1
|
Koo BB, Abdelfattah A, Eysa A, Lu L. The Melanocortin and Endorphin Neuropeptides in Patients with Restless Legs Syndrome. Ann Neurol 2024; 95:688-699. [PMID: 38308537 DOI: 10.1002/ana.26876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/13/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE Based upon similarities between the urge to move and sensory discomfort of restless legs syndrome (RLS) and properties of melanocortin hormones, including their incitement of movement and hyperalgesia, we assessed plasma and cerebrospinal fluid (CSF) α-melanocyte-stimulating hormone (α-MSH) and β-endorphin in RLS patients and controls. METHODS Forty-two untreated moderate-to-severe RLS patients and 44 matched controls underwent venipuncture at 19:00, 20:30, and 22:00; 37 RLS and 36 controls had lumbar puncture at 21:30. CSF and plasma were analyzed for pro-opiomelanocortin (POMC), adrenocorticotropin hormone (ACTH), α-MSH, β-MSH, and β-endorphin by immunoassay. RLS severity was assessed by International RLS Study Group Severity Scale. RESULTS RLS participants were 52.7 ± 12.0 years old, 61.9% were women, 21.4% had painful RLS, and RLS severity was 24.8 ± 9.0. Controls had similar age and sex. Plasma ACTH, α-MSH, and β-endorphin were similar between groups. Plasma POMC was significantly greater in RLS than controls (17.0 ± 11.5 vs 12.7 ± 6.1fmol/ml, p = 0.048). CSF ACTH was similar between groups. CSF β-MSH was significantly higher in painful than nonpainful RLS or controls (48.2 ± 24.8 vs 32.1 ± 14.8 vs 32.6 ± 15.2pg/ml, analysis of variance [ANOVA] p = 0.03). CSF α-MSH was higher in RLS than controls (34.2 ± 40.9 vs 20.3 ± 11.0pg/ml, p = 0.062). CSF β-EDP was lowest in painful RLS, intermediate in nonpainful RLS, and highest in controls (8.0 ± 3.4 vs 10.8 ± 3.1 vs 12.3 ± 5.0pg/ml, ANOVA p = 0.049). The ratio of the sum of CSF α- and β-MSH to CSF β-endorphin was highest, intermediate, and lowest in painful RLS, nonpainful RLS, and controls (p = 0.007). INTERPRETATION CSF β-MSH is increased and CSF β-endorphin decreased in RLS patients with painful symptoms. ANN NEUROL 2024;95:688-699.
Collapse
Affiliation(s)
- Brian B Koo
- Department of Neurology, Yale University, New Haven, CT, USA
| | | | - Athar Eysa
- Department of Internal Medicine, Morristown Medical Center, Morristown, NJ, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Walters AS, Li Y, Koo BB, Ondo WG, Weinstock LB, Champion D, Afrin LB, Karroum EG, Bagai K, Spruyt K. Review of the role of the endogenous opioid and melanocortin systems in the restless legs syndrome. Brain 2024; 147:26-38. [PMID: 37633259 PMCID: PMC10796165 DOI: 10.1093/brain/awad283] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023] Open
Abstract
Restless legs syndrome (RLS) is responsive to opioid, dopaminergic and iron-based treatments. Receptor blocker studies in RLS patients suggest that the therapeutic efficacy of opioids is specific to the opioid receptor and mediated indirectly through the dopaminergic system. An RLS autopsy study reveals decreases in endogenous opioids, β-endorphin and perhaps Met-enkephalin in the thalamus of RLS patients. A total opioid receptor knock-out (mu, delta and kappa) and a mu-opioid receptor knock-out mouse model of RLS show circadian motor changes akin to RLS and, although both models show sensory changes, the mu-opioid receptor knock mouse shows circadian sensory changes closest to those seen in idiopathic RLS. Both models show changes in striatal dopamine, anaemia and low serum iron. However, only in the total receptor knock-out mouse do we see the decreases in serum ferritin that are normally found in RLS. There are also decreases in serum iron when wild-type mice are administered a mu-opioid receptor blocker. In addition, the mu-opioid receptor knock-out mouse also shows increases in striatal zinc paralleling similar changes in RLS. Adrenocorticotropic hormone and α-melanocyte stimulating hormone are derived from pro-opiomelanocortin as is β-endorphin. However, they cause RLS-like symptoms and periodic limb movements when injected intraventricularly into rats. These results collectively suggest that an endogenous opioid deficiency is pathogenetic to RLS and that an altered melanocortin system may be causal to RLS as well.
