1
|
Yu L, Peng G, Yuan Y, Tang M, Liu P, Liu X, Ni J, Li Y, Ji C, Fan Z, Zhu W, Luo B, Ke Q. ATP1A3 mutation in rapid-onset dystonia parkinsonism: New data and genotype-phenotype correlation analysis. Front Aging Neurosci 2022; 14:933893. [PMID: 35978945 PMCID: PMC9376385 DOI: 10.3389/fnagi.2022.933893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Rapid-onset dystonia parkinsonism (RDP) is a rare disease caused by ATP1A3 mutation with considerable clinical heterogeneity. Increased knowledge of RDP could be beneficial in its early diagnosis and treatment. Objective This study aimed to summarize the gene mutation spectrum of ATP1A3 associated with RDP, and to explore the correlation of ATP1A3 variants with RDP clinical phenotypes. Methods In this study, we reported two RDP patients from a family with a novel inherited ATP1A3 variant. Then, we reviewed and analyzed the available literature in English focused on ATP1A3-causative RDP. A total of 35 articles covering 15 families (59 patients) and 36 sporadic RDP cases were included in our analysis. Results The variant A813V (2438C>T) in ATP1A3 found in our cases was a novel mutant. Delays in diagnosis were common, with a mean delay time of 14 years. ATP1A3 had distinct RDP-related mutation hotspots, which consisted of exon8, 14, 17, and 18, and the most frequently occurring variants were T613M and I578S. Approximately 74.5% of patients have specific triggers before disease onset, and 82.1% of RDPs have stable symptoms within 1 month. The incidence rates of dystonia and bradykinesia are 100 and 88.1%, respectively. The onset site varied and exhibited a rostrocaudal gradient distribution pattern in 45% of patients with RDP. Approximately 63.6% of patients had mild improvement after receiving comprehensive interventions, especially in gait disturbance amelioration. Conclusion In patients with acute and unexplained dystonia or bradykinesia, gene screening on ATP1A3 should be timely performed. When a diagnosis has been made, treatments that may be effective are to be attempted. Our study would be helpful for the early diagnosis and treatment of ATP1T3-related RDP.
Collapse
|
2
|
Lin J, Li C, Shang H. Teaching Video NeuroImage: Oculogyric Crises in a 12-Year-Old Girl With Rapid-Onset Dystonia Parkinsonism. Neurology 2022; 98:990-991. [PMID: 35483898 DOI: 10.1212/wnl.0000000000200584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Affiliation(s)
- Junyu Lin
- From the Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunyu Li
- From the Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Huifang Shang
- From the Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
3
|
Afrashteh F, Ghafoury R, Almasi-Doghaee M. Cerebrospinal fluid biomarkers and genetic factors associated with normal pressure hydrocephalus and Alzheimer’s disease: a narrative review. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00247-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Normal pressure hydrocephalus is a neurologic disease leading to enlargement of ventricles which is presented with gait and balance disturbance, cognitive decline, and urinary incontinence. Diagnosis of normal pressure hydrocephalus is challenging due to the late onset of signs and symptoms. In this review, we summarize the cerebrospinal fluid, plasma, pathology, and genetic biomarkers of normal pressure hydrocephalus and related disorders.
Body
Recently, cerebrospinal fluid and serum biomarkers analysis alongside gene analysis has received a lot of attention. Interpreting a set of serum and cerebrospinal fluid biomarkers along with genetic testing for candidate genes could differentiate NPH from other neurological diseases such as Alzheimer's disease, Parkinson's disease with dementia, and other types of dementia.
Conclusion
Better understanding the pathophysiology of normal pressure hydrocephalus through genetic studies can aid in evolving preventative measures and the early treatment of normal pressure hydrocephalus patients.
