ODC mRNA, suggesting this in vitro model could be a valuable screening assay for predicting biological activity in humans.
Collapse
Affiliation(s)
- G Z Xue
- Department of Dermatology, Columbia University, New York, NY, USA
| | | | | | | | | |
Collapse
|
11
|
Reddig PJ, Kim YJ, Verma AK. Localization of the 12-O-tetradecanoylphorbol-13-acetate response of the human ornithine decarboxylase promoter to the TATA box. Mol Carcinog 1996; 17:92-104. [PMID: 8890958 DOI: 10.1002/(sici)1098-2744(199610)17:2<92::aid-mc6>3.0.co;2-v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In a previous study, we narrowed the region of the human ornithine decarboxylase (ODC) promoter responsive to 12-O-tetradecanoylphorbol-13-acetate (TPA) to nt -42 to +54 around the transcription initiation site (Kim YJ, Pan H, Verma AK, Mol Carcinog 10:169-179, 1994). Here we report defining the role of the TATA box in TPA-induced transcription from the -42/+54 ODC promoter fragment. A transversion mutation at the third position of the TATA box (TATAAGT-->TAAAAGT) reduced TPA responsiveness of the reporter construct -42/+54 ODC-Luc by 49%. Electrophoretic mobility shift assays (EMSAs) using HeLa cell nuclear protein extracts revealed no differences in the binding pattern between the natural -42/+54 ODC promoter element and the -42/+54 ODC promoter element containing the T-->A mutation. However, antibodies to the general transcription factor TFIIB disrupted the DNA-protein complexes normally formed with the -42/+54 ODC promoter element in EMSAs. A consensus TATA box oligonucleotide formed two bands, with the faster mobility band displaying enhanced binding with nuclear protein extracts from TPA treated cells. Furthermore, incubation of HeLa cell nuclear extracts with an oligonucleotide containing the ODC TATA box also caused formation of two specific bands in EMSA. Both bands exhibited augmented binding to nuclear proteins from TPA-treated cells. Introduction of the T-->A transversion mutation in the ODC TATA oligonucleotide eliminated binding of the faster migrating band formed with the natural ODC TATA oligonucleotide. These results indicate that TPA modulation of the general transcription machinery may play a role in the TPA-activated transcription of the human ODC promoter.
Collapse
Affiliation(s)
- P J Reddig
- Department of Human Oncology, University of Wisconsin-Madison Medical School 53792, USA
| | | | | |
Collapse
|
12
|
Mar PK, Kumar AP, Kang DC, Zhao B, Martinez LA, Montgomery RL, Anderson L, Butler AP. Characterization of novel phorbol ester- and serum-responsive sequences of the rat ornithine decarboxylase gene promoter. Mol Carcinog 1995; 14:240-50. [PMID: 8519413 DOI: 10.1002/mc.2940140404] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Ornithine decarboxylase (ODC), the key regulatory enzyme in mammalian polyamine biosynthesis, is rapidly induced by mitogens and tumor promoters. We used transient expression assays and DNA-protein binding studies to examine the regulation of ODC promoter activity by phorbol esters and serum growth factors. A fragment of the ODC 5' flanking region (nt-1156 to +13) was sufficient to confer 12-O-tetradecanoylphorbol-13-acetate (TPA)-responsive expression to a luciferase reporter gene when transfected into H35 cells. However, induction by TPA was not observed in Rat2 fibroblasts, although refeeding of serum-starved Rat2 cells with fresh serum-containing medium rapidly induced a fivefold to sixfold increase in ODC promoter activity, maximal about 8 h after refeeding. Deletion analysis demonstrated that several sequences contributed to basal ODC promoter activity but that nt -92 to +13 was sufficient for induction by TPA or by serum. This sequence lacked canonical TPA-responsive elements, and an activator protein-1 (AP-1) consensus oligonucleotide failed to compete effectively for proteins binding to this region. Two of four protein complexes observed by gel-shift analysis of nt -92 to +13 were competitively inhibited by wild-type but not mutant oligonucleotides encompassing a variant cyclic AMP-response element (CRE) (ODC nt -50 to -42); however, a consensus CRE did not compete. Mutagenesis of this site demonstrated that it contributes to basal expression of the ODC promoter but not to TPA or serum responsiveness. Thus, we conclude that the proximal ODC promoter (nt -92 to +13) responds to TPA and serum stimulation in a cell-type-specific manner that is not mediated by canonical AP-1 elements.