Collapse
Affiliation(s)
- Arthur S Walters
- Sleep Division, Department of Neurology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Brian B Koo
- Sleep Medicine Laboratory, VA Connecticut Health Care System, West Haven, CT 06516, USA
- Yale Center for Restless Legs Syndrome, Yale School of Medicine, New Haven, CT 06520, USA
| | - William G Ondo
- Department of Neurology, Methodist Hospital, Weill Cornell Medical School, Houston, TX 77030, USA
| | - Leonard B Weinstock
- Department of Internal Medicine, Washington University School of Medicine, St.Louis, MO 63130, USA
| | - David Champion
- Sydney Children's Hospital, Department of Pain Medicine, Randwick, NSW 2031, Australia
| | - Lawrence B Afrin
- Hematology/Oncology, AIM Center for Personalized Medicine, Purchase, NY 10577, USA
| | - Elias G Karroum
- Department of Neurology and Rehabilitation Medicine, The George Washington University School of Medicine and Health Sciences, George Washington University, Washington, D.C. 20052, USA
| | - Kanika Bagai
- Sleep Division, Department of Neurology, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Karen Spruyt
- Université Paris Cité, NeuroDiderot Inserm, Paris 75019, France
| |
Collapse
|
3
|
Dall'Olmo L, Papa N, Surdo NC, Marigo I, Mocellin S. Alpha-melanocyte stimulating hormone (α-MSH): biology, clinical relevance and implication in melanoma. J Transl Med 2023; 21:562. [PMID: 37608347 PMCID: PMC10463388 DOI: 10.1186/s12967-023-04405-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/01/2023] [Indexed: 08/24/2023] Open
Abstract
Alpha-melanocyte stimulating hormone (α-MSH) and its receptor, melanocortin 1 receptor (MC1R), have been proposed as potential target for anti-cancer strategies in melanoma research, due to their tissue specific expression and involvement in melanocyte homeostasis. However, their role in prevention and treatment of melanoma is still debated and controversial. Although a large body of evidence supports α-MSH in preventing melanoma development, some preclinical findings suggest that the α-MSH downstream signalling may promote immune escape and cancer resistance to therapy. Additionally, in metastatic melanoma both MC1R and α-MSH have been reported to be overexpressed at levels much higher than normal cells. Furthermore, targeted therapy (e.g. BRAF inhibition in BRAFV600E mutant tumours) has been shown to enhance this phenomenon. Collectively, these data suggest that targeting MC1R could serve as an approach in the treatment of metastatic melanoma. In this review, we explore the molecular biology of α-MSH with particular emphasis into its tumor-related properties, whilst elaborating the experimental evidence currently available regarding the interplay between α-MSH/MC1R axis, melanoma and antitumor strategies.
Collapse
Affiliation(s)
- Luigi Dall'Olmo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy.
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy.
| | - Nicole Papa
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Nicoletta Concetta Surdo
- Neuroscience Institute, National Research Council of Italy (CNR), 35121, Padua, Italy
- Veneto Institute of Molecular Medicine VIMM, Foundation for Advanced Biomedical Research, 35129, Padua, Italy
| | - Ilaria Marigo
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| | - Simone Mocellin
- Department of Surgical Oncological and Gastroenterological Sciences, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Istituto Oncologico Veneto IOV-IRCCS, 35128, Padua, Italy
| |
Collapse
|
4
|
Tang M, Sun Q, Zhang Y, Li H, Wang D, Wang Y, Wang Z. Circadian rhythm in restless legs syndrome. Front Neurol 2023; 14:1105463. [PMID: 36908590 PMCID: PMC9995399 DOI: 10.3389/fneur.2023.1105463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Restless legs syndrome (RLS) is a sensorimotor disorder with a obvious circadian rhythm, as its symptoms often occur or worsen only in the evening or at night. The mechanisms behind the rhythms of RLS have not yet been fully elucidated. This review explores possible causes for the circadian fluctuations of the symptomatology, including the levels of iron, dopamine, melatonin, melanocortin, and thyroid-stimulating hormone in the brain, as well as conditions such as peripheral hypoxia and microvascular function disorders. The metabolic disturbances of the substances above can create a pathological imbalance, which is further aggravated by physiological fluctuations of circadian rhythms, and results in the worsening of RLS symptoms at night. The review concludes with the suggestions for RLS treatment and research directions in the future.