Collapse
|
4
|
Rauschenberger L, Knorr S, Pisani A, Hallett M, Volkmann J, Ip CW. Second hit hypothesis in dystonia: Dysfunctional cross talk between neuroplasticity and environment? Neurobiol Dis 2021; 159:105511. [PMID: 34537328 DOI: 10.1016/j.nbd.2021.105511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 01/08/2023] Open
Abstract
One of the great mysteries in dystonia pathophysiology is the role of environmental factors in disease onset and development. Progress has been made in defining the genetic components of dystonic syndromes, still the mechanisms behind the discrepant relationship between dystonic genotype and phenotype remain largely unclear. Within this review, the preclinical and clinical evidence for environmental stressors as disease modifiers in dystonia pathogenesis are summarized and critically evaluated. The potential role of extragenetic factors is discussed in monogenic as well as adult-onset isolated dystonia. The available clinical evidence for a "second hit" is analyzed in light of the reduced penetrance of monogenic dystonic syndromes and put into context with evidence from animal and cellular models. The contradictory studies on adult-onset dystonia are discussed in detail and backed up by evidence from animal models. Taken together, there is clear evidence of a gene-environment interaction in dystonia, which should be considered in the continued quest to unravel dystonia pathophysiology.
Collapse
Affiliation(s)
- Lisa Rauschenberger
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Susanne Knorr
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jens Volkmann
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| |
Collapse
|
5
|
Slow EJ, Lang AE. Oculogyric crises: A review of phenomenology, etiology, pathogenesis, and treatment. Mov Disord 2017; 32:193-202. [PMID: 28218460 DOI: 10.1002/mds.26910] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/02/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Abstract
Oculogyric crises are a rare movement disorder characterized by paroxysmal, conjugate, tonic, usually upwards, deviation of the eyes. Causes for oculogyric crises are limited and include complications of dopamine-receptor blocking medications and neurometabolic disorders affecting dopamine metabolism, suggesting that an underlying hypodopaminergic state is important to the pathogenesis. Mimickers of oculogyric crises exist, and we propose diagnostic criteria to distinguish true oculogyric crises. Recognition of oculogyric crises is important for the diagnosis and appropriate treatment of rare disorders, and an approach to investigations in oculogyric crises is proposed. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Elizabeth J Slow
- Movement Disorders Center, Division of Neurology, TWH, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Movement Disorders Center, Division of Neurology, TWH, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Liu Y, Lu Y, Zhang X, Xie S, Wang T, Wu T, Wang C. A case of rapid-onset dystonia-parkinsonism accompanied by pyramidal tract impairment. BMC Neurol 2016; 16:218. [PMID: 27835968 PMCID: PMC5105251 DOI: 10.1186/s12883-016-0743-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/08/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rapid-onset dystonia-parkinsonism (RDP) is a rare autosomal dominant disorder that is caused by mutations in the ATP1A3 gene and is characterized by an acute onset of asymmetric dystonia and parkinsonism. To date, fewer than 75 RDP cases have been reported worldwide. Clinical signs of pyramidal tract involvement have been reported in several RDP cases, and none of them included the Babinski sign. CASE PRESENTATION We report a 24-year-old Chinese female with RDP who exhibited a strikingly asymmetric, predominantly dystonic movement disorder with a rostrocaudal gradient of involvement and parkinsonism. Physical examiniations revealed hyperactive reflexes, bilateral ankle clonus and positive Babinski sign in the right. DTI showed reduced white matter integrity of the corticospinal tract in the frontal lobe and subpontine plane. Genetic testing revealed a missense mutation of the ATP1A3-gene (E277K) in the patient. CONCLUSION We suggest that pyramidal tract impairment could be involved in rapid-onset dystonia-parkinsonism and the pyramidal tract impairment in RDP needs to be differentiated from HSP.
