1
|
Colijn MA, Vrijsen S, Au PYB, Abou El Asrar R, Houdou M, Van den Haute C, Sarna J, Montgomery G, Vangheluwe P. Kufor-Rakeb syndrome-associated psychosis: a novel loss-of-function ATP13A2 variant and response to antipsychotic therapy. Neurogenetics 2024; 25:405-415. [PMID: 39023817 PMCID: PMC11534834 DOI: 10.1007/s10048-024-00767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
Biallelic (autosomal recessive) pathogenic variants in ATP13A2 cause a form of juvenile-onset parkinsonism, termed Kufor-Rakeb syndrome. In addition to motor symptoms, a variety of other neurological and psychiatric symptoms may occur in affected individuals, including supranuclear gaze palsy and cognitive decline. Although psychotic symptoms are often reported, response to antipsychotic therapy is not well described in previous case reports/series. As such, we describe treatment response in an individual with Kufor-Rakeb syndrome-associated psychosis. His disease was caused by a homozygous novel loss-of-function ATP13A2 variant (NM_022089.4, c.1970_1975del) that was characterized in this study. Our patient exhibited a good response to quetiapine monotherapy, which he has so far tolerated well. We also reviewed the literature and summarized all previous descriptions of antipsychotic treatment response. Although its use has infrequently been described in Kufor-Rakeb syndrome, quetiapine is commonly used in other degenerative parkinsonian disorders, given its lower propensity to cause extrapyramidal symptoms. As such, quetiapine should be considered in the treatment of Kufor-Rakeb syndrome-associated psychosis when antipsychotic therapy is deemed necessary.
Collapse
Affiliation(s)
- Mark Ainsley Colijn
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Stephanie Vrijsen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network , Chevy Chase, MD, 20815, USA
| | - Ping Yee Billie Au
- Department of Medical Genetics, Cumming School of Medicine, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Rania Abou El Asrar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network , Chevy Chase, MD, 20815, USA
| | - Marine Houdou
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network , Chevy Chase, MD, 20815, USA
| | - Chris Van den Haute
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network , Chevy Chase, MD, 20815, USA
- Leuven Viral Vector Core KU Leuven, Leuven, B-3000, Belgium
- Research Group for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, B-3000, Belgium
| | - Justyna Sarna
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Greg Montgomery
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, B-3000, Belgium
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network , Chevy Chase, MD, 20815, USA
| |
Collapse
|
2
|
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, Babula P, Kaplánek R, Přibyl T, Zelenka J, Ruml T, Vokurka M, Martásek P, Jakubek M. Iron chelators as mitophagy agents: Potential and limitations. Biomed Pharmacother 2024; 179:117407. [PMID: 39265234 DOI: 10.1016/j.biopha.2024.117407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Collapse
Affiliation(s)
- Tereza Brogyanyi
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital, U Nemocnice 2, Prague 121 08, Czech Republic
| | - Michal Masařik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic; Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
| | - Petr Babula
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno CZ-625 00, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Tomáš Přibyl
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Jaroslav Zelenka
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Prague 166 28, Czech Republic
| | - Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University in Prague, U Nemocnice 5, 1, Prague 28 53, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec 252 50, Czech Republic; Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague 120 00, Czech Republic.
| |
Collapse
|
3
|
Yasin M, Licchetta L, Khan N, Ullah I, Jan Z, Dawood M, Ahmed AN, Azeem A, Minardi R, Carelli V, Saleha S. Genetic heterogeneity in epilepsy and comorbidities: insights from Pakistani families. BMC Neurol 2024; 24:172. [PMID: 38783254 PMCID: PMC11112905 DOI: 10.1186/s12883-024-03671-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Epilepsy, a challenging neurological condition, is often present with comorbidities that significantly impact diagnosis and management. In the Pakistani population, where financial limitations and geographical challenges hinder access to advanced diagnostic methods, understanding the genetic underpinnings of epilepsy and its associated conditions becomes crucial. METHODS This study investigated four distinct Pakistani families, each presenting with epilepsy and a spectrum of comorbidities, using a combination of whole exome sequencing (WES) and Sanger sequencing. The epileptic patients were prescribed multiple antiseizure medications (ASMs), yet their seizures persist, indicating the challenging nature of ASM-resistant epilepsy. RESULTS Identified genetic variants contributed to a diverse range of clinical phenotypes. In the family 1, which presented with epilepsy, developmental delay (DD), sleep disturbance, and aggressive behavior, a homozygous splice site variant, c.1339-6 C > T, in the COL18A1 gene was detected. The family 2 exhibited epilepsy, intellectual disability (ID), DD, and anxiety phenotypes, a homozygous missense variant, c.344T > A (p. Val115Glu), in the UFSP2 gene was identified. In family 3, which displayed epilepsy, ataxia, ID, DD, and speech impediment, a novel homozygous frameshift variant, c.1926_1941del (p. Tyr643MetfsX2), in the ZFYVE26 gene was found. Lastly, family 4 was presented with epilepsy, ID, DD, deafness, drooling, speech impediment, hypotonia, and a weak cry. A homozygous missense variant, c.1208 C > A (p. Ala403Glu), in the ATP13A2 gene was identified. CONCLUSION This study highlights the genetic heterogeneity in ASM-resistant epilepsy and comorbidities among Pakistani families, emphasizing the importance of genotype-phenotype correlation and the necessity for expanded genetic testing in complex clinical cases.