Collapse
Affiliation(s)
- Mingyang Tang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingqing Sun
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanan Zhang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Huimin Li
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dong Wang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Wang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zan Wang
- Sleep Center, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Silvani A, Ghorayeb I, Manconi M, Li Y, Clemens S. Putative Animal Models of Restless Legs Syndrome: A Systematic Review and Evaluation of Their Face and Construct Validity. Neurotherapeutics 2023; 20:154-178. [PMID: 36536233 PMCID: PMC10119375 DOI: 10.1007/s13311-022-01334-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Restless legs syndrome (RLS) is a sensorimotor disorder that severely affects sleep. It is characterized by an urge to move the legs, which is often accompanied by periodic limb movements during sleep. RLS has a high prevalence in the population and is usually a life-long condition. While its origins remain unclear, RLS is initially highly responsive to treatment with dopaminergic agonists that target D2-like receptors, in particular D2 and D3, but the long-term response is often unsatisfactory. Over the years, several putative animal models for RLS have been developed, mainly based on the epidemiological and neurochemical link with iron deficiency, treatment efficacy of D2-like dopaminergic agonists, or genome-wide association studies that identified risk factors in the patient population. Here, we present the first systematic review of putative animal models of RLS, provide information about their face and construct validity, and report their role in deciphering the underlying pathophysiological mechanisms that may cause or contribute to RLS. We propose that identifying the causal links between genetic risk factors, altered organ functions, and changes to molecular pathways in neural circuitry will eventually lead to more effective new treatment options that bypass the side effects of the currently used therapeutics in RLS, especially for long-term therapy.
Collapse
Affiliation(s)
- Alessandro Silvani
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum - University of Bologna, Ravenna Campus, Ravenna, Italy
| | - Imad Ghorayeb
- Département de Neurophysiologie Clinique, Pôle Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Université de Bordeaux, Bordeaux, France
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, CNRS, Bordeaux, France
| | - Mauro Manconi
- Sleep Medicine Unit, Neurocenter of Southern Switzerland, EOC, Ospedale Civico, Lugano, Switzerland
- Department of Neurology, University Hospital, Inselspital, Bern, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, Lugano, Switzerland
| | - Yuqing Li
- Department of Neurology, College of Medicine, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Stefan Clemens
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
6
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JA. Neurochemical features of idiopathic restless legs syndrome. Sleep Med Rev 2019; 45:70-87. [PMID: 30965199 DOI: 10.1016/j.smrv.2019.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/08/2019] [Accepted: 03/15/2019] [Indexed: 11/26/2022]
|
7
|
Sharma A, Muresanu DF, Ozkizilcik A, Tian ZR, Lafuente JV, Manzhulo I, Mössler H, Sharma HS. Sleep deprivation exacerbates concussive head injury induced brain pathology: Neuroprotective effects of nanowired delivery of cerebrolysin with α-melanocyte-stimulating hormone. PROGRESS IN BRAIN RESEARCH 2019; 245:1-55. [PMID: 30961865 DOI: 10.1016/bs.pbr.2019.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Khan FH, Ahlberg CD, Chow CA, Shah DR, Koo BB. Iron, dopamine, genetics, and hormones in the pathophysiology of restless legs syndrome. J Neurol 2017; 264:1634-1641. [PMID: 28236139 DOI: 10.1007/s00415-017-8431-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 12/16/2022]
Abstract
Restless legs syndrome (RLS) is a common, chronic neurologic condition, which causes a persistent urge to move the legs in the evening that interferes with sleep. Human and animal studies have been used to study the pathophysiologic state of RLS and much has been learned about the iron and dopamine systems in relation to RLS. Human neuropathologic and imaging studies have consistently shown decreased iron in different brain regions including substantia nigra and thalamus. These same areas also demonstrate a state of relative dopamine excess. While it is not known how these changes in dopamine or iron produce the symptoms of RLS, genetic and hormone studies of RLS have identified other biologic systems or genes, such as the endogenous opioid and melanocortin systems and BTBD9 and MEIS1, that may explain some of the iron or dopamine changes in relation to RLS. This manuscript will review what is known about the pathophysiology of RLS, especially as it relates to changes in iron, dopamine, genetics, and hormonal systems.
