1
|
Jackson NN, Stagray JA, Snell HD. Cerebellar contributions to dystonia: unraveling the role of Purkinje cells and cerebellar nuclei. DYSTONIA (LAUSANNE, SWITZERLAND) 2025; 4:14006. [PMID: 40115904 PMCID: PMC11925549 DOI: 10.3389/dyst.2025.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Dystonias are a group of neurodegenerative disorders that result in altered physiology associated with motor movements. Both the basal ganglia and the cerebellum, brain regions involved in motor learning, sensory perception integration, and reward, have been implicated in the pathology of dystonia, but the cellular and subcellular mechanisms remain diverse and for some forms of dystonia, elusive. The goal of the current review is to summarize recent evidence of cerebellar involvement in different subtypes of dystonia with a focus on Purkinje cell (PC) and cerebellar nuclei (CN) dysfunction, to find commonalities in the pathology that could lay the groundwork for the future development of therapeutics for patients with dystonia. Here we will briefly discuss the physical and functional connections between the basal ganglia and the cerebellum and how these connections could contribute to dystonic symptoms. We proceed to use human and animal model data to discuss the contributions of cerebellar cell types to specific dystonias and movement disorders where dystonia is a secondary symptom. Ultimately, we suggest PC and CN irregularity could be a locus for dystonia through impaired calcium dynamics.
Collapse
Affiliation(s)
- Nichelle N Jackson
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Jacob A Stagray
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
| | - Heather D Snell
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, United States
- Wu Tsai Institute, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
2
|
Chen Y, Xu Z, Ma Y, Liu T, Tian X, Zhu Z, Zheng W, Wang Y, Zheng R, Xing J, Wang W, Sun F. Deep brain stimulation combined with morroniside promotes neural plasticity and motor functional recovery after ischemic stroke. Front Pharmacol 2024; 15:1457309. [PMID: 39697542 PMCID: PMC11652210 DOI: 10.3389/fphar.2024.1457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Background and Objective Until now, there has been an unmet need for treatments promoting chronic-phase post-stroke functional recovery. We previously found that morroniside promoted endogenous neurogenesis in ischemic stroke, but its therapeutic window was limited to the first 48 h. Here, we aimed to explore whether deep brain stimulation (DBS) combined with morroniside could enhance neurogenesis in rats subjected to focal ischemic stroke and contributes to functional recovery. Methods Beginning 2 weeks after the endothelin-1-induced stroke, rats were administered DBS of lateral cerebellar nucleus consecutively for 14 days, followed by morroniside for 7 consecutive days post-stimulation. Behavioral tests were used for assessing motor function. Local field potentials were recorded to evaluate neuronal excitability. Nissl staining was used to assess infarct volume. Immunofluorescence staining and Western blotting were carried out to uncover the stroke recovery mechanisms of DBS combined with morroniside treatment. Results The results showed that this combined treatment improved behavioral outcomes, enhanced cortical local field potentials, and diminished infarct volumes at 35 days post-stroke. Moreover, it notably amplified neurogenic responses post-stroke, evidenced by the proliferation of BrdU/SOX2 and BrdU/DCX in the subventricular zone, and their subsequent differentiation into BrdU/NeuN and BrdU/VgulT1 in the ischemic penumbra. Moreover, the combined treatment also elevated the amount of BrdU/Olig2 and the level of axonal sprouting-related proteins in the perilesional cortex. Conclusion Our results demonstrated that the combined treatment extended the neurorestorative efficacy of morroniside, reduced infarct size, enhanced neuronal excitability and accelerated sensorimotor function recovery. This therapeutic approach may emerge as a potential clinical intervention for chronic ischemic stroke.
Collapse
Affiliation(s)
- Yanxi Chen
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Zhidong Xu
- School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, China
| | - Yifu Ma
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Tingting Liu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Xin Tian
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Zixin Zhu
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wenrong Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yufeng Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Ruifang Zheng
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Jianguo Xing
- Key Laboratory of Uighur Medicine of Xinjiang Uygur Autonomous Region, Xinjiang Institute of Materia Medica, Urumqi, China
| | - Wen Wang
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Fangling Sun
- Department of Experimental Animal Center, Xuanwu Hospital of Capital Medical University, Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
3
|
Salazar Leon LE, Kim LH, Sillitoe RV. Cerebellar deep brain stimulation as a dual-function therapeutic for restoring movement and sleep in dystonic mice. Neurotherapeutics 2024; 21:e00467. [PMID: 39448336 PMCID: PMC11585869 DOI: 10.1016/j.neurot.2024.e00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects-Ptf1aCre;Vglut2fx/fx and Pdx1Cre;Vglut2fx/fx-which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the fiber tracts located between the cerebellar fastigial and the interposed nuclei (FN + INT-DBS), we modulated sleep dysfunction by enhancing sleep quality and timing. This DBS paradigm improved wakefulness and rapid eye movement sleep in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1aCre;Vglut2fx/fx mice. These findings highlight the potential for using cerebellar DBS to simultaneously improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.
Collapse
Affiliation(s)
- Luis E Salazar Leon
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Linda H Kim
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
5
|
Abstract
The cerebellum has a well-established role in controlling motor functions, including coordination, posture, and the learning of skilled movements. The mechanisms for how it carries out motor behavior remain under intense investigation. Interestingly though, in recent years the mechanisms of cerebellar function have faced additional scrutiny since nonmotor behaviors may also be controlled by the cerebellum. With such complexity arising, there is now a pressing need to better understand how cerebellar structure, function, and behavior intersect to influence behaviors that are dynamically called upon as an animal experiences its environment. Here, we discuss recent experimental work that frames possible neural mechanisms for how the cerebellum shapes disparate behaviors and why its dysfunction is catastrophic in hereditary and acquired conditions-both motor and nonmotor. For these reasons, the cerebellum might be the ideal therapeutic target.
Collapse
Affiliation(s)
- Linda H Kim
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| | - Detlef H Heck
- Center for Cerebellar Network Structure and Function in Health and Disease, University of Minnesota, Duluth, Minnesota, USA
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Roy V Sillitoe
- Departments of Neuroscience and Pediatrics, Program in Developmental Biology, and Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA;
| |
Collapse
|
6
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. eLife 2024; 12:RP91483. [PMID: 39072369 DOI: 10.7554/elife.91483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024] Open
Abstract
The cerebellum contributes to a diverse array of motor conditions, including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single-neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Dominic J Kizek
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|
7
|
Chen Y, Xu Z, Liu T, Li D, Tian X, Zheng R, Ma Y, Zheng S, Xing J, Wang W, Sun F. Application of deep brain stimulation and transcranial magnetic stimulation in stroke neurorestoration: A review. JOURNAL OF NEURORESTORATOLOGY 2024; 12:100120. [DOI: 10.1016/j.jnrt.2024.100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
8
|
Nguyen MX, Brown AM, Lin T, Sillitoe RV, Gill JS. Targeting DBS to the centrolateral thalamic nucleus improves movement in a lesion-based model of acquired cerebellar dystonia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595095. [PMID: 38826430 PMCID: PMC11142135 DOI: 10.1101/2024.05.21.595095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dystonia is the third most common movement disorder and an incapacitating co-morbidity in a variety of neurologic conditions. Dystonia can be caused by genetic, degenerative, idiopathic, and acquired etiologies, which are hypothesized to converge on a "dystonia network" consisting of the basal ganglia, thalamus, cerebellum, and cerebral cortex. In acquired dystonia, focal lesions to subcortical areas in the network - the basal ganglia, thalamus, and cerebellum - lead to a dystonia that can be difficult to manage with canonical treatments, including deep brain stimulation (DBS). While studies in animal models have begun to parse the contribution of individual nodes in the dystonia network, how acquired injury to the cerebellar outflow tracts instigates dystonia; and how network modulation interacts with symptom latency remain as unexplored questions. Here, we present an electrolytic lesioning paradigm that bilaterally targets the cerebellar outflow tracts. We found that lesioning these tracts, at the junction of the superior cerebellar peduncles and the medial and intermediate cerebellar nuclei, resulted in acute, severe dystonia. We observed that dystonia is reduced with one hour of DBS of the centrolateral thalamic nucleus, a first order node in the network downstream of the cerebellar nuclei. In contrast, one hour of stimulation at a second order node in the short latency, disynaptic projection from the cerebellar nuclei, the striatum, did not modulate the dystonia in the short-term. Our study introduces a robust paradigm for inducing acute, severe dystonia, and demonstrates that targeted modulation based on network principles powerfully rescues motor behavior. These data inspire the identification of therapeutic targets for difficult to manage acquired dystonia.