Collapse
Affiliation(s)
- Muhammad Yasin
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Laura Licchetta
- RCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Niamat Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Irfan Ullah
- Department of Neurology, Khyber Teaching Hospital, Peshawar, Khyber Pakhtunkhwa, 25000, Pakistan
| | - Zakir Jan
- Department of Neurology, Pakistan Institute of Medical Science, Islamabad, 44000, Pakistan
| | - Muhammad Dawood
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Asif Naveed Ahmed
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Arfa Azeem
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan
| | - Raffaella Minardi
- RCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Valerio Carelli
- RCCS, Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan.
| |
Collapse
|
4
|
Croucher KM, Fleming SM. ATP13A2 (PARK9) and basal ganglia function. Front Neurol 2024; 14:1252400. [PMID: 38249738 PMCID: PMC10796451 DOI: 10.3389/fneur.2023.1252400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
ATP13A2 is a lysosomal protein involved in polyamine transport with loss of function mutations associated with multiple neurodegenerative conditions. These include early onset Parkinson's disease, Kufor-Rakeb Syndrome, neuronal ceroid lipofuscinosis, hereditary spastic paraplegia, and amyotrophic lateral sclerosis. While ATP13A2 mutations may result in clinical heterogeneity, the basal ganglia appear to be impacted in the majority of cases. The basal ganglia is particularly vulnerable to environmental exposures such as heavy metals, pesticides, and industrial agents which are also established risk factors for many neurodegenerative conditions. Not surprisingly then, impaired function of ATP13A2 has been linked to heavy metal toxicity including manganese, iron, and zinc. This review discusses the role of ATP13A2 in basal ganglia function and dysfunction, potential common pathological mechanisms in ATP13A2-related disorders, and how gene x environment interactions may contribute to basal ganglia dysfunction.
Collapse
Affiliation(s)
- Kristina M. Croucher
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
- Biomedical Sciences Graduate Program, Kent State University, Kent, OH, United States
| | - Sheila M. Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
5
|
Amini E, Rohani M, Lang AE, Azad Z, Habibi SAH, Alavi A, Shahidi G, Emamikhah M, Chitsaz A. Estimation of Ambulation and Survival in Neurodegeneration with Brain Iron Accumulation Disorders. Mov Disord Clin Pract 2024; 11:53-62. [PMID: 38291840 PMCID: PMC10828622 DOI: 10.1002/mdc3.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/29/2023] [Accepted: 11/04/2023] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND Neurodegeneration with Brain Iron Accumulation (NBIA) disorder is a group of ultra-orphan hereditary diseases with very limited data on its course. OBJECTIVES To estimate the probability of preserving ambulatory ability and survival in NBIA. METHODS In this study, the electronic records of the demographic data and clinical assessments of NBIA patients from 2012 to 2023 were reviewed. The objectives of the study and factors impacting them were investigated by Kaplan-Meier and Cox regression methods. RESULTS One hundred and twenty-two genetically-confirmed NBIA patients consisting of nine subtypes were enrolled. Twenty-four and twenty-five cases were deceased and wheelchair-bound, with a mean disease duration of 11 ± 6.65 and 9.32 ± 5 years. The probability of preserving ambulation and survival was 42.9% in 9 years and 28.2% in 15 years for classical Pantothenate Kinase-Associated Neurodegeneration (PKAN, n = 18), 89.4% in 7 years and 84.7% in 9 years for atypical PKAN (n = 39), 23% in 18 years and 67.8% in 14 years for Mitochondrial Membrane Protein-Associated Neurodegeneration (MPAN, n = 23), 75% in 20 years and 36.5% in 33 years for Kufor Rakeb Syndrome (KRS, n = 17), respectively. The frequencies of rigidity, spasticity, and female gender were significantly higher in deceased cases compared to surviving patients. Spasticity was the only factor associated with death (P value = 0.03). CONCLUSIONS KRS had the best survival with the most extended ambulation period. The classical PKAN and MPAN cases had similar progression patterns to loss of ambulation ability, while MPAN patients had a slower progression to death. Spasticity was revealed to be the most determining factor for death.