Collapse
Affiliation(s)
- Farhan H Khan
- Lippard Laboratory of Clinical Investigation, Division of Movement Disorders, Department of Neurology, Yale University School of Medicine, Room 710, West Haven VAMC, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Caitlyn D Ahlberg
- Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH, 44106, USA
| | - Christopher A Chow
- Lippard Laboratory of Clinical Investigation, Division of Movement Disorders, Department of Neurology, Yale University School of Medicine, Room 710, West Haven VAMC, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Divya R Shah
- Lippard Laboratory of Clinical Investigation, Division of Movement Disorders, Department of Neurology, Yale University School of Medicine, Room 710, West Haven VAMC, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Brian B Koo
- Lippard Laboratory of Clinical Investigation, Division of Movement Disorders, Department of Neurology, Yale University School of Medicine, Room 710, West Haven VAMC, 950 Campbell Avenue, West Haven, CT, 06516, USA.
- Connecticut Veterans Affairs Medical Center, 950 Campbell Avenue, West Haven, CT, 06516, USA.
| |
Collapse
|
9
|
Koo BB. Restless Leg Syndrome Across the Globe: Epidemiology of the Restless Legs Syndrome/Willis-Ekbom Disease. Sleep Med Clin 2015; 10:189-205, xi. [PMID: 26329429 DOI: 10.1016/j.jsmc.2015.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
There are more than 50 epidemiologic studies measuring the prevalence of restless legs syndrome/Willis-Ekbom disease (RLS/WED) across 5 of the 6 inhabited continents (not Australia), most conducted in North America and Europe. Sufficient studies have been conducted in Asia, North America, and Europe to make inferences on RLS/WED prevalence by region. RLS/WED prevalence is thought to be highest in North America and Europe and lower in Asia. These differences across regions may be explained by cultural, environmental, and genetic factors. Future investigation is needed to determine to what extent these factors affect expression of RLS/WED according to world region.
Collapse
Affiliation(s)
- Brian B Koo
- Department of Neurology, Yale University School of Medicine, 15 York Street, New Haven, CT 06510, USA; Department of Neurology, West Haven VAMC, Connecticut Veterans Affairs Healthcare System, 950 Campbell Avenue, West Haven, CT 06516, USA.
| |
Collapse
|
10
|
Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci U S A 2014; 111:E3735-44. [PMID: 25136085 DOI: 10.1073/pnas.1412189111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Narcolepsy is a chronic sleep disorder, likely with an autoimmune component. During 2009 and 2010, a link between A(H1N1)pdm09 Pandemrix vaccination and onset of narcolepsy was suggested in Scandinavia. In this study, we searched for autoantibodies related to narcolepsy using a neuroanatomical array: rat brain sections were processed for immunohistochemistry/double labeling using patient sera/cerebrospinal fluid as primary antibodies. Sera from 89 narcoleptic patients, 52 patients with other sleep-related disorders (OSRDs), and 137 healthy controls were examined. Three distinct patterns of immunoreactivity were of particular interest: pattern A, hypothalamic melanin-concentrating hormone and proopiomelanocortin but not hypocretin/orexin neurons; pattern B, GABAergic cortical interneurons; and pattern C, mainly globus pallidus neurons. Altogether, 24 of 89 (27%) narcoleptics exhibited pattern A or B or C. None of the patterns were exclusive for narcolepsy but were also detected in the OSRD group at significantly lower numbers. Also, some healthy controls exhibited these patterns. The antigen of pattern A autoantibodies was identified as the common C-terminal epitope of neuropeptide glutamic acid-isoleucine/α-melanocyte-stimulating hormone (NEI/αMSH) peptides. Passive transfer experiments on rat showed significant effects of pattern A human IgGs on rapid eye movement and slow-wave sleep time parameters in the inactive phase and EEG θ-power in the active phase. We suggest that NEI/αMSH autoantibodies may interfere with the fine regulation of sleep, contributing to the complex pathogenesis of narcolepsy and OSRDs. Also, patterns B and C are potentially interesting, because recent data suggest a relevance of those brain regions/neuron populations in the regulation of sleep/arousal.