Collapse
Affiliation(s)
- Yanqiu Liu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Xinqing Zhang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Shuping Xie
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Tingting Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053 China
| | - Tianwen Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Chaoyan Wang
- Department of Magnetic Resonance, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| |
Collapse
|
7
|
Mosaicism in ATP1A3-related disorders: not just a theoretical risk. Neurogenetics 2016; 18:23-28. [PMID: 27726050 DOI: 10.1007/s10048-016-0498-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/18/2016] [Indexed: 01/16/2023]
Abstract
Mutations in ATP1A3 are involved in a large spectrum of neurological disorders, including rapid onset dystonia parkinsonism (RDP), alternating hemiplegia of childhood (AHC), and cerebellar ataxia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS), with recent descriptions of overlapping phenotypes. In AHC, a few familial cases of autosomal dominant inheritance have been reported, along with cases of de novo sporadic mutations. In contrast, autosomal dominant inheritance has frequently been associated with RDP and CAPOS. Here, we report on two unrelated sets of full siblings with ATP1A3 mutations, (c.2116G>A) p. Gly706Arg in the first family, and (c.2266C>T) p. Arg756Cys in the second family, presenting with familial recurrence of the disease. Both families displayed parental germline mosaicism. In the first family, the brother and sister presented with severe intellectual deficiency, early onset pharmacoresistant epilepsy, ataxia, and autistic features. In the second family, both sisters demonstrated severe encephalopathy with ataxia and dystonia following a regression episode during a febrile episode during infancy. To our knowledge, mosaicism has not previously been reported in ATP1A3-related disorders. This report, therefore, provides evidence that germline mosaicism for ATP1A3 mutations is a likely explanation for familial recurrence and should be considered during recurrence risk counseling for families of children with ATP1A3-related disorders.
Collapse
|
8
|
|
9
|
Calderon DP, Khodakhah K. Modeling Dystonia-Parkinsonism. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Schneider SA. Clinical Phenomenology and Genetics of Other Parkinsonian Syndromes Associated with Either Dystonia or Spasticity. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00057-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
11
|
Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB, Jóhannesson SH, Mikati MA, Neville B, Nicole S, Ozelius LJ, Poulsen H, Schyns T, Sweadner KJ, van den Maagdenberg A, Vilsen B. Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 2014; 13:503-14. [PMID: 24739246 DOI: 10.1016/s1474-4422(14)70011-0] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Genetic research has shown that mutations that modify the protein-coding sequence of ATP1A3, the gene encoding the α3 subunit of Na(+)/K(+)-ATPase, cause both rapid-onset dystonia parkinsonism and alternating hemiplegia of childhood. These discoveries link two clinically distinct neurological diseases to the same gene, however, ATP1A3 mutations are, with one exception, disease-specific. Although the exact mechanism of how these mutations lead to disease is still unknown, much knowledge has been gained about functional consequences of ATP1A3 mutations using a range of in-vitro and animal model systems, and the role of Na(+)/K(+)-ATPases in the brain. Researchers and clinicians are attempting to further characterise neurological manifestations associated with mutations in ATP1A3, and to build on the existing molecular knowledge to understand how specific mutations can lead to different diseases.
Collapse
Affiliation(s)
- Erin L Heinzen
- Center for Human Genome Variation, Duke University, School of Medicine, Durham, NC, USA; Department of Medicine, Section of Medical Genetics, Duke University, School of Medicine, Durham, NC, USA.
