1
|
Fatima G, Mehdi AA, Fedacko J, Hadi N, Magomedova A, Mehdi A. Fasting as Cancer Treatment: Myth or Breakthrough in Oncology. Cureus 2025; 17:e81395. [PMID: 40296920 PMCID: PMC12035504 DOI: 10.7759/cureus.81395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
The concept of fasting as a potential cancer treatment has garnered increasing interest, particularly in light of emerging evidence linking dietary interventions to cancer progression and therapy outcomes. This article explores whether fasting, either intermittent or prolonged, can be a viable standalone treatment for cancer or if its therapeutic potential lies in its adjunctive role. Current research suggests that fasting induces a metabolic shift, which may inhibit cancer cell proliferation by depriving them of essential nutrients. Additionally, fasting has been shown to enhance the body's stress resistance, promote autophagy, and possibly make cancer cells more vulnerable to standard treatments such as chemotherapy and radiotherapy. However, the application of fasting as a sole treatment for cancer remains controversial and lacks substantial clinical validation. While animal models and in vitro studies indicate promising results, the translation to human trials is complex, with various types of cancer responding differently to dietary interventions. Moreover, concerns about malnutrition, loss of muscle mass, and the overall health of cancer patients undergoing fasting without supervision must be addressed. The paper critically examines the myth and reality surrounding fasting as a cancer treatment, reviewing key studies and clinical trials to provide a comprehensive understanding of its efficacy and safety. While fasting may hold promise as a supportive therapy, particularly in combination with traditional treatments, there is currently insufficient evidence to support its use as a primary treatment modality. Further research is needed to establish the parameters in which fasting might be beneficial, such as specific cancer types, patient populations, and optimal fasting regimens. Thus, while the idea of fasting as a cancer breakthrough is compelling, it remains a complementary approach rather than a standalone solution in oncology.
Collapse
Affiliation(s)
- Ghizal Fatima
- Department of Public Health, Era's Lucknow Medical College and Hospital, Era University, Lucknow, IND
| | - Abbas A Mehdi
- Department of Biochemistry, Era's Lucknow Medical College and Hospital, Era University, Lucknow, IND
| | - Jan Fedacko
- Department of Cardiology, Pavol Jozef Safarik University, Kosice, Kosice, SVK
| | - Najah Hadi
- Department of Medicine, University of Kufa, Najaf, IRQ
| | | | - Ammar Mehdi
- Department of Pediatric Dentistry, Career Post Graduate Institute of Dental Sciences and Hospital, Lucknow, IND
| |
Collapse
|
2
|
Ma L, Lu QY, Lim S, Han G, Boros LG, Desai M, Yee JK. The Effect of Flavonoids and Topiramate on Glucose Carbon Metabolism in a HepG2 Steatosis Cell Culture Model: A Stable Isotope Study. Nutrients 2025; 17:564. [PMID: 39940422 PMCID: PMC11820484 DOI: 10.3390/nu17030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/26/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
Background: Insufficient treatment options are available for metabolic dysfunction-associated steatotic liver disease (MASLD). Flavonoids and topiramate have been studied for weight loss but need investigation into their effects on liver metabolism. This study's aim was to examine the effects of flavonoids or topiramate on glucose metabolic carbon flux in a cell culture model of steatosis. Methods: Steatosis was induced in HepG2 cells through exposure to oleic acid (OA, 0.5 mml/L) conjugated to bovine serum albumin (2:1). Additionally, 50% U13C-glucose was supplied in the medium as a stable isotope tracer. Cells were treated with DMSO, 10 μM of naringenin, morin, silibinin, or topiramate (44 μM) for 72 h. A non-steatotic, untreated HepG2 cell control was included. Cell extracts were analyzed by gas chromatography/mass spectrometry and mass isotopomer distribution analysis for glycogen synthesis, de novo fatty acid synthesis, tricarboxylic acid (TCA) cycle activity, and ribose synthesis. Groups were compared by ANOVA with Tukey's pair-wise testing. Results: Compared to untreated HepG2 controls, OA-exposed steatotic cells exhibited increased lipid accumulation by ORO staining (1.6-fold), enhanced palmitate de novo synthesis, reduced pyruvate carboxylase/pyruvate dehydrogenase (PC/PDH) ratio, and reduced ribose synthesis. Treatment with topiramate or silibinin ameliorated the lipid accumulation (1.3-fold) and mitigated enhancement of de novo synthesis. Morin-treated cells exhibited enhanced de novo synthesis but suppressed ribose synthesis. Conclusions: Potential mechanisms of reduced lipid accumulation by topiramate and silibinin may include suppression of palmitate de novo synthesis and a relative decrease in carbon flux through the PDH pathway. Further studies are needed on potential utility in MASLD based on their specific metabolic effects.
Collapse
Affiliation(s)
- Li Ma
- The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA; (L.M.); (G.H.); (M.D.)
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), No. 1 Qianhuhoucun Village, Zhongshan Gate, Nanjing 210014, China
| | - Qing-Yi Lu
- Center for Human Nutrition, Department of Medicine, and Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Shu Lim
- The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA; (L.M.); (G.H.); (M.D.)
| | - Guang Han
- The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA; (L.M.); (G.H.); (M.D.)
| | - Laszlo G. Boros
- Medicine and Health Care Division, Hungarian Society of Natural Sciences, Jászai Mari Square 4/a, Floor/Door 1/1, H-1137 Budapest, Hungary;
| | - Mina Desai
- The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA; (L.M.); (G.H.); (M.D.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at the University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Jennifer K. Yee
- The Lundquist Institute of Biomedical Innovation at Harbor-UCLA Medical Center, 1124 West Carson Street, Torrance, CA 90502, USA; (L.M.); (G.H.); (M.D.)