Collapse
|
11
|
Scriba MF, Ducrest AL, Henry I, Vyssotski AL, Rattenborg NC, Roulin A. Linking melanism to brain development: expression of a melanism-related gene in barn owl feather follicles covaries with sleep ontogeny. Front Zool 2013; 10:42. [PMID: 23886007 PMCID: PMC3734112 DOI: 10.1186/1742-9994-10-42] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/24/2013] [Indexed: 11/10/2022] Open
Abstract
Background Intra-specific variation in melanocyte pigmentation, common in the animal kingdom, has caught the eye of naturalists and biologists for centuries. In vertebrates, dark, eumelanin pigmentation is often genetically determined and associated with various behavioral and physiological traits, suggesting that the genes involved in melanism have far reaching pleiotropic effects. The mechanisms linking these traits remain poorly understood, and the potential involvement of developmental processes occurring in the brain early in life has not been investigated. We examined the ontogeny of rapid eye movement (REM) sleep, a state involved in brain development, in a wild population of barn owls (Tyto alba) exhibiting inter-individual variation in melanism and covarying traits. In addition to sleep, we measured melanistic feather spots and the expression of a gene in the feather follicles implicated in melanism (PCSK2). Results As in mammals, REM sleep declined with age across a period of brain development in owlets. In addition, inter-individual variation in REM sleep around this developmental trajectory was predicted by variation in PCSK2 expression in the feather follicles, with individuals expressing higher levels exhibiting a more precocial pattern characterized by less REM sleep. Finally, PCSK2 expression was positively correlated with feather spotting. Conclusions We demonstrate that the pace of brain development, as reflected in age-related changes in REM sleep, covaries with the peripheral activation of the melanocortin system. Given its role in brain development, variation in nestling REM sleep may lead to variation in adult brain organization, and thereby contribute to the behavioral and physiological differences observed between adults expressing different degrees of melanism.
Collapse
Affiliation(s)
- Madeleine F Scriba
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-str.11, Seewiesen 82319, Germany.,Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Isabelle Henry
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Alexei L Vyssotski
- Institute of Neuroinformatics, University of Zürich and ETH Zürich, Zürich 8057, Switzerland
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-str.11, Seewiesen 82319, Germany
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
12
|
Restless legs syndrome: relationship between prevalence and latitude. Sleep Breath 2011; 16:1237-45. [DOI: 10.1007/s11325-011-0640-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Revised: 12/15/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
|
13
|
Lopes C, Esteves AM, Frussa-Filho R, Tufik S, de Mello MT. Evaluation of periodic limb movements in a putative animal model of restless leg syndrome. Mov Disord 2011; 27:413-20. [PMID: 22162115 DOI: 10.1002/mds.24058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 11/03/2011] [Accepted: 11/09/2011] [Indexed: 11/08/2022] Open
Abstract
Restless leg syndrome (RLS) is a major healthcare burden with increasing prevalence. It has been demonstrated that periodic limb movements (PLM) can occur as an isolated phenomenon, but they are often associated with this syndrome and are the only symptom of this disorder that can be measured electrophysiologically. The aim of this study was to examine the sleep-wake behavior and the presence of limb movement in a rat model of RLS induced by lesioning the A11 dopaminergic nuclei with the neurotoxin 6-hydroxydopamine (6-OHDA). Rats were implanted with electrodes for electrocorticography and electromyography. Sleep recordings were monitored during light/dark periods lasting 12 hours each and were evaluated on days 7, 15, and 28 after injection of the drug or phosphate-buffered saline (PBS). A control group that did not receive any injection was also included. Wakefulness percentages were generated for 4-hour segments of the dark period, yielding the following 3 bins: 7 PM to 11 PM, 11 PM to 3 AM, and 3 PM to 7 PM. Additionally, slow wave sleep, paradoxical sleep, wakefulness, and limb movements were evaluated over the entire 12 hours of the light/dark cycle. All A11-lesioned rats exhibited an increased percentage of wakefulness during the last block of the dark period, as would be expected for an animal model of this syndrome. In addition, at all time points after lesioning, these animals presented increased frequencies of limb movement during both the light and the dark periods. These alterations were reversed by the acute administration of the dopaminergic agonist pramipexole. This animal model strengthens the notion that 6-OHDA-induced A11 lesions can be a valid animal model for RLS and PLM.