| | - Alexis Arzimanoglou
- Epilepsy, Sleep and Pediatric Neurophysiology Department, HFME, University Hospitals of Lyon, France; Centre de Recherche en Neurosciences de Lyon, Centre National de la Recherche Scientifique, UMR 5292, INSERM U1028, Lyon, France
| | - Allison Brashear
- Department of Neurology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | | | - Fiorella Gurrieri
- Istituto di Genetica Medica, Università Cattolica S Cuore, Rome, Italy
| | - David B Goldstein
- Center for Human Genome Variation, Duke University, School of Medicine, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University, School of Medicine, Durham, NC, USA
| | | | - Mohamad A Mikati
- Division of Pediatric Neurology, Duke University, School of Medicine, Durham, NC, USA; Department of Neurobiology, Duke University, School of Medicine, Durham, NC, USA
| | - Brian Neville
- Institute of Child Health, University College London, London, UK
| | - Sophie Nicole
- Institut National de la Santé et de la Recherche Médicale, U975, Centre de Recherche de l'Institut du Cerveau et de la Moelle, Paris, France; Centre National de la Recherche Scientifique, UMR7225, Paris, France; Université Pierre et Marie Curie Paris VI, UMRS975, Paris, France
| | - Laurie J Ozelius
- Department of Genetics and Genomic Sciences and Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hanne Poulsen
- Danish Research Institute for Translational Neuroscience, Nordic-EMBL Partnership of Molecular Medicine, Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Aarhus, Denmark
| | - Tsveta Schyns
- European Network for Research on Alternating Hemiplegia (ENRAH), Brussels, Belgium
| | | | - Arn van den Maagdenberg
- Department of Human Genetics and Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Bente Vilsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
12
|
Oleas J, Yokoi F, DeAndrade MP, Pisani A, Li Y. Engineering animal models of dystonia. Mov Disord 2014; 28:990-1000. [PMID: 23893455 DOI: 10.1002/mds.25583] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 05/25/2013] [Accepted: 05/29/2013] [Indexed: 12/19/2022] Open
Abstract
Dystonia is a neurological disorder characterized by abnormal involuntary movements that are prolonged and often cause twisting and turning. Several genetically modified worms, fruit flies, and rodents have been generated as models of genetic dystonias, in particular DYT1, DYT11, and DYT12 dystonias. Although these models do not show overt dystonic symptoms, the rodent models exhibit motor deficits in specialized behavioral tasks, such as the rotarod and beam-walking tests. For example, in a rodent model of DYT12 dystonia, which is generally stress triggered, motor deficits are observed only after the animal is stressed. Moreover, in a rodent model of DYT1 dystonia, the motor and electrophysiological deficits can be rescued by trihexyphenidyl, a common anticholinergic medication used to treat dystonic symptoms in human patients. Biochemically, the DYT1 and DYT11 animal models also share some similarities to patients, such as a reduction in striatal D2 dopamine receptor and binding activities. In addition, conditional knockout mouse models for DYT1 and DYT11 dystonia demonstrate that loss of the causal dystonia-related proteins in the striatum leads to motor deficits. Interestingly, loss of the DYT1 dystonia causal protein in Purkinje cells shows an improvement in motor performance, suggesting that gene therapy targeting of the cerebellum or intervention in its downstream pathways may be useful. Finally, recent studies using DYT1 dystonia worm and mouse models led to a potential novel therapeutic agent, which is currently undergoing clinical trials. These results indicate that genetic animal models are powerful tools to elucidate the pathophysiology and to further develop new therapeutics for dystonia.
Collapse
Affiliation(s)
- Janneth Oleas
- Department of Neurology, College of Medicine, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | |
Collapse
|
13
|
Rosewich H, Thiele H, Ohlenbusch A, Maschke U, Altmüller J, Frommolt P, Zirn B, Ebinger F, Siemes H, Nürnberg P, Brockmann K, Gärtner J. Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: a whole-exome sequencing gene-identification study. Lancet Neurol 2012; 11:764-773. [PMID: 22850527 DOI: 10.1016/s1474-4422(12)70182-5] [Citation(s) in RCA: 183] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Alternating hemiplegia of childhood (AHC) is a rare neurological disorder characterised by early-onset episodes of hemiplegia, dystonia, various paroxysmal symptoms, and developmental impairment. Almost all cases of AHC are sporadic but AHC concordance in monozygotic twins and dominant transmission in a family with a milder phenotype have been reported. Thus, we aimed to identify de-novo mutations associated with this disease. METHODS We recruited patients with clinically characterised AHC from paediatric neurology departments in Germany and with the aid of a parental support group between Sept, 2004, and May 18, 2012. We used whole-exome sequencing of three proband-parent trios to identify a disease-associated gene and then tested whether mutations in the gene were also present in the remaining patients and their healthy parents. We analysed genotypes and characterised their associations with the phenotypic spectrum of the disease. FINDINGS We studied 15 female and nine male patients with AHC who were aged 8-35 years. ATP1A3 emerged as the disease-associated gene in AHC. Whole-exome sequencing showed three heterozygous de-novo missense mutations. Sequencing of the 21 remaining affected individuals identified disease-associated mutations in ATP1A3 in all patients, including six de-novo missense mutations and one de-novo splice-site mutation. Because ATP1A3 is also the gene associated with rapid-onset dystonia-parkinsonism (DYT12, OMIM 128235) we compared the genotypes and phenotypes of patients with AHC in our cohort with those of patients with rapid-onset dystonia-parkinsonism reported in the scientific literature. We noted overlapping clinical features, such as abrupt onset of dystonic episodes often triggered by emotional stress, a rostrocaudal (face to arm to leg) gradient of involvement, and signs of brainstem dysfunction, as well as clearly differentiating clinical characteristics, such as episodic hemiplegia and quadriplegia. INTERPRETATION Mutation analysis of the ATP1A3 gene in patients who met clinical criteria for AHC allows for definite genetic diagnosis and sound genetic counselling. AHC and rapid-onset dystonia-parkinsonism are allelic diseases related to mutations in ATP1A3 and form a phenotypical continuum of a dystonic movement disorder. FUNDING Eva Luise and Horst Köhler Foundation for Humans with Rare Diseases.