Collapse
Affiliation(s)
- Elahe Amini
- Skull Base Research Center, The Five Senses Health Institute, Rasoul Akram HospitalIran University of Medical SciencesTehranIran
- Department of Neurology, Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Mohammad Rohani
- Department of Neurology, Rasoul Akram HospitalIran University of Medical SciencesTehranIran
- ENT and Head and Neck Research Center and DepartmentThe Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences (IUMS)TehranIran
| | - Anthony E. Lang
- Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital and Edmond J. Safra Program in Parkinson DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Zahra Azad
- Skull Base Research Center, The Five Senses Health Institute, Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | | | - Afagh Alavi
- Genetics Research CenterThe University of Social Welfare and Rehabilitation SciencesTehranIran
| | - Gholamali Shahidi
- Department of Neurology, Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Maziar Emamikhah
- Department of Neurology, Rasoul Akram HospitalIran University of Medical SciencesTehranIran
| | - Ahmad Chitsaz
- Department of NeurologyIsfahan University of Medical SciencesIsfahanIran
| |
Collapse
|
6
|
Zhang D, Zhang J, Wang Y, Wang G, Tang P, Liu Y, Zhang Y, Ouyang L. Targeting epigenetic modifications in Parkinson's disease therapy. Med Res Rev 2023; 43:1748-1777. [PMID: 37119043 DOI: 10.1002/med.21962] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 01/10/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's disease (PD) is a multifactorial disease due to a complex interplay between genetic and epigenetic factors. Recent efforts shed new light on the epigenetic mechanisms involved in regulating pathways related to the development of PD, including DNA methylation, posttranslational modifications of histones, and the presence of microRNA (miRNA or miR). Epigenetic regulators are potential therapeutic targets for neurodegenerative disorders. In the review, we aim to summarize mechanisms of epigenetic regulation in PD, and describe how the DNA methyltransferases, histone deacetylases, and histone acetyltransferases that mediate the key processes of PD are attractive therapeutic targets. We discuss the use of inhibitors and/or activators of these regulators in PD models or patients, and how these small molecule epigenetic modulators elicit neuroprotective effects. Further more, given the importance of miRNAs in PD, their contributions to the underlying mechanisms of PD will be discussed as well, together with miRNA-based therapies.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yuxi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Pan Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yun Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics,West China Hospital, Sichuan University, Sichuan, Chengdu, China
| |
Collapse
|
7
|
Jagota P, Ugawa Y, Aldaajani Z, Ibrahim NM, Ishiura H, Nomura Y, Tsuji S, Diesta C, Hattori N, Onodera O, Bohlega S, Al-Din A, Lim SY, Lee JY, Jeon B, Pal PK, Shang H, Fujioka S, Kukkle PL, Phokaewvarangkul O, Lin CH, Shambetova C, Bhidayasiri R. Nine Hereditary Movement Disorders First Described in Asia: Their History and Evolution. J Mov Disord 2023; 16:231-247. [PMID: 37309109 PMCID: PMC10548072 DOI: 10.14802/jmd.23065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Clinical case studies and reporting are important to the discovery of new disorders and the advancement of medical sciences. Both clinicians and basic scientists play equally important roles leading to treatment discoveries for both cures and symptoms. In the field of movement disorders, exceptional observation of patients from clinicians is imperative, not just for phenomenology but also for the variable occurrences of these disorders, along with other signs and symptoms, throughout the day and the disease course. The Movement Disorders in Asia Task Force (TF) was formed to help enhance and promote collaboration and research on movement disorders within the region. As a start, the TF has reviewed the original studies of the movement disorders that were preliminarily described in the region. These include nine disorders that were first described in Asia: Segawa disease, PARK-Parkin, X-linked dystonia-parkinsonism, dentatorubral-pallidoluysian atrophy, Woodhouse-Sakati syndrome, benign adult familial myoclonic epilepsy, Kufor-Rakeb disease, tremulous dystonia associated with mutation of the calmodulin-binding transcription activator 2 gene, and paroxysmal kinesigenic dyskinesia. We hope that the information provided will honor the original researchers and help us learn and understand how earlier neurologists and basic scientists together discovered new disorders and made advances in the field, which impact us all to this day.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, Faculty of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical Complex, Dhahran, Saudi Arabia
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Hiroyuki Ishiura
- Department of Neurology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yoshiko Nomura
- Yoshiko Nomura Neurological Clinic for Children, Tokyo, Japan
| | - Shoji Tsuji
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Chiba, Japan
| | - Cid Diesta
- Section of Neurology, Department of Neuroscience, Makati Medical Center, NCR, Makati City, Philippines
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Saeed Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital & Research Center, Riyad, Saudi Arabia
| | - Amir Al-Din
- Mid Yorkshire Hospitals National Health Services Trust, Wakefield, UK
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson’s & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jee-Young Lee
- Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center & Seoul National University Medical College, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Seoul National University, Seoul, Korea
- Movement Disorder Center, Seoul National University Hospital, Seoul, Korea
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health & Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of Medicine, Fukuoka, Japan
| | - Prashanth Lingappa Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Bangalore, India
- Parkinson's Disease and Movement Disorders Clinic, Bangalore, India
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | | | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson’s Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
8
|
Gurram S, Holla VV, Kumari R, Dhar D, Kamble N, Yadav R, Muthusamy B, Pal PK. Dystonic Opisthotonus in Kufor-Rakeb Syndrome: Expanding the Phenotypic and Genotypic Spectrum. J Mov Disord 2023; 16:343-346. [PMID: 37488066 PMCID: PMC10548071 DOI: 10.14802/jmd.23098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/10/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023] Open
Affiliation(s)
- Sandeep Gurram
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Riyanka Kumari
- Institute of Bioinformatics, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Debjyoti Dhar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Babylakshmi Muthusamy
- Institute of Bioinformatics, Bengaluru, India
- Manipal Academy of Higher Education, Manipal, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
9
|
Yahya V, Di Fonzo A, Monfrini E. Genetic Evidence for Endolysosomal Dysfunction in Parkinson’s Disease: A Critical Overview. Int J Mol Sci 2023; 24:ijms24076338. [PMID: 37047309 PMCID: PMC10094484 DOI: 10.3390/ijms24076338] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder in the aging population, and no disease-modifying therapy has been approved to date. The pathogenesis of PD has been related to many dysfunctional cellular mechanisms, however, most of its monogenic forms are caused by pathogenic variants in genes involved in endolysosomal function (LRRK2, VPS35, VPS13C, and ATP13A2) and synaptic vesicle trafficking (SNCA, RAB39B, SYNJ1, and DNAJC6). Moreover, an extensive search for PD risk variants revealed strong risk variants in several lysosomal genes (e.g., GBA1, SMPD1, TMEM175, and SCARB2) highlighting the key role of lysosomal dysfunction in PD pathogenesis. Furthermore, large genetic studies revealed that PD status is associated with the overall “lysosomal genetic burden”, namely the cumulative effect of strong and weak risk variants affecting lysosomal genes. In this context, understanding the complex mechanisms of impaired vesicular trafficking and dysfunctional endolysosomes in dopaminergic neurons of PD patients is a fundamental step to identifying precise therapeutic targets and developing effective drugs to modify the neurodegenerative process in PD.