Collapse
Affiliation(s)
- Megan X. Nguyen
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Amanda M. Brown
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Roy V. Sillitoe
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
9
|
San Luciano M, Oehrn CR, Wang SS, Tolmie JS, Wiltshire A, Graff RE, Zhu J, Starr PA. Protocol for combined N-of-1 trials to assess cerebellar neurostimulation for movement disorders in children and young adults with dyskinetic cerebral palsy. BMC Neurol 2024; 24:145. [PMID: 38684956 PMCID: PMC11057158 DOI: 10.1186/s12883-024-03633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders. METHODS Ten children and young adults with DCP and disabling movement disorders with or without spasticity will undergo bilateral DBS in the dorsal dentate nucleus, with the most distal contact ending in the superior cerebellar peduncle. We will implant Medtronic Percept, a bidirectional neurostimulator that can sense and store brain activity and deliver DBS therapy. The efficacy of cerebellar DBS in improving quality of life and motor outcomes will be tested by a series of N-of-1 clinical trials. Each N-of-1 trial will consist of three blocks, each consisting of one month of effective stimulation and one month of sham stimulation in a random order with weekly motor and quality of life scales as primary and secondary outcomes. In addition, we will characterize abnormal patterns of cerebellar oscillatory activity measured by local field potentials from the intracranial electrodes related to clinical assessments and wearable monitors. Pre- and 12-month postoperative volumetric structural and functional MRI and diffusion tensor imaging will be used to identify candidate imaging markers of baseline disease severity and response to DBS. DISCUSSION Our goal is to test a cerebellar neuromodulation therapy that produces meaningful changes in function and well-being for people with CP, obtain a mechanistic understanding of the underlying brain network disorder, and identify physiological and imaging-based predictors of outcomes useful in planning further studies. TRIAL REGISTRATION ClinicalTrials.gov NCT06122675, first registered November 7, 2023.
Collapse
Affiliation(s)
- M San Luciano
- Movement Disorders and Neuromodulation Center, Department of Neurology, University of California San Francisco, Weill Institute for Neurosciences, 1651 4th Street Level 3 SW Academic Offices, Box #1838, 94158, San Francisco, CA, USA.
| | - C R Oehrn
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - S S Wang
- Movement Disorders and Neuromodulation Center, Department of Neurology, University of California San Francisco, Weill Institute for Neurosciences, 1651 4th Street Level 3 SW Academic Offices, Box #1838, 94158, San Francisco, CA, USA
| | - J S Tolmie
- Movement Disorders and Neuromodulation Center, Department of Neurology, University of California San Francisco, Weill Institute for Neurosciences, 1651 4th Street Level 3 SW Academic Offices, Box #1838, 94158, San Francisco, CA, USA
| | - A Wiltshire
- Movement Disorders and Neuromodulation Center, Department of Neurology, University of California San Francisco, Weill Institute for Neurosciences, 1651 4th Street Level 3 SW Academic Offices, Box #1838, 94158, San Francisco, CA, USA
| | - R E Graff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - J Zhu
- Movement Disorders and Neuromodulation Center, Department of Neurology, University of California San Francisco, Weill Institute for Neurosciences, 1651 4th Street Level 3 SW Academic Offices, Box #1838, 94158, San Francisco, CA, USA
| | - P A Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
van der Heijden ME, Brown AM, Kizek DJ, Sillitoe RV. Cerebellar nuclei cells produce distinct pathogenic spike signatures in mouse models of ataxia, dystonia, and tremor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.07.539767. [PMID: 37214855 PMCID: PMC10197583 DOI: 10.1101/2023.05.07.539767] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The cerebellum contributes to a diverse array of motor conditions including ataxia, dystonia, and tremor. The neural substrates that encode this diversity are unclear. Here, we tested whether the neural spike activity of cerebellar output neurons is distinct between movement disorders with different impairments, generalizable across movement disorders with similar impairments, and capable of causing distinct movement impairments. Using in vivo awake recordings as input data, we trained a supervised classifier model to differentiate the spike parameters between mouse models for ataxia, dystonia, and tremor. The classifier model correctly assigned mouse phenotypes based on single neuron signatures. Spike signatures were shared across etiologically distinct but phenotypically similar disease models. Mimicking these pathophysiological spike signatures with optogenetics induced the predicted motor impairments in otherwise healthy mice. These data show that distinct spike signatures promote the behavioral presentation of cerebellar diseases.
Collapse
|
11
|
San Luciano M, Oehrn CR, Wang SS, Tolmie JS, Wiltshire A, Graff RE, Zhu J, Starr PA. Protocol for combined N-of-1 trials to assess cerebellar neurostimulation for movement disorders in children and young adults with dyskinetic cerebral palsy. RESEARCH SQUARE 2024:rs.3.rs-4077387. [PMID: 38645256 PMCID: PMC11030503 DOI: 10.21203/rs.3.rs-4077387/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Background Movement and tone disorders in children and young adults with cerebral palsy are a great source of disability. Deep brain stimulation (DBS) of basal ganglia targets has a major role in the treatment of isolated dystonias, but its efficacy in dyskinetic cerebral palsy (DCP) is lower, due to structural basal ganglia and thalamic damage and lack of improvement of comorbid choreoathetosis and spasticity. The cerebellum is an attractive target for DBS in DCP since it is frequently spared from hypoxic ischemic damage, it has a significant role in dystonia network models, and small studies have shown promise of dentate stimulation in improving CP-related movement and tone disorders. Methods Ten children and young adults with DCP and disabling movement disorders with or without spasticity will undergo bilateral DBS in the dorsal dentate nucleus, with the most distal contact ending in the superior cerebellar peduncle. We will implant Medtronic Percept, a bidirectional neurostimulator that can sense and store brain activity and deliver DBS therapy. The efficacy of cerebellar DBS in improving quality of life and motor outcomes will be tested by a series of N-of-1 clinical trials. Each N-of-1 trial will consist of three blocks, each consisting of one month of effective stimulation and one month of sham stimulation in a random order with weekly motor and quality of life scales as primary and secondary outcomes. In addition, we will characterize abnormal patterns of cerebellar oscillatory activity measured by local field potentials from the intracranial electrodes related to clinical assessments and wearable monitors. Pre- and 12-month postoperative volumetric structural and functional MRI and diffusion tensor imaging will be used to identify candidate imaging markers of baseline disease severity and response to DBS. Discussion Our goal is to test a cerebellar neuromodulation therapy that produces meaningful changes in function and well-being for people with CP, obtain a mechanistic understanding of the underlying brain network disorder, and identify physiological and imaging-based predictors of outcomes useful in planning further studies. Trial registration ClinicalTrials.gov NCT06122675, first registered November 7, 2023.