Collapse
Affiliation(s)
- Hendrik Rosewich
- Department of Paediatrics and Paediatric Neurology, Georg August University Göttingen, Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
New triggers and non-motor findings in a family with rapid-onset dystonia-parkinsonism. Parkinsonism Relat Disord 2012; 18:737-41. [PMID: 22534615 DOI: 10.1016/j.parkreldis.2012.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/05/2012] [Accepted: 03/22/2012] [Indexed: 01/12/2023]
Abstract
BACKGROUND A woman from Italy presented with dystonic leg symptoms at the age of 59. Rapid-onset dystonia-parkinsonism (RDP) was not suspected until 3 affected children (2 male, 1 female) with presentations consistent with the disorder were recognized. METHODS The mother and four of her children (3 with and 1 without dystonia) were evaluated with an extensive battery including standardized history questionnaire and rating scales. In addition, all four children had cognitive testing and three of the four children had psychiatric interviews. RESULTS In this family, a T613M mutation in the ATP1A3 gene was confirmed, the most common mutation present in patients with RDP. The proband's limb dystonia was atypical of RDP, symptoms of the others affected included dysarthria, asymmetric limb dystonia, and dysphagia more consistent with RDP. The two sons developed dystonia-parkinsonism in adolescence after consuming large amounts of alcohol. All 3 of those with psychiatric interviews reached diagnosable thresholds for mood disorder (bipolar or dysthymia) and some form of anxiety disorder. CONCLUSIONS The phenotype and age of onset is broader than previously reported in RDP, suggesting that it could be under-reported. Prior to this study, neuropsychologic symptoms associated with RDP were under-appreciated. Those patients who are at risk or suspected of having RDP should be cautioned to avoid excessive alcohol intake. Further study is needed to assess if the cognitive and psychiatric features are part of a broader RDP phenotype and this may have implications for future research into genetic susceptibility for psychiatric disease.
Collapse
|
15
|
Bøttger P, Doğanlı C, Lykke-Hartmann K. Migraine- and dystonia-related disease-mutations of Na+/K+-ATPases: relevance of behavioral studies in mice to disease symptoms and neurological manifestations in humans. Neurosci Biobehav Rev 2011; 36:855-71. [PMID: 22067897 DOI: 10.1016/j.neubiorev.2011.10.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 10/20/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
The two autosomal dominantly inherited neurological diseases: familial hemiplegic migraine type 2 (FHM2) and familial rapid-onset of dystonia-parkinsonism (Familial RDP) are caused by in vivo mutations of specific alpha subunits of the sodium-potassium pump (Na(+)/K(+)-ATPase). Intriguingly, patients with classical FHM2 and RDP symptoms additionally suffer from other manifestations, such as epilepsy/seizures and developmental disabilities. Recent studies of FHM2 and RDP mouse models provide valuable tools for dissecting the vital roles of the Na(+)/K(+)-ATPases, and we discuss their relevance to the complex patient symptoms and manifestations. Thus, it is interesting that mouse models targeting a specific α-isoform cause different, although still comparable, phenotypes consistent with classical symptoms and other manifestations observed in FHM2 and RDP patients. This review highlights that use of mouse models have broad potentials for future research concerning migraine and dystonia-related diseases, which will contribute towards understanding the, yet unknown, pathophysiologies.