Collapse
Affiliation(s)
- Vidal Yahya
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
| | - Edoardo Monfrini
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy;
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, 20122 Milan, Italy;
- Correspondence:
| |
Collapse
|
10
|
Seizure in Neurodegeneration with Brain Iron Accumulation: A Systematic Review. Can J Neurol Sci 2023; 50:60-71. [PMID: 35067244 DOI: 10.1017/cjn.2021.502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) is a rare genetic disorder. Its clinical manifestations comprise a wide spectrum mainly movement disorders. Seizure as a clinical manifestation is known to occur in some NBIAs, but the exact prevalence of epilepsy in each individual disorder is not well elucidated. The aim of this review was to investigate the frequency of seizures in NBIA disorders as well as to determine the associated features of patients with seizures. METHOD The electronic bibliographic databases PubMed, Scopus, Embase, and Google Scholar were systematically searched for all cases in any type of article from inception to December 16, 2019. All the reported cases of NBIA (with or without genetic confirmation) were identified. Case reports with an explicit diagnosis of any types of NBIA, which have reported occurrence (or absence) of any type of seizure or epilepsy, in the English language, were included. Seizure incidence rate, type, and age of onset were reported as frequencies and percentages. RESULT 1698 articles were identified and 51 were included in this review. Of 305 reported cases, 150 (49.2%) had seizures (phospholipase A2-associated neurodegeneration (PLAN) = 64 (50.8%), beta-propeller protein-associated neurodegeneration (BPAN) = 57 (72.1%), pantothenate kinase-associated neurodegeneration (PKAN) = 11 (23.4%), and others = 18 (very variable proportions)). The most frequent seizure type in NBIA patients was generalized tonic-clonic seizure with the mean age of seizure onset between 2 and 36 years. However, most of these papers had been published before the new classification of epilepsy became accessible. Affected patients were more likely to be females. CONCLUSION Seizures are common in NBIA, particularly in PLAN and BPAN. In PKAN, the most common type of NBIA, around 10% of patients are affected by seizures. BPAN is the most possible NBIA accompanying seizure. Most of the findings regarding the seizure characteristics in the NBIAs are biased due to the huge missing data. Therefore, any conclusions should be made with caution and need further investigations.
Collapse
|
11
|
Guelbert G, Venier AC, Cismondi IA, Becerra A, Vazquez JC, Fernández EA, De Paul AL, Guelbert N, Noher I, Pesaola F. Neuronal ceroid lipofuscinosis in the South American-Caribbean region: An epidemiological overview. Front Neurol 2022; 13:920421. [PMID: 36034292 PMCID: PMC9412946 DOI: 10.3389/fneur.2022.920421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) comprise 13 hereditary neurodegenerative pathologies of very low frequency that affect individuals of all ages around the world. All NCLs share a set of symptoms that are similar to other diseases. The exhaustive collection of data from diverse sources (clinical, genetic, neurology, ophthalmology, etc.) would allow being able in the future to define this group with greater precision for a more efficient diagnostic and therapeutic approach. Despite the large amount of information worldwide, a detailed study of the characteristics of the NCLs in South America and the Caribbean region (SA&C) has not yet been done. Here, we aim to present and analyse the multidisciplinary evidence from all the SA&C with qualitative weighting and biostatistical evaluation of the casuistry. Seventy-one publications from seven countries were reviewed, and data from 261 individuals (including 44 individuals from the Cordoba cohort) were collected. Each NCL disease, as well as phenotypical and genetic data were described and discussed in the whole group. The CLN2, CLN6, and CLN3 disorders are the most frequent in the region. Eighty-seven percent of the individuals were 10 years old or less at the onset of symptoms. Seizures were the most common symptom, both at onset (51%) and throughout the disease course, followed by language (16%), motor (15%), and visual impairments (11%). Although symptoms were similar in all NCLs, some chronological differences could be observed. Sixty DNA variants were described, ranging from single nucleotide variants to large chromosomal deletions. The diagnostic odyssey was probably substantially decreased after medical education activities promoted by the pharmaceutical industry and parent organizations in some SA&C countries. There is a statistical deviation in the data probably due to the approval of the enzyme replacement therapy for CLN2 disease, which has led to a greater interest among the medical community for the early description of this pathology. As a general conclusion, it became clear in this work that the combined bibliographical/retrospective evaluation approach allowed a general overview of the multidisciplinary components and the epidemiological tendencies of NCLs in the SA&C region.