Collapse
Affiliation(s)
- P K Mar
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Tseng CP, Verma AK. Lack of 12-O-tetradecanoylphorbol-13-acetate responsiveness of ornithine decarboxylase introns which have AP-1 consensus sequences. Mol Cell Biochem 1995; 146:7-12. [PMID: 7651380 DOI: 10.1007/bf00926875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The AP-1 consensus sequences (TGAGTCA) are the major 12-O-tetradecanoylphorbol113-acetate (TPA) responsive elements shared by several TPA inducible genes, such as c-sis, c-fos, c-myc, collagenase, stromelysin, hMTIIA and SV40. However, the role of AP-1 binding sites, which are present in the introns 3, 5, and 11 of ODC gene, in the regulation of TPA-induced ornithine decarboxylase (ODC) gene transcription are unknown. We determined the TPA responsiveness of the AP-1 sequences in the introns of ODC gene in CV-1 cells which induce ODC activity and mRNA in response to TPA treatment. ODC introns containing AP-1 sequences were inserted into the chloramphenicol acetyltransferase (CAT) reporter gene. Transient transfection of CV-1 cells with the intron-CAT constructs followed by TPA treatment did not induce CAT activity. However, when flanking regions of the AP-1 site in intron 3 were narrowed down to 74 bp, TPA induced CAT activity by 5- to 7-fold. The TPA-inducibility could be eliminated by mutation of the AP-1 site (TGAGTCA-->TGATGCCA or TGATGA) in 74 bp of intron 3. These results indicate that the AP-1 sequences in the intact ODC introns may not be responsive to TPA. The flanking sequences of the AP-1 site may be crucial to determine whether the AP-1 site is accessible to the TPA-induced transcriptional factor(s).
Collapse
Affiliation(s)
- C P Tseng
- Department of Human Oncology, University of Wisconsin Comprehensive Cancer Center, Madison 53792, USA
| | | |
Collapse
|
14
|
Kumar AP, Mar PK, Zhao B, Montgomery RL, Kang DC, Butler AP. Regulation of rat ornithine decarboxylase promoter activity by binding of transcription factor Sp1. J Biol Chem 1995; 270:4341-8. [PMID: 7876196 DOI: 10.1074/jbc.270.9.4341] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Ornithine decarboxylase (ODC) is the rate-limiting enzyme of polyamine biosynthesis. We investigated the transcriptional regulation of the rat ODC gene using transient expression assays. The 5'-flanking region (-1156 to +13) of the ODC gene was sufficient to mediate strong basal expression of a luciferase reporter. Sequences between -345 and -93 contributed to basal promoter activity. This region, containing five potential Sp1 binding sites, was analyzed by electrophoretic mobility shift assays. Three specific DNA-protein complexes were identified using H35 nuclear extracts and the -345/-93 ODC probe. Binding to all three was eliminated by competition with an oligonucleotide containing an Sp1 binding site, but not by a mutant Sp1 oligonucleotide. Preincubation with an antibody against Sp1 supershifted complexes associated with one or more of Sp1 binding sites 1-4 as well as with site 5. DNase I footprinting revealed two protected regions: PR-I (-92 to -130) and PR-II (-304 to -332). PR-I contains a putative binding site for Sp1 that was protected by recombinant Sp1 protein. Transfection studies in Schneider SL2 cells demonstrated that the ODC promoter is transactivated up to 350-fold by Sp1 and that this transactivation is dependent on the presence of Sp1 binding sites 1-4. Thus, although the ODC promoter binds multiple nuclear proteins, Sp1 or a related protein appears to be a critical determinant of ODC transcription, possibly through cooperative interactions between Sp1 and additional transcription factors.
Collapse
Affiliation(s)
- A P Kumar
- University of Texas M. D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | | | | | | | | | |
Collapse
|
15
|
Pegg AE, Shantz LM, Coleman CS. Ornithine decarboxylase as a target for chemoprevention. JOURNAL OF CELLULAR BIOCHEMISTRY. SUPPLEMENT 1995; 22:132-8. [PMID: 8538190 DOI: 10.1002/jcb.240590817] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
l-Ornithine decarboxylase (ODC) is essential for polyamine synthesis and growth in mammalian cells; it provides putrescine that is usually converted into the higher polyamines, spermidine and spermine. Many highly specific and potent inhibitors of ODC are based on the lead compound alpha-difluoromethylornithine (DFMO), which is an enzyme-activated irreversible inhibitor. DFMO is accepted as a substrate by ODC and is decarboxylated, leading to the formation of a highly reactive species that forms a covalent adduct with either cysteine-360 (90%) or lysine-69 (10%). Both modifications inactivate the enzyme. ODC activity is normally very highly regulated at both transcriptional and post-transcriptional levels according to the growth state of the cell and the intracellular polyamine content. Experimental over-production of ODC can be caused by either transfection with plasmids containing the ODC cDNA with part of the 5'-untranslated region (5'UTR) deleted under the control of a very strong viral promoter, or transfection of plasmids that cause the overproduction of eIF-4E, reported to be a limiting factor in the translation of mRNAs with extensive secondary structures in the 5'UTR. In both cases, unregulated overexpression of ODC transforms NIH 3T3 cells to a neoplastic state. Along with studies showing that many tumor promoters increase ODC activity and that a number of preneoplastic conditions and tumor samples show high levels of ODC, these results suggest that ODC may act as an oncogene in an appropriate background. This provides a rationale for the possible use of ODC inhibitors as chemopreventive agents.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | |
Collapse
|