Collapse
Affiliation(s)
- Pernille Bøttger
- Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Danish National Research Foundation, Denmark; Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Aarhus C, Denmark
| | | | | |
Collapse
|
16
|
Abstract
The last 25 years have seen remarkable advances in our understanding of the genetic etiologies of dystonia, new approaches into dissecting underlying pathophysiology, and independent progress in identifying effective treatments. In this review we highlight some of these advances, especially the genetic findings that have taken us from phenomenological to molecular-based diagnoses. Twenty DYT loci have been designated and 10 genes identified, all based on linkage analyses in families. Hand in hand with these genetic findings, neurophysiological and imaging techniques have been employed that have helped illuminate the similarities and differences among the various etiological dystonia subtypes. This knowledge is just beginning to yield new approaches to treatment including those based on DYT1 animal models. Despite the lag in identifying genetically based therapies, effective treatments, including impressive benefits from deep brain stimulation and botulinum toxin chemodenervation, have marked the last 25 years. The challenge ahead includes continued advancement into understanding dystonia's many underlying causes and associated pathology and using this knowledge to advance treatment including preventing genetic disease expression.
Collapse
Affiliation(s)
- Laurie J Ozelius
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|
17
|
Abstract
Rapid-onset dystonia-parkinsonism (RDP) is a rare condition with autosomal-dominant inheritance causing dystonia and parkinsonism which develop over a short period of time. It results from abnormalities in the Na(+)/K(+)-ATPase pump due to mutations in the ATP1A3 gene. This chapter reviews the clinical features, genetics, and diagnosis of this disorder.
Collapse
|
18
|
DeAndrade MP, Yokoi F, van Groen T, Lingrel JB, Li Y. Characterization of Atp1a3 mutant mice as a model of rapid-onset dystonia with parkinsonism. Behav Brain Res 2011; 216:659-65. [PMID: 20850480 PMCID: PMC2981691 DOI: 10.1016/j.bbr.2010.09.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/06/2010] [Accepted: 09/08/2010] [Indexed: 11/23/2022]
Abstract
Rapid-onset dystonia with parkinsonism (RDP) or DYT12 dystonia is a rare form of primary, generalized dystonia. Patients do not present with any symptoms until triggered by a physiological stressor. Within days, patients will show both dystonia and parkinsonism. Mutations resulting in a loss of function in the ATP1A3 gene have been identified as the cause of RDP. ATP1A3 encodes the α3 subunit of the Na(+)/K(+)-ATPase, which is exclusively expressed in neurons and cardiac cells. We have previously created a line of mice harboring a point mutation of the Atp1a3 gene (mouse homolog of the human ATP1A3 gene) that results in a loss of function of the α3 subunit. The Atp1a3 mutant mice showed hyperactivity, spatial learning and memory deficits, and increased locomotion induced by methamphetamine. However, the full spectrum of the motor phenotype has not been characterized in the mutant mice and it is not known whether triggers such as restraint stress affect the motor phenotype. Here, we characterized the motor phenotype in normal heterozygous Atp1a3 mutant mice and heterozygous Atp1a3 mutant mice that have been exposed to a restraint stress. We found that this type of trigger induced significant deficits in motor coordination and balance in the mutant mice, characteristic of other genotypic dystonia mouse models. Furthermore, stressed mutant mice also had a decreased thermal sensitivity and alterations in monoamine metabolism. These results suggest that the Atp1a3 mutant mouse models several characteristics of RDP and further analysis of this mouse model will provide great insight into pathogenesis of RDP.