Collapse
Affiliation(s)
- Guillermo Guelbert
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal (NCL Program), Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
- Servicio de Enfermedades Metabólicas Hereditarias, Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
| | - Ana Clara Venier
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal (NCL Program), Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación en Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Ines Adriana Cismondi
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal (NCL Program), Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
- Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Becerra
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal (NCL Program), Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
- Servicio de Enfermedades Metabólicas Hereditarias, Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
| | - Juan Carlos Vazquez
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Universidad Católica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Elmer Andrés Fernández
- Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas, Universidad Católica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Ana Lucía De Paul
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Instituto de Investigación en Ciencias de la Salud, Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
| | - Norberto Guelbert
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal (NCL Program), Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
- Servicio de Enfermedades Metabólicas Hereditarias, Clínica Universitaria “Reina Fabiola”, Córdoba, Argentina
| | - Ines Noher
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal (NCL Program), Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
- Universidad Nacional de Córdoba, Córdoba, Argentina
- *Correspondence: Ines Noher ;
| | - Favio Pesaola
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal (NCL Program), Hospital de Niños de la Santísima Trinidad, Córdoba, Argentina
- Department of Pediatrics, Washington University in Saint Louis School of Medicine, St. Louis, MO, United States
- Favio Pesaola ;
| |
Collapse
|
12
|
Waller SE, Williams L, Morales-Briceño H, Fung VSC. Teaching Video NeuroImage: Facial-Faucial-Finger Myoclonus in Kufor-Rakeb Syndrome. Neurology 2022; 99:172-173. [PMID: 35609988 DOI: 10.1212/wnl.0000000000200751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 04/04/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sophie E Waller
- From the Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, Australia.
| | - Laura Williams
- From the Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, Australia
| | - Hugo Morales-Briceño
- From the Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, Australia
| | - Victor S C Fung
- From the Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, Australia
| |
Collapse
|
13
|
Zhang F, Wu Z, Long F, Tan J, Gong N, Li X, Lin C. The Roles of ATP13A2 Gene Mutations Leading to Abnormal Aggregation of α-Synuclein in Parkinson’s Disease. Front Cell Neurosci 2022; 16:927682. [PMID: 35875356 PMCID: PMC9296842 DOI: 10.3389/fncel.2022.927682] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease. PARK9 (also known as ATP13A2) is recognized as one of the key genes that cause PD, and a mutation in this gene was first discovered in a rare case of PD in an adolescent. Lewy bodies (LBs) formed by abnormal aggregation of α-synuclein, which is encoded by the SNCA gene, are one of the pathological diagnostic criteria for PD. LBs are also recognized as one of the most important features of PD pathogenesis. In this article, we first summarize the types of mutations in the ATP13A2 gene and their effects on ATP13A2 mRNA and protein structure; then, we discuss lysosomal autophagy inhibition and the molecular mechanism of abnormal α-synuclein accumulation caused by decreased levels and dysfunction of the ATP13A2 protein in lysosomes. Finally, this article provides a new direction for future research on the pathogenesis and therapeutic targets for ATP13A2 gene-related PD from the perspective of ATP13A2 gene mutations and abnormal aggregation of α-synuclein.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhiwei Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jieqiong Tan
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Key Laboratory of Molecular Precision Medicine of Hunan Province, Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital of Central South University, Changsha, China
| | - Ni Gong
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- *Correspondence: Changwei Lin, orcid.org/0000-0003-1676-0912
| |
Collapse
|
14
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
15
|
Kaur G, Rathod SSS, Ghoneim MM, Alshehri S, Ahmad J, Mishra A, Alhakamy NA. DNA Methylation: A Promising Approach in Management of Alzheimer's Disease and Other Neurodegenerative Disorders. BIOLOGY 2022; 11:90. [PMID: 35053088 PMCID: PMC8773419 DOI: 10.3390/biology11010090] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer's disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer's disease, Parkinson's disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases.
Collapse
Affiliation(s)
- Gagandeep Kaur
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; (G.K.); (S.S.S.R.)
| | - Suraj Singh S. Rathod
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India; (G.K.); (S.S.S.R.)