Collapse
Affiliation(s)
- Marta San Luciano
- University of California, San Francisco, Weill Institute for Neurosciences
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kumar G, Zhou Z, Wang Z, Kwan KM, Tin C, Ma CHE. Real-time field-programmable gate array-based closed-loop deep brain stimulation platform targeting cerebellar circuitry rescues motor deficits in a mouse model of cerebellar ataxia. CNS Neurosci Ther 2024; 30:e14638. [PMID: 38488445 PMCID: PMC10941591 DOI: 10.1111/cns.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/09/2024] [Accepted: 02/01/2024] [Indexed: 03/18/2024] Open
Abstract
AIMS The open-loop nature of conventional deep brain stimulation (DBS) produces continuous and excessive stimulation to patients which contributes largely to increased prevalence of adverse side effects. Cerebellar ataxia is characterized by abnormal Purkinje cells (PCs) dendritic arborization, loss of PCs and motor coordination, and muscle weakness with no effective treatment. We aim to develop a real-time field-programmable gate array (FPGA) prototype targeting the deep cerebellar nuclei (DCN) to close the loop for ataxia using conditional double knockout mice with deletion of PC-specific LIM homeobox (Lhx)1 and Lhx5, resulting in abnormal dendritic arborization and motor deficits. METHODS We implanted multielectrode array in the DCN and muscles of ataxia mice. The beneficial effect of open-loop DCN-DBS or closed-loop DCN-DBS was compared by motor behavioral assessments, electromyography (EMG), and neural activities (neurospike and electroencephalogram) in freely moving mice. FPGA board, which performed complex real-time computation, was used for closed-loop DCN-DBS system. RESULTS Closed-loop DCN-DBS was triggered only when symptomatic muscle EMG was detected in a real-time manner, which restored motor activities, electroencephalogram activities and neurospike properties completely in ataxia mice. Closed-loop DCN-DBS was more effective than an open-loop paradigm as it reduced the frequency of DBS. CONCLUSION Our real-time FPGA-based DCN-DBS system could be a potential clinical strategy for alleviating cerebellar ataxia and other movement disorders.
Collapse
Affiliation(s)
- Gajendra Kumar
- Department of NeuroscienceCity University of Hong KongHong KongHong Kong SAR
| | - Zhanhong Zhou
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Zhihua Wang
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Kin Ming Kwan
- School of Life Sciences, Center for Cell and Developmental Biology and State Key Laboratory of AgrobiotechnologyThe Chinese University of Hong KongHong KongHong Kong SAR
| | - Chung Tin
- Department of Biomedical EngineeringCity University of Hong KongHong KongHong Kong SAR
| | - Chi Him Eddie Ma
- Department of NeuroscienceCity University of Hong KongHong KongHong Kong SAR
| |
Collapse
|
13
|
Gill JS, Nguyen MX, Hull M, van der Heijden ME, Nguyen K, Thomas SP, Sillitoe RV. Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias. DYSTONIA 2023; 2:11805. [PMID: 38273865 PMCID: PMC10810232 DOI: 10.3389/dyst.2023.11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad "dystonia network" encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the "geste antagoniste" or "sensory trick" to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.
Collapse
Affiliation(s)
- Jason S. Gill
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Megan X. Nguyen
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Mariam Hull
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Meike E. van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Ken Nguyen
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Sruthi P. Thomas
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Roy V. Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
14
|
Leon LES, Kim LH, Sillitoe RV. Cerebellar deep brain stimulation as a dual-function therapeutic for restoring movement and sleep in dystonic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564790. [PMID: 37961355 PMCID: PMC10635001 DOI: 10.1101/2023.10.30.564790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Dystonia arises with cerebellar dysfunction, which plays a key role in the emergence of multiple pathophysiological deficits that range from abnormal movements and postures to disrupted sleep. Current therapeutic interventions typically do not simultaneously address both the motor and non-motor (sleep-related) symptoms of dystonia, underscoring the necessity for a multi-functional therapeutic strategy. Deep brain stimulation (DBS) is effectively used to reduce motor symptoms in dystonia, with existing parallel evidence arguing for its potential to correct sleep disturbances. However, the simultaneous efficacy of DBS for improving sleep and motor dysfunction, specifically by targeting the cerebellum, remains underexplored. Here, we test the effect of cerebellar DBS in two genetic mouse models with dystonia that exhibit sleep defects- Ptf1a Cre ;Vglut2 fx/fx and Pdx1 Cre ;Vglut2 fx/fx -which have overlapping cerebellar circuit miswiring defects but differing severity in motor phenotypes. By targeting DBS to the cerebellar fastigial and interposed nuclei, we modulated sleep dysfunction by enhancing sleep quality and timing in both models. This DBS paradigm improved wakefulness (decreased) and rapid eye movement (REM) sleep (increased) in both mutants. Additionally, the latency to reach REM sleep, a deficit observed in human dystonia patients, was reduced in both models. Cerebellar DBS also induced alterations in the electrocorticogram (ECoG) patterns that define sleep states. As expected, DBS reduced the severe dystonic twisting motor symptoms that are observed in the Ptf1a Cre ;Vglut2 fx/fx mutant mice. These findings highlight the potential for using cerebellar DBS to improve sleep and reduce motor dysfunction in dystonia and uncover its potential as a dual-effect in vivo therapeutic strategy.
Collapse
|
15
|
Horisawa S, Qian B, Nonaka T, Kim K, Kawamata T, Taira T. Intermittent Ultralow-Frequency Low-Amplitude Deep Cerebellar Stimulation for Movement Disorders. Mov Disord Clin Pract 2023; 10:1683-1686. [PMID: 37982108 PMCID: PMC10654827 DOI: 10.1002/mdc3.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Accepted: 08/20/2023] [Indexed: 11/21/2023] Open
Affiliation(s)
- Shiro Horisawa
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Bohui Qian
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Taku Nonaka
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Kilsoo Kim
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Takakazu Kawamata
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| | - Takaomi Taira
- Department of NeurosurgeryTokyo Women's Medical UniversityTokyoJapan
| |
Collapse
|
16
|
Brown AM, van der Heijden ME, Jinnah HA, Sillitoe RV. Cerebellar Dysfunction as a Source of Dystonic Phenotypes in Mice. CEREBELLUM (LONDON, ENGLAND) 2023; 22:719-729. [PMID: 35821365 PMCID: PMC10307717 DOI: 10.1007/s12311-022-01441-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
There is now a substantial amount of compelling evidence demonstrating that the cerebellum may be a central locus in dystonia pathogenesis. Studies using spontaneous genetic mutations in rats and mice, engineered genetic alleles in mice, shRNA knockdown in mice, and conditional genetic silencing of fast neurotransmission in mice have all uncovered a common set of behavioral and electrophysiological defects that point to cerebellar cortical and cerebellar nuclei dysfunction as a source of dystonic phenotypes. Here, we revisit the Ptf1aCre/+;Vglut2flox/flox mutant mouse to define fundamental phenotypes and measures that are valuable for testing the cellular, circuit, and behavioral mechanisms that drive dystonia. In this model, excitatory neurotransmission from climbing fibers is genetically eliminated and, as a consequence, Purkinje cell and cerebellar nuclei firing are altered in vivo, with a prominent and lasting irregular burst pattern of spike activity in cerebellar nuclei neurons. The resulting impact on behavior is that the mice have developmental abnormalities, including twisting of the limbs and torso. These behaviors continue into adulthood along with a tremor, which can be measured with a tremor monitor or EMG. Importantly, expression of dystonic behavior is reduced upon cerebellar-targeted deep brain stimulation. The presence of specific combinations of disease-like features and therapeutic responses could reveal the causative mechanisms of different types of dystonia and related conditions. Ultimately, an emerging theme places cerebellar dysfunction at the center of a broader dystonia brain network.