- Department of Pediatrics, David Geffen School of Medicine at the University of California, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Kooshan Z, Cárdenas-Piedra L, Clements J, Batra J. Glycolysis, the sweet appetite of the tumor microenvironment. Cancer Lett 2024; 600:217156. [PMID: 39127341 DOI: 10.1016/j.canlet.2024.217156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/17/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Cancer cells display an altered metabolic phenotype, characterised by increased glycolysis and lactate production, even in the presence of sufficient oxygen - a phenomenon known as the Warburg effect. This metabolic reprogramming is a crucial adaptation that enables cancer cells to meet their elevated energy and biosynthetic demands. Importantly, the tumor microenvironment plays a pivotal role in shaping and sustaining this metabolic shift in cancer cells. This review explores the intricate relationship between the tumor microenvironment and the Warburg effect, highlighting how communication within this niche regulates cancer cell metabolism and impacts tumor progression and therapeutic resistance. We discuss the potential of targeting the Warburg effect as a promising therapeutic strategy, with the aim of disrupting the metabolic advantage of cancer cells and enhancing our understanding of this complex interplay within the tumor microenvironment.
Collapse
Affiliation(s)
- Zeinab Kooshan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Lilibeth Cárdenas-Piedra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia; Center for Genomics and Personalised Health, Translational Research Institute, Queensland University of Technology, Brisbane, Australia; ARC Training Centre for Cell & Tissue Engineering Technologies, Brisbane, Australia.
| |
Collapse
|
4
|
Jiang L, Meng Q, Liu L, Li W. A Comprehensive Review on Molecular Mechanisms, Treatments, and Brief Role of Natural Products in Hepatocellular Cancer. Nat Prod Commun 2024; 19. [DOI: 10.1177/1934578x241284873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Most initial liver cancers are hepatocellular carcinomas (HCC), which make up the vast majority of cases. Hepatitis B or C virus infection as well as alcohol consumption is among the key risk factors. The significance of the most intriguing soluble factors as indicators for early diagnosis and as suggested targets for therapy in light of the increasing challenges in precision medicine. The development of HCC is influenced by a complex combination between pro-inflammatory and anti-inflammatory cytokines and their signalling cascades. Recently,researchers are aims to assess the potential of a number of distinct molecular cascade/cascade including cytokines to function as key players with particular underlying etiologies. Increasing our knowledge of the signaling network that links retro differentiation and inflammationmay help us find novel therapeutic targets and develop combined therapies or treatments that work against tumors with a significant degree of heterogeneity. With nursing processes at its center, comprehensive nursing care is a new nursing paradigm that combines the benefits of primary and group nursin g as well as a perfect synthesis of many nursing metrics like nursing philosophy, nursing plan, and nursing quality evaluation. In order to treat patients with serious liver diseases like cancer, it can conduct nursing interventions item by item in accordance with the unique disease conditions of each patient and combine efficient therapeutic approaches with high-quality nursing modes. Dietary natural products, including fruits, vegetables, and spices, may prevent and treat liver cancer by inhibiting tumor growth, protecting the liver, and enhancing chemotherapy.
Collapse
Affiliation(s)
- Linlin Jiang
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Qin Meng
- Department of Nursing, Huaian Hospital of Huaian City, Huaian Jiangsu,China
| | - Lixiu Liu
- Department of Colorectal Surgery, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| | - Weihang Li
- Interventional Radiology, Harbin Medical University Cancer Hospital, Harbin Heilongjiang, China
| |
Collapse
|
5
|
Guérin M, Lepeltier E. Nanomedicines via the pulmonary route: a promising strategy to reach the target? Drug Deliv Transl Res 2024; 14:2276-2297. [PMID: 38587757 DOI: 10.1007/s13346-024-01590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Over the past decades, research on nanomedicines as innovative tools in combating complex pathologies has increased tenfold, spanning fields from infectiology and ophthalmology to oncology. This process has further accelerated since the introduction of SARS-CoV-2 vaccines. When it comes to human health, nano-objects are designed to protect, transport, and improve the solubility of compounds to allow the delivery of active ingredients on their targets. Nanomedicines can be administered by different routes, such as intravenous, oral, intramuscular, or pulmonary routes. In the latter route, nanomedicines can be aerosolized or nebulized to reach the deep lung. This review summarizes existing nanomedicines proposed for inhalation administration, from their synthesis to their potential clinical use. It also outlines the respiratory organs, their structure, and particularities, with a specific emphasis on how these factors impact the administration of nanomedicines. Furthermore, the review addresses the organs accessible through pulmonary administration, along with various pathologies such as infections, genetic diseases, or cancer that can be addressed through inhaled nanotherapeutics. Finally, it examines the existing devices suitable for the aerosolization of nanomedicines and the range of nanomedicines in clinical development.
Collapse
Affiliation(s)
- Mélina Guérin
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France
| | - Elise Lepeltier
- Univ Angers, INSERM, CNRS, MINT, SFR ICAT, 49000, Angers, France.
- Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|