Collapse
Affiliation(s)
- Mark P. DeAndrade
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Fumiaki Yokoi
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Thomas van Groen
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jerry B. Lingrel
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Yuqing Li
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Graduate Biomedical Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
19
|
Tarsy D, Sweadner KJ, Song PC. Case records of the Massachusetts General Hospital. Case 17-2010 - a 29-year-old woman with flexion of the left hand and foot and difficulty speaking. N Engl J Med 2010; 362:2213-9. [PMID: 20558373 DOI: 10.1056/nejmcpc1002112] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Daniel Tarsy
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, USA
| | | | | |
Collapse
|
20
|
Klein C, Schneider SA, Lang AE. Hereditary parkinsonism: Parkinson disease look-alikes-An algorithm for clinicians to “PARK
” genes and beyond. Mov Disord 2009; 24:2042-58. [DOI: 10.1002/mds.22675] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
21
|
Brashear A. Rapid-onset dystonia-parkinson in a brother and sister. Mov Disord 2008. [DOI: 10.3109/9780203008454-73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Zanotti-Fregonara P, Vidailhet M, Kas A, Ozelius LJ, Clot F, Hindié E, Ravasi L, Devaux JY, Roze E. [123I]-FP-CIT and [99mTc]-HMPAO single photon emission computed tomography in a new sporadic case of rapid-onset dystonia-parkinsonism. J Neurol Sci 2008; 273:148-51. [PMID: 18675996 DOI: 10.1016/j.jns.2008.06.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2008] [Revised: 06/23/2008] [Accepted: 06/25/2008] [Indexed: 10/21/2022]
Abstract
UNLABELLED Rapid-onset dystonia-parkinsonism (RDP) is a rare, autosomal-dominantly inherited syndrome characterized by abrupt onset, over hours to days, of dystonic and parkinsonian symptoms. To date, RDP has been described in a small number of families, and in only four sporadic cases. METHODS We here report a new sporadic case of RDP who has a novel de novo mutation in the ATP1A3 gene. Striatal dopamine transporters have been assessed quantitatively using [123I]-FP-CIT SPECT. A volume of interest (VOI) was drawn within the occipital cortex to obtain non-specific activity and specific to non-specific binding ratios (BR) were calculated. A single template of predefined VOI 3D-drawn on right and left caudate nucleus and putamen was applied to the spatially normalized BR images. BR values were compared to those obtained from an age-matched control group and from a group of patients suffering from Parkinson's disease (Hoehn and Yahr score 2 or 3). A [99mTc]-HMPAO cerebral blood flow study was also performed. RESULTS In the control group, BR values (mean+/-Standard Deviation) were 3.5+/-0.4 for the left striatum and 3.3+/-0.3 for the right one. RDP patient's values were 3 and 2.7, respectively. In the Parkinson group, values were 1.6+/-0.3 and 1.7+/-0.4, respectively. [99mTc]-HMPAO scan showed homogeneous cortical and sub-cortical perfusion. CONCLUSION Quantification of striatal [123I]-FP-CIT uptake in a new sporadic case of RDP with a novel mutation in the ATP1A3 gene showed values just within the range of normality. [99mTc]-HMPAO scan was normal.
Collapse
|
23
|
Lee JY, Gollamudi S, Ozelius LJ, Kim JY, Jeon BS. ATP1A3 mutation in the first asian case of rapid-onset dystonia-parkinsonism. Mov Disord 2007; 22:1808-9. [PMID: 17595045 DOI: 10.1002/mds.21638] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report a 38-year-old Korean man with sporadic rapid-onset dystonia-parkinsonism (RDP), who had a Thr 618 Met mutation in the Na(+)/K(+)-ATPase alpha3 subunit gene (ATP1A3). At the age of 21, he acutely developed severe dystonia and parkinsonism, which rapidly deteriorated into a wheelchair-bound state within 4 days. He is the first Asian RDP patient confirmed by genetic testing, ascertaining that RDP gene mutation is present in Asians. Pathophysiological considerations are briefly discussed.