Collapse
Affiliation(s)
- Amanda M Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA
| | - H A Jinnah
- Departments of Neurology, Human Genetics and Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, 77030, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
17
|
Paro MR, Dyrda M, Ramanan S, Wadman G, Burke SA, Cipollone I, Bosworth C, Zurek S, Senatus PB. Deep brain stimulation for movement disorders after stroke: a systematic review of the literature. J Neurosurg 2023; 138:1688-1701. [PMID: 36308482 DOI: 10.3171/2022.8.jns221334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/25/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Stroke remains the leading cause of disability in the United States. Even as acute care for strokes advances, there are limited options for improving function once the patient reaches the subacute and chronic stages. Identification of new therapeutic approaches is critical. Deep brain stimulation (DBS) holds promise for these patients. A number of case reports and small case series have reported improvement in movement disorders after strokes in patients treated with DBS. In this systematic review, the authors have summarized the patient characteristics, anatomical targets, stimulation parameters, and outcomes of patients who have undergone DBS treatment for poststroke movement disorders. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed. The PubMed, Scopus, and SpringerLink databases were searched for the keywords "DBS," "stroke," "movement," and "recovery" to identify patients treated with DBS for movement disorders after a stroke. The Joanna Briggs Institute Critical Appraisal checklists for case reports and case series were used to systematically analyze the quality of the included studies. Data collected from each study included patient demographic characteristics, stroke diagnosis, movement disorder, DBS target, stimulation parameters, complications, and outcomes. RESULTS The authors included 29 studies that described 53 patients who underwent placement of 82 total electrodes. Movement disorders included tremor (n = 18), dystonia (n = 18), hemiballism (n = 6), spastic hemiparesis (n = 1), chorea (n = 1), and mixed disorders (n = 9). The most common DBS targets were the globus pallidus internus (n = 32), ventral intermediate nucleus of thalamus (n = 25), and subthalamic area/subthalamic nucleus (n = 7). Monopolar stimulation was reported in 43 leads and bipolar stimulation in 13. High-frequency stimulation was used in 57 leads and low-frequency stimulation in 6. All patients but 1 had improvement in their movement disorders. Two complications were reported: speech impairment in 1 patient and hardware infection in another. The median (interquartile range) duration between stroke and DBS treatment was 6.5 (2.1-15.8) years. CONCLUSIONS This is the first systematic review of DBS for poststroke movement disorders. Overall, most studies to date have been case reports and small series reporting heterogeneous patients and surgical strategies. This review suggests that DBS for movement disorders after a stroke has the potential to be effective and safe for diverse patients, and DBS may be a feasible option to improve function even years after a stroke.
Collapse
Affiliation(s)
- Mitch R Paro
- 1University of Connecticut School of Medicine, Farmington
| | - Michal Dyrda
- 1University of Connecticut School of Medicine, Farmington
| | | | | | | | | | - Cory Bosworth
- 3Deep Brain Stimulation Program, Ayer Neuroscience Institute, Hartford Hospital, Hartford; and
| | - Sarah Zurek
- 3Deep Brain Stimulation Program, Ayer Neuroscience Institute, Hartford Hospital, Hartford; and
| | - Patrick B Senatus
- 3Deep Brain Stimulation Program, Ayer Neuroscience Institute, Hartford Hospital, Hartford; and
- 4Department of Neurosurgery, Hartford Hospital, Hartford, Connecticut
| |
Collapse
|
18
|
Stephen CD, Dy-Hollins M, Gusmao CMD, Qahtani XA, Sharma N. Dystonias: Clinical Recognition and the Role of Additional Diagnostic Testing. Semin Neurol 2023; 43:17-34. [PMID: 36972613 DOI: 10.1055/s-0043-1764292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Dystonia is the third most common movement disorder, characterized by abnormal, frequently twisting postures related to co-contraction of agonist and antagonist muscles. Diagnosis is challenging. We provide a comprehensive appraisal of the epidemiology and an approach to the phenomenology and classification of dystonia, based on the clinical characteristics and underlying etiology of dystonia syndromes. We discuss the features of common idiopathic and genetic forms of dystonia, diagnostic challenges, and dystonia mimics. Appropriate workup is based on the age of symptom onset, rate of progression, whether dystonia is isolated or combined with another movement disorder or complex neurological and other organ system eatures. Based on these features, we discuss when imaging and genetic should be considered. We discuss the multidisciplinary treatment of dystonia, including rehabilitation and treatment principles according to the etiology, including when pathogenesis-direct treatment is available, oral pharmacological therapy, chemodenervation with botulinum toxin injections, deep brain stimulation and other surgical therapies, and future directions.
Collapse
Affiliation(s)
| | - Marisela Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Xena Al Qahtani
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
19
|
Leon LES, Sillitoe RV. Disrupted sleep in dystonia depends on cerebellar function but not motor symptoms in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527916. [PMID: 36798256 PMCID: PMC9934608 DOI: 10.1101/2023.02.09.527916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Although dystonia is the third most common movement disorder, patients often also experience debilitating nonmotor defects including impaired sleep. The cerebellum is a central component of a "dystonia network" that plays various roles in sleep regulation. Importantly, the primary driver of sleep impairments in dystonia remains poorly understood. The cerebellum, along with other nodes in the motor circuit, could disrupt sleep. However, it is unclear how the cerebellum might alter sleep and mobility. To disentangle the impact of cerebellar dysfunction on motion and sleep, we generated two mouse genetic models of dystonia that have overlapping cerebellar circuit miswiring but show differing motor phenotype severity: Ptf1a Cre ;Vglut2 fx/fx and Pdx1 Cre ;Vglut2 fx/fx mice. In both models, excitatory climbing fiber to Purkinje cell neurotransmission is blocked, but only the Ptf1a Cre ;Vglut2 fx/fx mice have severe twisting. Using in vivo ECoG and EMG recordings we found that both mutants spend greater time awake and in NREM sleep at the expense of REM sleep. The increase in awake time is driven by longer awake bouts rather than an increase in bout number. We also found a longer latency to reach REM in both mutants, which is similar to what is reported in human dystonia. We uncovered independent but parallel roles for cerebellar circuit dysfunction and motor defects in promoting sleep quality versus posture impairments in dystonia.