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia;
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia;
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)—Guwahati, Changsari, Kamrup 781101, Assam, India
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
16
|
Bhardwaj NK, Gowda VK, Saini J, Sardesai AV, Santhoshkumar R, Mahadevan A. Neurodegeneration with brain iron accumulation: Characterization of clinical, radiological, and genetic features of pediatric patients from Southern India. Brain Dev 2021; 43:1013-1022. [PMID: 34272103 DOI: 10.1016/j.braindev.2021.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Neurodegeneration with brain iron accumulation (NBIA) is a group of rare inherited neurodegenerative disorders. Ten types of NBIA are known. Studies reporting various NBIA subtypes together are few. This study was aimed at describing clinical features, neuroimaging findings, and genetic mutations of different NBIA group disorders. METHODS Clinical, radiological, and genetic data of patients diagnosed with NBIA in a tertiary care centre in Southern India from 2014 to 2020 was retrospectively collected and analysed. RESULTS In our cohort of 27 cases, PLA2G6-associated neurodegeneration (PLAN) was most common (n = 13) followed by Pantothenate kinase-associated neurodegeneration (PKAN) (n = 9). We had 2 cases each of Mitochondrial membrane-associated neurodegeneration (MPAN) and Beta-propeller protein- associated neurodegeneration (BPAN) and 1 case of Kufor-Rakeb Syndrome (KRS). Walking difficulty was the presenting complaint in all PKAN cases, whereas the presentation in PLAN was that of development regression with onset at a mean age of 2 years. Overall, 50% patients of them presented with development regression and one-third had epilepsy. Presence of pyramidal signs was most common examination feature (89%) followed by one or more eye findings (81%) and movement disorders (50%). Neuroimaging was abnormal in 24/27 cases and cerebellar atrophy was the commonest finding (52%) followed by globus pallidus hypointensities (44%). CONCLUSIONS One should have a high index of clinical suspicion for the diagnosis of NBIA in children presenting with neuroregression and vision abnormalities in presence of pyramidal signs or movement disorders. Neuroimaging and ophthalmological evaluation provide important clues to diagnosis in NBIA syndromes.
Collapse
Affiliation(s)
- Naveen Kumar Bhardwaj
- Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Vykuntaraju K Gowda
- Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India.
| | - Jitendra Saini
- Neuroradiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ashwin Vivek Sardesai
- Pediatric Neurology, Indira Gandhi Institute of Child Health, Bangalore, Karnataka, India
| | - Rashmi Santhoshkumar
- Electron Microscope Laboratory, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
17
|
Riboldi GM, Frattini E, Monfrini E, Frucht SJ, Fonzo AD. A Practical Approach to Early-Onset Parkinsonism. JOURNAL OF PARKINSONS DISEASE 2021; 12:1-26. [PMID: 34569973 PMCID: PMC8842790 DOI: 10.3233/jpd-212815] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Early-onset parkinsonism (EO parkinsonism), defined as subjects with disease onset before the age of 40 or 50 years, can be the main clinical presentation of a variety of conditions that are important to differentiate. Although rarer than classical late-onset Parkinson’s disease (PD) and not infrequently overlapping with forms of juvenile onset PD, a correct diagnosis of the specific cause of EO parkinsonism is critical for offering appropriate counseling to patients, for family and work planning, and to select the most appropriate symptomatic or etiopathogenic treatments. Clinical features, radiological and laboratory findings are crucial for guiding the differential diagnosis. Here we summarize the most important conditions associated with primary and secondary EO parkinsonism. We also proposed a practical approach based on the current literature and expert opinion to help movement disorders specialists and neurologists navigate this complex and challenging landscape.
Collapse
Affiliation(s)
- Giulietta M Riboldi
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Emanuele Frattini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Edoardo Monfrini
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy.,Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation , University of Milan, Milan, Italy
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Langone Health, New York, NY, USA
| | - Alessio Di Fonzo
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The diagnosis of neurodegeneration with brain iron accumulation (NBIA) typically associates various extrapyramidal and pyramidal features, cognitive and psychiatric symptoms with bilateral hypointensities in the globus pallidus on iron-sensitive magnetic resonance images, reflecting the alteration of iron homeostasis in this area. This article details the contribution of MRI in the diagnosis by summarizing and comparing MRI patterns of the various NBIA subtypes. RECENT FINDINGS MRI almost always shows characteristic changes combining iron accumulation and additional neuroimaging abnormalities. Iron-sensitive MRI shows iron deposition in the basal ganglia, particularly in bilateral globus pallidus and substantia nigra. Other regions may be affected depending on the NBIA subtypes including the cerebellum and dentate nucleus, the midbrain, the striatum, the thalamus, and the cortex. Atrophy of the cerebellum, brainstem, corpus callosum and cortex, and white matter changes may be associated and worsen with disease duration. Iron deposition can be quantified using R2 or quantitative susceptibility mapping. SUMMARY Recent MRI advances allow depicting differences between the various subtypes of NBIA, providing a useful analytical framework for clinicians. Standardization of protocols for image acquisition and analysis may help improving the detection of imaging changes associated with NBIA and the quantification of iron deposition.