Collapse
Affiliation(s)
- Cleide Lopes
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | | | | | | |
Collapse
|
14
|
Progressive reduction of sleep time and quality in rats with hepatic encephalopathy caused by portacaval shunts. Neuroscience 2011; 201:199-208. [PMID: 22108612 DOI: 10.1016/j.neuroscience.2011.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/02/2011] [Accepted: 11/02/2011] [Indexed: 12/14/2022]
Abstract
Patients with liver cirrhosis show sleep disturbances. Insight into their relationship with hepatic encephalopathy (HE) can be obtained using animal models of HE. The aims of this work were to assess (1) whether rats with portacaval shunts (PCS), a model of HE, show alterations in sleep and if they are similar to those in patients with HE; (2) Whether hyperammonemia plays a role in these sleep alterations; and (3) the time course of sleep alterations in these animal models. Rats were subjected to PCS to induce HE. Another group of rats was fed an ammonium-containing diet to induce hyperammonemia. Polysomnographic recordings were acquired for 24 h and sleep architecture was analyzed in control, PCS, and hyperammonemic rats at 4, 7, and 11 weeks after surgery or diet, respectively. PCS rats show a significant reduction in rapid eye movement (REM) and non-rapid eye movement (NREM) sleep time and increased sleep fragmentation, whereas reduced sleep occurs at 4 weeks and worsens at 7 and 11 weeks, sleep fragmentation appears at 7 weeks and worsens at 11 weeks. Hyperammonemic rats show decreased REM sleep, starting at 7 weeks and worsening at 11 weeks, with no changes in NREM sleep or sleep fragmentation. Therefore, PCS rats are a good model to study sleep alterations in HE, their mechanisms, and potential treatment. Mild hyperammonemia mainly impacts mechanisms involved in REM generation and/or maintenance but does not seem to be involved in sleep fragmentation.
Collapse
|
15
|
Skibicka KP, Grill HJ. Hypothalamic and hindbrain melanocortin receptors contribute to the feeding, thermogenic, and cardiovascular action of melanocortins. Endocrinology 2009; 150:5351-61. [PMID: 19854868 PMCID: PMC2795709 DOI: 10.1210/en.2009-0804] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Forebrain ventricular delivery of melanocortin receptor (MC3/4R) agonist increases energy expenditure and decreases food intake (FI). Because forebrain ventricular delivery provides ligand to various anatomically distributed MC3/4R-bearing nuclei, it is unclear which of the receptor subpopulations contributes to the feeding suppression and the sympathetic-thermogenic effects observed. The literature indicates that reexpression of MC4R in the paraventricular nucleus (PVH) affects the feeding but not the energetic phenotype of the MC4R knockout, suggesting that divergent MC4R populations mediate energy expenditure (hindbrain) and FI (hypothalamus) effects of stimulation. Not consistent with this view are data indicating that PVH sympathetic projection neurons express MC4Rs and that feeding effects are induced from hindbrain MC4R sites. Therefore, we hypothesize an opposing perspective: that stimulation of anatomically diverse MC3/4R-bearing nuclei triggers energetic as well as feeding effects. To test this hypothesis, ventricle subthreshold doses of MC3/4R agonist (5 and 10 pmol) were applied in separate experiments to six hindbrain and hypothalamic sites; core temperature (Tc), heart rate (HR), spontaneous activity (SPA), and FI were measured in behaving rats. Nucleus tractus solitarius and PVH stimulation increased Tc, HR, and SPA and decreased FI. Rostral ventrolateral medulla, parabrachial nucleus, and retrochiasmatic area stimulation increased Tc, HR, but not SPA, and decreased FI. The response profile differed to some extent for each nucleus tested, suggesting differential output circuitries for the measured parameters. Data are consistent with the view that energetic and feeding responses are not controlled by regionally divergent MC3/4Rs and can be elicited from multiple, anatomically distributed MC3/4R populations.
Collapse
Affiliation(s)
- Karolina P Skibicka
- Graduate Group of Psychology and Graduate Group of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|