Collapse
|
20
|
Beckinghausen J, Donofrio SG, Lin T, Miterko LN, White JJ, Lackey EP, Sillitoe RV. Deep Brain Stimulation of the Interposed Cerebellar Nuclei in a Conditional Genetic Mouse Model with Dystonia. ADVANCES IN NEUROBIOLOGY 2023; 31:93-117. [PMID: 37338698 DOI: 10.1007/978-3-031-26220-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Dystonia is a neurological disease that is currently ranked as the third most common motor disorder. Patients exhibit repetitive and sometimes sustained muscle contractions that cause limb and body twisting and abnormal postures that impair movement. Deep brain stimulation (DBS) of the basal ganglia and thalamus can be used to improve motor function when other treatment options fail. Recently, the cerebellum has garnered interest as a DBS target for treating dystonia and other motor disorders. Here, we describe a procedure for targeting DBS electrodes to the interposed cerebellar nuclei to correct motor dysfunction in a mouse model with dystonia. Targeting cerebellar outflow pathways with neuromodulation opens new possibilities for using the expansive connectivity of the cerebellum to treat motor and non-motor diseases.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Sarah G Donofrio
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Tao Lin
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Lauren N Miterko
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Joshua J White
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, Houston, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Cerebellar deep brain stimulation for movement disorders. Neurobiol Dis 2022; 175:105899. [DOI: 10.1016/j.nbd.2022.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
|
22
|
Gelineau-Morel R, Kruer MC, Garris JF, Libdeh AA, Barbosa DAN, Coffman KA, Moon D, Barton C, Vera AZ, Bruce AB, Larsh T, Wu SW, Gilbert DL, O’Malley JA. Deep Brain Stimulation for Pediatric Dystonia: A Review of the Literature and Suggested Programming Algorithm. J Child Neurol 2022; 37:813-824. [PMID: 36053123 PMCID: PMC9912476 DOI: 10.1177/08830738221115248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.
Collapse
Affiliation(s)
- Rose Gelineau-Morel
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital & University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85016
| | - Jordan F Garris
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Amal Abu Libdeh
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards Bldg, Stanford, CA, 94305
| | - Keith A Coffman
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - David Moon
- Department of Child Neurology, Division of Neurosciences, Helen DeVos Children’s Hospital, 100 Michigan St NE, Grand Rapids, MI 49503
| | - Christopher Barton
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky; Division of Child Neurology, Norton Children’s Medical Group, 231 E Chestnut St, Louisville, KY 40202
| | - Alonso Zea Vera
- Department of Neurology, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, 20010
| | - Adrienne B Bruce
- Division of Pediatric Neurology, Department of Pediatrics, Prisma Health, 200 Patewood Drive A350, Greenville, SC, USA 29615; University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC, 29605
| | - Travis Larsh
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Steve W Wu
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Jennifer A O’Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, 750 Welch Road, Suite 317, Palo Alto, California, 94304
| |
Collapse
|
23
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|
24
|
Geminiani A, Mockevičius A, D’Angelo E, Casellato C. Cerebellum Involvement in Dystonia During Associative Motor Learning: Insights From a Data-Driven Spiking Network Model. Front Syst Neurosci 2022; 16:919761. [PMID: 35782305 PMCID: PMC9243665 DOI: 10.3389/fnsys.2022.919761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive movements, postures, or both. Although dystonia is traditionally associated with basal ganglia dysfunction, recent evidence has been pointing to a role of the cerebellum, a brain area involved in motor control and learning. Cerebellar abnormalities have been correlated with dystonia but their potential causative role remains elusive. Here, we simulated the cerebellar input-output relationship with high-resolution computational modeling. We used a data-driven cerebellar Spiking Neural Network and simulated a cerebellum-driven associative learning task, Eye-Blink Classical Conditioning (EBCC), which is characteristically altered in relation to cerebellar lesions in several pathologies. In control simulations, input stimuli entrained characteristic network dynamics and induced synaptic plasticity along task repetitions, causing a progressive spike suppression in Purkinje cells with consequent facilitation of deep cerebellar nuclei cells. These neuronal processes caused a progressive acquisition of eyelid Conditioned Responses (CRs). Then, we modified structural or functional local neural features in the network reproducing alterations reported in dystonic mice. Either reduced olivocerebellar input or aberrant Purkinje cell burst-firing resulted in abnormal learning curves imitating the dysfunctional EBCC motor responses (in terms of CR amount and timing) of dystonic mice. These behavioral deficits might be due to altered temporal processing of sensorimotor information and uncoordinated control of muscle contractions. Conversely, an imbalance of excitatory and inhibitory synaptic densities on Purkinje cells did not reflect into significant EBCC deficit. The present work suggests that only certain types of alterations, including reduced olivocerebellar input and aberrant PC burst-firing, are compatible with the EBCC changes observed in dystonia, indicating that some cerebellar lesions can have a causative role in the pathogenesis of symptoms.
Collapse
Affiliation(s)
- Alice Geminiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Aurimas Mockevičius
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
25
|
Neuroimaging signatures predicting motor improvement to focused ultrasound subthalamotomy in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:70. [PMID: 35665753 PMCID: PMC9166695 DOI: 10.1038/s41531-022-00332-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/13/2022] [Indexed: 11/24/2022] Open
Abstract
Subthalamotomy using transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) is a novel and promising treatment for Parkinson’s Disease (PD). In this study, we investigate if baseline brain imaging features can be early predictors of tcMRgFUS-subthalamotomy efficacy, as well as which are the post-treatment brain changes associated with the clinical outcomes. Towards this aim, functional and structural neuroimaging and extensive clinical data from thirty-five PD patients enrolled in a double-blind tcMRgFUS-subthalamotomy clinical trial were analyzed. A multivariate cross-correlation analysis revealed that the baseline multimodal imaging data significantly explain (P < 0.005, FWE-corrected) the inter-individual variability in response to treatment. Most predictive features at baseline included neural fluctuations in distributed cortical regions and structural integrity in the putamen and parietal regions. Additionally, a similar multivariate analysis showed that the population variance in clinical improvements is significantly explained (P < 0.001, FWE-corrected) by a distributed network of concurrent functional and structural brain changes in frontotemporal, parietal, occipital, and cerebellar regions, as opposed to local changes in very specific brain regions. Overall, our findings reveal specific quantitative brain signatures highly predictive of tcMRgFUS-subthalamotomy responsiveness in PD. The unanticipated weight of a cortical-subcortical-cerebellar subnetwork in defining clinical outcome extends the current biological understanding of the mechanisms associated with clinical benefits.
Collapse
|
26
|
Van Der Heijden ME, Gill JS, Rey Hipolito AG, Salazar Leon LE, Sillitoe RV. Quantification of Behavioral Deficits in Developing Mice With Dystonic Behaviors. DYSTONIA 2022; 1:10494. [PMID: 36960404 PMCID: PMC10032351 DOI: 10.3389/dyst.2022.10494] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Converging evidence from structural imaging studies in patients, the function of dystonia-causing genes, and the comorbidity of neuronal and behavioral defects all suggest that pediatric-onset dystonia is a neurodevelopmental disorder. However, to fully appreciate the contribution of altered development to dystonia, a mechanistic understanding of how networks become dysfunctional is required for early-onset dystonia. One current hurdle is that many dystonia animal models are ideally suited for studying adult phenotypes, as the neurodevelopmental features can be subtle or are complicated by broad developmental deficits. Furthermore, most assays that are used to measure dystonia are not suited for developing postnatal mice. Here, we characterize the early-onset dystonia in Ptf1a Cre ;Vglut2 fl/fl mice, which is caused by the absence of neurotransmission from inferior olive neurons onto cerebellar Purkinje cells. We investigate motor control with two paradigms that examine how altered neural function impacts key neurodevelopmental milestones seen in postnatal pups (postnatal day 7-11). We find that Ptf1a Cre ;Vglut2 fl/fl mice have poor performance on the negative geotaxis assay and the surface righting reflex. Interestingly, we also find that Ptf1a Cre ;Vglut2 fl/fl mice make fewer ultrasonic calls when socially isolated from their nests. Ultrasonic calls are often impaired in rodent models of autism spectrum disorders, a condition that can be comorbid with dystonia. Together, we show that these assays can serve as useful quantitative tools for investigating how neural dysfunction during development influences neonatal behaviors in a dystonia mouse model. Our data implicate a shared cerebellar circuit mechanism underlying dystonia-related motor signs and social impairments in mice.