Collapse
|
19
|
Hinarejos I, Machuca C, Sancho P, Espinós C. Mitochondrial Dysfunction, Oxidative Stress and Neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA). Antioxidants (Basel) 2020; 9:antiox9101020. [PMID: 33092153 PMCID: PMC7589120 DOI: 10.3390/antiox9101020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 12/13/2022] Open
Abstract
The syndromes of neurodegeneration with brain iron accumulation (NBIA) encompass a group of invalidating and progressive rare diseases that share the abnormal accumulation of iron in the basal ganglia. The onset of NBIA disorders ranges from infancy to adulthood. Main clinical signs are related to extrapyramidal features (dystonia, parkinsonism and choreoathetosis), and neuropsychiatric abnormalities. Ten NBIA forms are widely accepted to be caused by mutations in the genes PANK2, PLA2G6, WDR45, C19ORF12, FA2H, ATP13A2, COASY, FTL1, CP, and DCAF17. Nonetheless, many patients remain without a conclusive genetic diagnosis, which shows that there must be additional as yet undiscovered NBIA genes. In line with this, isolated cases of known monogenic disorders, and also, new genetic diseases, which present with abnormal brain iron phenotypes compatible with NBIA, have been described. Several pathways are involved in NBIA syndromes: iron and lipid metabolism, mitochondrial dynamics, and autophagy. However, many neurodegenerative conditions share features such as mitochondrial dysfunction and oxidative stress, given the bioenergetics requirements of neurons. This review aims to describe the existing link between the classical ten NBIA forms by examining their connection with mitochondrial impairment as well as oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Isabel Hinarejos
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Candela Machuca
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Unit of Stem Cells Therapies in Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain
| | - Paula Sancho
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
| | - Carmen Espinós
- Unit of Genetics and Genomics of Neuromuscular and Neurodegenerative Disorders, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; (I.H.); (C.M.); (P.S.)
- Rare Diseases Joint Units, CIPF-IIS La Fe & INCLIVA, 46012 Valencia, Spain
- Department of Genetics, University of Valencia, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-963-289-680
| |
Collapse
|
20
|
Balint B, Damasio J, Magrinelli F, Guerreiro R, Bras J, Bhatia KP. Psychiatric Manifestations of ATP13A2 Mutations. Mov Disord Clin Pract 2020; 7:838-841. [PMID: 33033738 PMCID: PMC7533993 DOI: 10.1002/mdc3.13034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 01/24/2023] Open
Abstract
Background Biallelic mutations in ATP13A2 were identified as the cause of Kufor‐Rakeb disease, a pallido‐pyramidal syndrome characterized by young‐onset dystonia–parkinsonism with vertical supranuclear gaze palsy, spasticity, and cognitive decline. The phenotypic spectrum has broadened since, but predominantly psychiatric or behavioral manifestations have not been highlighted. Cases Here we report the clinical, radiological, and genetic findings in 2 unrelated patients with ATP13A2 mutations. One patient had a prominent behavioral (autistic spectrum) presentation and the other a psychiatric (paranoid psychosis) presentation. Both had additional features, such as delayed milestones, ataxia, pyramidal signs, upgaze restriction, or impaired cognition to varying extent, but these were partly subtle or developed later in the disease course. Conclusion Prominent behavioral or psychiatric features can be the first or most prominent manifestation of ATP13A2‐related disease. They may be a diagnostic clue in patients with ataxia, spasticity, or parkinsonism and may require an interdisciplinary neurological and psychiatric treatment approach.
Collapse
Affiliation(s)
- Bettina Balint
- Department of Clinical and Movement Neurosciences Queen Square London United Kingdom.,Department of Neurology University Hospital Heidelberg Germany
| | - Joana Damasio
- Department of Neurology Oporto University Hospital Center Porto Portugal.,Institute for Molecular and Cell Biology, Institute for Research and Innovation in Health, Oporto University Porto Portugal
| | - Francesca Magrinelli
- Department of Clinical and Movement Neurosciences Queen Square London United Kingdom.,Department of Neurosciences Biomedicine and Movement Sciences, University of Verona Verona Italy
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute Grand Rapids Michigan USA
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute Grand Rapids Michigan USA
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences Queen Square London United Kingdom
| |
Collapse
|
21
|
Anand N, Holcom A, Broussalian M, Schmidt M, Chinta SJ, Lithgow GJ, Andersen JK, Chamoli M. Dysregulated iron metabolism in C. elegans catp-6/ATP13A2 mutant impairs mitochondrial function. Neurobiol Dis 2020; 139:104786. [PMID: 32032734 PMCID: PMC7150649 DOI: 10.1016/j.nbd.2020.104786] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/08/2020] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the human ATP13A2 gene are associated with an early-onset form of Parkinson's disease (PD) known as Kufor Rakeb Syndrome (KRS). Patients with KRS show increased iron deposition in the basal ganglia, suggesting iron toxicity-induced neurodegeneration as a potential pathogenesis associated with the ATP13A2 mutation. Previously we demonstrated that functional losses of ATP13A2 disrupt the lysosomes ability to store excess iron, leading to reduce survival of dopaminergic neuronal cells. To understand the possible mechanisms involved, we studied a Caenorhabditis elegans mutant defective in catp-6 function, an ortholog of human ATP13A2 gene. Here we show that catp-6 mutant worms have defective autophagy and lysosomal function, demonstrate characteristic PD phenotypes including reduced motor function and dysregulated iron metabolism. Additionally, these mutants have defective mitochondrial health, which is rescuable via iron chelation or mitophagy induction.