Collapse
Affiliation(s)
- Jee-Young Lee
- Department of Neurology, Seoul National University Hospital, Chongno-Gu, Seoul, Korea
| | | | | | | | | |
Collapse
|
24
|
Brashear A, Dobyns WB, de Carvalho Aguiar P, Borg M, Frijns CJM, Gollamudi S, Green A, Guimaraes J, Haake BC, Klein C, Linazasoro G, Münchau A, Raymond D, Riley D, Saunders-Pullman R, Tijssen MAJ, Webb D, Zaremba J, Bressman SB, Ozelius LJ. The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 2007; 130:828-35. [PMID: 17282997 DOI: 10.1093/brain/awl340] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rapid-onset dystonia-parkinsonism (RDP) (also known as DYT12) is characterized by the abrupt onset of dystonia and parkinsonism and is caused by mutations in the ATP1A3 gene. We obtained clinical data and sequenced the ATP1A3 gene in 49 subjects from 21 families referred with 'possible' RDP, and performed a genotype-phenotype analysis. Of the new families referred for study only 3 of 14 families (21%) demonstrated a mutation in the ATP1A3 gene, but no new mutations were identified beyond our earlier report of 6. Adding these to previously reported families, we found mutations in 36 individuals from 10 families including 4 de novo mutations and excluded mutations in 13 individuals from 11 families. The phenotype in mutation positive patients included abrupt onset of dystonia with features of parkinsonism, a rostrocaudal gradient, and prominent bulbar findings. Other features found in some mutation carriers included common reports of triggers, minimal or no tremor at onset, occasional mild limb dystonia before the primary onset, lack of response to dopaminergic medications, rare abrupt worsening of symptoms later in life, stabilization of symptoms within a month and minimal improvement overall. In comparing ATP1A3 mutation positive and negative patients, we found that tremor at onset of symptoms, a reversed rostrocaudal gradient, and significant limb pain exclude a diagnosis of RDP. A positive family history is not required. Genetic testing for the ATP1A3 gene is recommended when abrupt onset, rostrocaudal gradient and prominent bulbar findings are present.
Collapse
Affiliation(s)
- Allison Brashear
- Department of Neurology, Wake Forest University, Winston Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
McKeon A, Ozelius LJ, Hardiman O, Greenway MJ, Pittock SJ. Heterogeneity of presentation and outcome in the Irish rapid-onset dystonia–Parkinsonism kindred. Mov Disord 2007; 22:1325-7. [PMID: 17516473 DOI: 10.1002/mds.21335] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The authors report a 7-year follow-up video study and molecular data on the Irish rapid-onset dystonia-Parkinsonism kindred. All affected patients tested had a missense mutation in the Na(+)/K(+) -ATPase alpha3 subunit (ATP1A3), twice previously identified, suggestive of a mutation hotspot. Clinical presentation, progression, and outcome in this kindred is varied. Some patients remain stable over many years, others worsen, have a fluctuating course, or improve over time. To date there have been no effective treatments for this disorder, although Na(+)/K(+) ATPase may be a future therapeutic target. The broad phenotypic spectrum of RDP described in the text and detailed in the video, should be considered when evaluating patients with dystonia.
Collapse
Affiliation(s)
- Andrew McKeon
- Department of Neurology, Beaumont Hospital Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | | |
Collapse
|
26
|
Kamphuis DJ, Koelman H, Lees AJ, Tijssen MAJ. Sporadic rapid-onset dystonia-parkinsonism presenting as Parkinson's disease. Mov Disord 2006; 21:118-9. [PMID: 16161139 DOI: 10.1002/mds.20695] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We report on a 38-year-old patient with rapid-onset dystonia-parkinsonism (RDP) with a missense mutation in the Na/K-ATPase alpha3 subunit (ATP1A3). Asymmetrical parkinsonian symptoms evolved over a year. After a stable episode of another 2.5 years, overnight he developed oromandibular dystonia and more severe parkinsonian symptoms. We conclude that RDP should be considered as a rare cause of levodopa-unresponsive parkinsonism even if there is no family history and the classic presentation is lacking.
Collapse
Affiliation(s)
- Daan J Kamphuis
- Department of Neurology, Reinier de Graaf Groep, Delft, The Netherlands.
| | | | | | | |
Collapse
|