Collapse
Affiliation(s)
- Meike E. Van Der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Jason S. Gill
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Alejandro G. Rey Hipolito
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Luis E. Salazar Leon
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
- Correspondence: Roy V. Sillitoe,
| |
Collapse
|
27
|
Diniz JM, Cury RG, Iglesio RF, Lepski GA, França CC, Barbosa ER, de Andrade DC, Teixeira MJ, Duarte KP. Dentate nucleus deep brain stimulation: Technical note of a novel methodology assisted by tractography. Surg Neurol Int 2021; 12:400. [PMID: 34513166 PMCID: PMC8422468 DOI: 10.25259/sni_338_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/04/2022] Open
Abstract
Background The cerebellum has emerged as an attractive and promising target for neuromodulation in movement disorders due to its vast connection with important cortical and subcortical areas. Here, we describe a novel technique of deep brain stimulation (DBS) of the dentate nucleus (DN) aided by tractography. Methods Since 2015, patients with movement disorders including dystonia, ataxia, and tremor have been treated with DN DBS. The cerebellar target was initially localized using coordinates measured from the fastigial point. The target was adjusted with direct visualization of the DN in the susceptibility-weighted imaging and T2 sequences of the MRI and finally refined based on the reconstruction of the dentatorubrothalamic tract (DRTT). Results Three patients were treated with this technique. The final target was located in the anterior portion of DN in close proximity to the DRTT, with the tip of the lead on the white matter and the remaining contacts on the DN. Clinical outcomes were variable and overall positive, with no major side effect. Conclusion Targeting the DN based on tractography of the DRTT seems to be feasible and safe. Larger studies will be necessary to support our preliminary findings.
Collapse
Affiliation(s)
- Juliete Melo Diniz
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ferrareto Iglesio
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Guilherme Alves Lepski
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carina Cura França
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Manoel Jacobsen Teixeira
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
28
|
Safety and Outcomes of Dentate Nucleus Deep Brain Stimulation for Cerebellar Ataxia. THE CEREBELLUM 2021; 21:861-865. [PMID: 34480330 DOI: 10.1007/s12311-021-01326-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 01/17/2023]
Abstract
Cerebellar symptoms remain orphan of treatment options despite being prevalent and incapacitating. Investigate whether dentate nucleus deep brain stimulation (DN DBS) is safe and leads to improvements in cerebellar symptoms when compared to sham stimulation. This randomized double-blind crossover pilot trial enrolled five patients with spinocerebellar ataxia type 3 or post-lesion ataxia. Active or sham phases were randomly performed three months apart. The primary outcome was ataxia improvement as measured by the Scale for the Assessment and Rating of Ataxia (SARA) after the active compared to the sham period. Secondary outcome measures included safety and tolerability, the Fahn-Tolosa-Marin Tremor Rating Scale (FTMRS), quality of life measurements, and patients' global impression of change. The effects on ataxia were numerically better in four out of five patients after active versus sham stimulation. The composite SARA score did not change after comparing active to sham stimulation (8.6 ± 3.6 versus 10.1 ± 4.1; p = 0.223). The FTMRS showed significant improvement after active stimulation versus sham (18.0 ± 17.2 versus 22.2 ± 19.5; p = 0.039) as did patients' global impression of change (p = 0.038). The quality of life was not modified by stimulation (p = 0.337). DN DBS was well tolerated without serious adverse events. One patient had the electrode repositioned. DN DBS is a safe and well tolerated procedure that is effective in alleviating cerebellar tremor. In this small cohort of ataxic patients, DN DBS did not achieve statistical significance for ataxia improvement.
Collapse
|
29
|
Morigaki R, Miyamoto R, Matsuda T, Miyake K, Yamamoto N, Takagi Y. Dystonia and Cerebellum: From Bench to Bedside. Life (Basel) 2021; 11:776. [PMID: 34440520 PMCID: PMC8401781 DOI: 10.3390/life11080776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/20/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Dystonia pathogenesis remains unclear; however, findings from basic and clinical research suggest the importance of the interaction between the basal ganglia and cerebellum. After the discovery of disynaptic pathways between the two, much attention has been paid to the cerebellum. Basic research using various dystonia rodent models and clinical studies in dystonia patients continues to provide new pieces of knowledge regarding the role of the cerebellum in dystonia genesis. Herein, we review basic and clinical articles related to dystonia focusing on the cerebellum, and clarify the current understanding of the role of the cerebellum in dystonia pathogenesis. Given the recent evidence providing new hypotheses regarding dystonia pathogenesis, we discuss how the current evidence answers the unsolved clinical questions.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Ryosuke Miyamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Taku Matsuda
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Kazuhisa Miyake
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| | - Nobuaki Yamamoto
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan;
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (N.Y.); (Y.T.)
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, Tokushima 770-8501, Japan; (T.M.); (K.M.)
| |
Collapse
|
30
|
Sondergaard RE, Rockel CP, Cortese F, Jasaui Y, Pringsheim TM, Sarna JR, Monchi O, Sadikot AF, Pike BG, Martino D. Microstructural Abnormalities of the Dentatorubrothalamic Tract in Cervical Dystonia. Mov Disord 2021; 36:2192-2198. [PMID: 34050556 DOI: 10.1002/mds.28649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The dentatorubrothalamic tract (DRTT) remains understudied in idiopathic cervical dystonia (CD), despite evidence that the pathway is relevant in the pathophysiology of the disorder. OBJECTIVE The aim of this study was to examine the DRTT in patients with CD using diffusion tensor imaging (DTI)-based tractography. METHODS Magnetic resonance imaging scans from 67 participants were collected to calculate diffusion tractography metrics using a binary tractography-based DRTT template. Fractional anisotropy and diffusivity measures of left and right DRTT were computed and compared between 32 subjects with CD and 35 age-matched healthy volunteers. RESULTS Fractional anisotropy of right DRTT and mean and axial diffusivity of left DRTT were significantly reduced in patients with CD. Similar abnormalities were observed in patients with focal CD and patients with CD without tremor. DTI metrics did not correlate with disease duration or severity. CONCLUSIONS Significant reductions in DTI measures suggest microstructural abnormalities within the DRTT in CD, characterized by a tractography pattern consistent with decreased axonal integrity. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Rachel E Sondergaard
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Conrad P Rockel
- Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Filomeno Cortese
- Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Neuroimaging Research Unit, Seaman Family MR Research Centre, Foothills Medical Centre, Calgary, Alberta, Canada.,Department of Community Health Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Yamile Jasaui
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Continuing Medical Education, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tamara M Pringsheim
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Psychiatry, Pediatrics and Community Health Sciences, University of Calgary, Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Justyna R Sarna
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| | - Oury Monchi
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada
| | - Abbas F Sadikot
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Bruce G Pike
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada.,Department of Radiology, University of Calgary, Calgary, Alberta, Canada.,Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
31
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
32
|
van der Heijden ME, Kizek DJ, Perez R, Ruff EK, Ehrlich ME, Sillitoe RV. Abnormal cerebellar function and tremor in a mouse model for non-manifesting partially penetrant dystonia type 6. J Physiol 2021; 599:2037-2054. [PMID: 33369735 PMCID: PMC8559601 DOI: 10.1113/jp280978] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS Loss-of-function mutations in the Thap1 gene cause partially penetrant dystonia type 6 (DYT6). Some non-manifesting DYT6 mutation carriers have tremor and abnormal cerebello-thalamo-cortical signalling. We show that Thap1 heterozygote mice have action tremor, a reduction in cerebellar neuron number, and abnormal electrophysiological signals in the remaining neurons. These results underscore the importance of Thap1 levels for cerebellar function. These results uncover how cerebellar abnormalities contribute to different dystonia-associated motor symptoms. ABSTRACT Loss-of-function mutations in the Thanatos-associated domain-containing apoptosis-associated protein 1 (THAP1) gene cause partially penetrant autosomal dominant dystonia type 6 (DYT6). However, the neural abnormalities that promote the resultant motor dysfunctions remain elusive. Studies in humans show that some non-manifesting DYT6 carriers have altered cerebello-thalamo-cortical function with subtle but reproducible tremor. Here, we uncover that Thap1 heterozygote mice have action tremor that rises above normal baseline values even though they do not exhibit overt dystonia-like twisting behaviour. At the neural circuit level, we show using in vivo recordings in awake Thap1+/- mice that Purkinje cells have abnormal firing patterns and that cerebellar nuclei neurons, which connect the cerebellum to the thalamus, fire at a lower frequency. Although the Thap1+/- mice have fewer Purkinje cells and cerebellar nuclei neurons, the number of long-range excitatory outflow projection neurons is unaltered. The preservation of interregional connectivity suggests that abnormal neural function rather than neuron loss instigates the network dysfunction and the tremor in Thap1+/- mice. Accordingly, we report an inverse correlation between the average firing rate of cerebellar nuclei neurons and tremor power. Our data show that cerebellar circuitry is vulnerable to Thap1 mutations and that cerebellar dysfunction may be a primary cause of tremor in non-manifesting DYT6 carriers and a trigger for the abnormal postures in manifesting patients.
Collapse
Affiliation(s)
- Meike E. van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Dominic J. Kizek
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Ross Perez
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Elena K. Ruff
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| | - Michelle E. Ehrlich
- Department of Neurology and Pediatrics, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, Texas, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, USA
| |
Collapse
|
33
|
Horisawa S, Kohara K, Nonaka T, Mochizuki T, Kawamata T, Taira T. Case Report: Deep Cerebellar Stimulation for Tremor and Dystonia. Front Neurol 2021; 12:642904. [PMID: 33746894 PMCID: PMC7973230 DOI: 10.3389/fneur.2021.642904] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The cerebellum plays an important role in the pathogenesis and pathophysiology of movement disorders, including tremor and dystonia. To date, there have been few reports on deep cerebellar stimulation. Case Report: The patient was a 35-year-old previously healthy man with no history of movement disorders. He developed a tremor and stiffness in his left hand at the age of 27 years, which was diagnosed as a dystonic tremor. We performed right thalamotomy, which resulted in a complete resolution of the tremor; however, the dystonia persisted. Subsequently, the patient developed left foot dystonia with inversion and a newly developed tremor in the right hand and foot. The patient underwent left ventralis intermedius (VIM) deep brain stimulation (VIM-DBS) and left pallidothalamic tract DBS (PTT-DBS). Left VIM-DBS completely resolved the right hand and foot tremor, and PTT-DBS significantly improved the left hand and foot dystonia. Three months postoperatively, the patient developed an infection and wound disruption at the surgical site. We performed palliative surgery for deep cerebellar stimulation via the posterior cranial region, which was not infected. The surgery was performed under general anesthesia with the patient lying in the prone position. Eight contact DBS electrodes were used. The placement of electrodes extended from the superior cerebellar peduncle to the dentate nucleus. Both the right hand and foot tremor improved with right cerebellar stimulation. Further, both the left hand and foot dystonia improved with left cerebellar stimulation. Right and left cerebellar stimulation led to no improvement in the left hand and foot dystonia and right hand and foot tremor, respectively. Stimulation-induced complications observed in the patient included dizziness, dysphagia, and dysarthria. After the surgery, the patient developed hypersalivation and hyperhidrosis in the left side of the body, both of which did not improve with adjustments of stimulation parameters. At the 6-month follow-up, the tremor and dystonia had almost completely resolved. Conclusion: Deep cerebellar stimulation deserves consideration as a potential treatment for tremor and dystonia.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Kotaro Kohara
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Taku Nonaka
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Tatsuki Mochizuki
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
34
|
Fabbri R, Saracino E, Treossi E, Zamboni R, Palermo V, Benfenati V. Graphene glial-interfaces: challenges and perspectives. NANOSCALE 2021; 13:4390-4407. [PMID: 33599662 DOI: 10.1039/d0nr07824g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Graphene nanosheets are mechanically strong but flexible, electrically conductive and bio-compatible. Thus, due to these unique properties, they are being intensively studied as materials for the next generation of neural interfaces. Most of the literature focused on optimizing the interface between these materials and neurons. However, one of the most common causes of implant failure is the adverse inflammatory reaction of glial cells. These cells are not, as previously considered, just passive and supportive cells, but play a crucial role in the physiology and pathology of the nervous system, and in the interaction with implanted electrodes. Besides providing structural support to neurons, glia are responsible for the modulation of synaptic transmission and control of central and peripheral homeostasis. Accordingly, knowledge on the interaction between glia and biomaterials is essential to develop new implant-based therapies for the treatment of neurological disorders, such as epilepsy, brain tumours, and Alzheimer's and Parkinson's disease. This work provides an overview of the emerging literature on the interaction of graphene-based materials with glial cells, together with a complete description of the different types of glial cells and problems associated with them. We believe that this description will be important for researchers working in materials science and nanotechnology to develop new active materials to interface, measure and stimulate these cells.
Collapse
Affiliation(s)
- Roberta Fabbri
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
Miterko LN, Lin T, Zhou J, van der Heijden ME, Beckinghausen J, White JJ, Sillitoe RV. Neuromodulation of the cerebellum rescues movement in a mouse model of ataxia. Nat Commun 2021; 12:1295. [PMID: 33637754 PMCID: PMC7910465 DOI: 10.1038/s41467-021-21417-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023] Open
Abstract
Deep brain stimulation (DBS) relieves motor dysfunction in Parkinson's disease, and other movement disorders. Here, we demonstrate the potential benefits of DBS in a model of ataxia by targeting the cerebellum, a major motor center in the brain. We use the Car8 mouse model of hereditary ataxia to test the potential of using cerebellar nuclei DBS plus physical activity to restore movement. While low-frequency cerebellar DBS alone improves Car8 mobility and muscle function, adding skilled exercise to the treatment regimen additionally rescues limb coordination and stepping. Importantly, the gains persist in the absence of further stimulation. Because DBS promotes the most dramatic improvements in mice with early-stage ataxia, we postulated that cerebellar circuit function affects stimulation efficacy. Indeed, genetically eliminating Purkinje cell neurotransmission blocked the ability of DBS to reduce ataxia. These findings may be valuable in devising future DBS strategies.
Collapse
Affiliation(s)
- Lauren N. Miterko
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Tao Lin
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Joy Zhou
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Meike E. van der Heijden
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA
| | - Jaclyn Beckinghausen
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Joshua J. White
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA
| | - Roy V. Sillitoe
- grid.39382.330000 0001 2160 926XDepartment of Pathology and Immunology, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XProgram in Developmental Biology, Baylor College of Medicine, Houston, TX USA ,grid.416975.80000 0001 2200 2638Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX USA ,grid.39382.330000 0001 2160 926XDepartment of Neuroscience, Baylor College of Medicine, Houston, TX USA ,grid.39382.330000 0001 2160 926XDevelopment, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
36
|
Luciano MS, Robichaux-Viehoever A, Dodenhoff KA, Gittings M, Viser AC, Racine CA, Bledsoe IO, Pereira C, Wang S, Starr PA, Ostrem JL. Thalamic deep brain stimulation for acquired dystonia in children and young adults: a phase 1 clinical trial. J Neurosurg Pediatr 2021; 27:203-212. [PMID: 33254134 PMCID: PMC8155109 DOI: 10.3171/2020.7.peds20348] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/07/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the feasibility and preliminary efficacy and safety of combined bilateral ventralis oralis posterior/ventralis intermedius (Vop/Vim) deep brain stimulation (DBS) for the treatment of acquired dystonia in children and young adults. Pallidal DBS is efficacious for severe, medication-refractory isolated dystonia, providing 50%-60% long-term improvement. Unfortunately, pallidal stimulation response rates in acquired dystonia are modest and unpredictable, with frequent nonresponders. Acquired dystonia, most commonly caused by cerebral palsy, is more common than isolated dystonia in pediatric populations and is more recalcitrant to standard treatments. Given the limitations of pallidal DBS in acquired dystonia, there is a need to explore alternative brain targets. Preliminary evidence has suggested that thalamic stimulation may be efficacious for acquired dystonia. METHODS Four participants, 3 with perinatal brain injuries and 1 with postencephalitic symptomatic dystonia, underwent bilateral Vop/Vim DBS and bimonthly evaluations for 12 months. The primary efficacy outcome was the change in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) and Barry-Albright Dystonia Scale (BADS) scores between the baseline and 12-month assessments. Video documentation was used for blinded ratings. Secondary outcomes included evaluation of spasticity (Modified Ashworth Scale score), quality of life (Pediatric Quality of Life Inventory [PedsQL] and modified Unified Parkinson's Disease Rating Scale Part II [UPDRS-II] scores), and neuropsychological assessments. Adverse events were monitored for safety. RESULTS All participants tolerated the procedure well, and there were no safety concerns or serious adverse events. There was an average improvement of 21.5% in the BFMDRS motor subscale score, but the improvement was only 1.6% according to the BADS score. Following blinded video review, dystonia severity ratings were even more modest. Secondary outcomes, however, were more encouraging, with the BFMDRS disability subscale score improving by 15.7%, the PedsQL total score by 27%, and the modified UPDRS-II score by 19.3%. Neuropsychological assessment findings were unchanged 1 year after surgery. CONCLUSIONS Bilateral thalamic neuromodulation by DBS for severe, medication-refractory acquired dystonia was well tolerated. Primary and secondary outcomes showed highly variable treatment effect sizes comparable to those of pallidal stimulation in this population. As previously described, improvements in quality of life and disability were not reflected in dystonia severity scales, suggesting a need for the development of scales specifically for acquired dystonia.Clinical trial registration no.: NCT03078816 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Marta San Luciano
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Amy Robichaux-Viehoever
- Department of Neurology, Division of Child Neurology, Washington University in St. Louis, St. Louis, MO, USA
| | - Kristen A Dodenhoff
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Gittings
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Aaron C Viser
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Caroline A Racine
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ian O Bledsoe
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Christa Pereira
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Sarah Wang
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Philip A Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Jill L Ostrem
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
37
|
Riboldi GM, Frucht SJ. Neurologic Manifestations of Systemic Disease: Movement Disorders. Curr Treat Options Neurol 2021. [DOI: 10.1007/s11940-020-00659-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Paraguay IB, França C, Duarte KP, Diniz JM, Galhardoni R, Silva V, Iglesio R, Bissoli AB, Menezes JR, Carra RB, Lepski G, Barbosa ER, Ciampi de Andrade D, Teixeira MJ, Cury RG. Dentate nucleus stimulation for essential tremor. Parkinsonism Relat Disord 2020; 82:121-122. [PMID: 33307418 DOI: 10.1016/j.parkreldis.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 10/22/2022]
Affiliation(s)
- Isabela Bruzzi Paraguay
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carina França
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Functional Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Juliete Melo Diniz
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Galhardoni
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Valquiria Silva
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Ricardo Iglesio
- Functional Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - André Bortolon Bissoli
- Functional Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Janaína Reis Menezes
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rafael Bernhart Carra
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Guilherme Lepski
- Functional Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil; Department of Neurosurgery, Eberhard Karls University in Tuebingen, Germany
| | - Egberto Reis Barbosa
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Service of Interdisciplinary Neuromodulation (SIN), Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, University of São Paulo, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Functional Neurosurgery Division, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Center, Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
39
|
High Frequency Deep Brain Stimulation of Superior Cerebellar Peduncles in a Patient with Cerebral Palsy. Tremor Other Hyperkinet Mov (N Y) 2020; 10:38. [PMID: 33101764 PMCID: PMC7546102 DOI: 10.5334/tohm.551] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Globus pallidus internus (GPi) deep brain stimulation (DBS) is widely used in patients with isolated dystonia; however, its use remains controversial in patients with acquired dystonia and cerebral palsy. Case presentation We report the first case of a cerebral palsy patient, who failed to recover 2 years after GPi DBS; DBS was administered on both superior cerebellar peduncles (SCPs) and dentate nuclei (DNs). The monopolar stimulation results suggested that DBS was better administered via the SCPs than via the DNs. At six months follow-up, the patient exhibited a significant improvement of dystonia and spasticity, as well as in her quality of life. Discussion SCP DBS may be a potential treatment for cerebral palsy patients with dystonia and spasticity who do not respond well to GPi DBS.
Collapse
|
40
|
Bledsoe IO, Viser AC, San Luciano M. Treatment of Dystonia: Medications, Neurotoxins, Neuromodulation, and Rehabilitation. Neurotherapeutics 2020; 17:1622-1644. [PMID: 33095402 PMCID: PMC7851280 DOI: 10.1007/s13311-020-00944-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/24/2023] Open
Abstract
Dystonia is a complex disorder with numerous presentations occurring in isolation or in combination with other neurologic symptoms. Its treatment has been significantly improved with the advent of botulinum toxin and deep brain stimulation in recent years, though additional investigation is needed to further refine these interventions. Medications are of critical importance in forms of dopa-responsive dystonia but can be beneficial in other forms of dystonia as well. Many different rehabilitative paradigms have been studied with variable benefit. There is growing interest in noninvasive stimulation as a potential treatment, but with limited long-term benefit shown to date, and additional research is needed. This article reviews existing evidence for treatments from each of these categories. To date, there are many examples of incomplete response to available treatments, and improved therapies are needed.
Collapse
Affiliation(s)
- Ian O. Bledsoe
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Aaron C. Viser
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Marta San Luciano
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| |
Collapse
|