Collapse
Affiliation(s)
- Nikhita Anand
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, USA
| | - Angelina Holcom
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, USA
| | | | - Minna Schmidt
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, USA
| | - Shankar J Chinta
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, USA; Touro University California, Vallejo, USA
| | - Gordon J Lithgow
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, USA
| | - Julie K Andersen
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, USA.
| | - Manish Chamoli
- Buck Institute for Research on Aging, 8001 Redwood Blvd., Novato, CA, USA.
| |
Collapse
|
22
|
Marsili L, Vizcarra JA, Sturchio A, Dwivedi AK, Keeling EG, Patel D, Mishra M, Farooqi A, Merola A, Fasano A, Mata IF, Kauffman MA, Espay AJ. When does postural instability appear in monogenic parkinsonisms? An individual-patient meta-analysis. J Neurol 2020; 268:3203-3211. [PMID: 32436106 DOI: 10.1007/s00415-020-09892-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Postural instability is a disease milestone signaling advanced disease. OBJECTIVES To estimate the onset of postural instability in monogenic parkinsonisms. METHODS We systematically reviewed studies (PubMed 1996-2017) in SNCA, PRKN, PINK1, DJ-1, LRRK2, ATP13A2, FBXO7, VPS35, DNAJC6, or SYNJ1-related monogenic parkinsonisms, with documented postural instability. Genes with ≥ 15 patients were included in an individual-patient meta-analysis and compared with a retrospectively collected sporadic Parkinson's disease cohort from our center. The primary outcome measure was the progression-free survival from postural instability using Kaplan-Meier survival curves. Cox proportional hazards analyses were summarized using hazards ratio (HR). RESULTS Of 2085 eligible studies, 124 met full criteria (636 patients) for the systematic review, whereas a total of 871 subjects (270 from sporadic cohort, 601 monogenic parkinsonisms) were included in the individual-patient meta-analysis. Postural instability was reported in 80% of DJ-1, 40% of PRKN, 39% of PINK1, 34% of ATP13A2, 31% of LRRK2, and 29% of SNCA patients. Progression-free survival from postural instability at 10 years after disease onset was longest in ATP13A2 (97%) and shortest in SNCA (50%). Halfway between these two extremes were PRKN (88%), PINK1 (87%), and LRRK2 (81%), similar to sporadic Parkinson's disease (72%). Higher risk of postural instability was observed in SNCA (HR = 3.2, p = 0.007) and DJ-1 (HR = 3.96, p = 0.001) compared to sporadic Parkinson's disease. Young age at onset in PINK1 and female sex in LRRK2 were associated with a decreased risk of postural instability. CONCLUSIONS Monogenic parkinsonisms exhibit differential timelines to postural instability, informing prognostic counseling and interpretation of future genotype-specific treatment trials.
Collapse
Affiliation(s)
- Luca Marsili
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University 6 of Cincinnati, Cincinnati, OH, USA
| | - Joaquin A Vizcarra
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University 6 of Cincinnati, Cincinnati, OH, USA
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Andrea Sturchio
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University 6 of Cincinnati, Cincinnati, OH, USA
| | - Alok K Dwivedi
- Division of Biostatistics and Epidemiology, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | - Elizabeth G Keeling
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University 6 of Cincinnati, Cincinnati, OH, USA
| | - Dhiren Patel
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University 6 of Cincinnati, Cincinnati, OH, USA
| | - Murli Mishra
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University 6 of Cincinnati, Cincinnati, OH, USA
- St. George's University School of Medicine, St. George, Grenada
| | - Ashar Farooqi
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University 6 of Cincinnati, Cincinnati, OH, USA
| | - Aristide Merola
- Wexner Medical Center Department of Neurology, Ohio State University, Columbus, Ohio, USA
| | - Alfonso Fasano
- Division of Neurology, Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- CenteR for Advancing Neurotechnological Innovation To Application (CRANIA), Toronto, ON, Canada
| | - Ignacio F Mata
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Marcelo A Kauffman
- Consultorio Y Laboratorio de Neurogenética, Centro Universitario de Neurología José María Ramos Mejía, Buenos Aires, Argentina
| | - Alberto J Espay
- Department of Neurology, Gardner Family Center for Parkinson's Disease and Movement Disorders, University 6 of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
23
|
Rossi M, Farcy N, Starkstein SE, Merello M. Nosology and Phenomenology of Psychosis in Movement Disorders. Mov Disord Clin Pract 2020; 7:140-153. [PMID: 32071931 PMCID: PMC7011839 DOI: 10.1002/mdc3.12882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/02/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Psychotic symptoms, such as delusions and hallucinations, are part of the clinical picture of several conditions presenting movement disorders. Phenomenology and epidemiology of psychosis in Parkinson's disease have received wide attention; however, the presence of psychosis in other movement disorders is, comparatively, less well known. OBJECTIVES To review psychotic symptoms present in different movement disorders. METHODS A comprehensive and structured literature search was performed to identify and analyze data on patients with movement disorders and comorbid psychosis. RESULTS In monogenic parkinsonisms, such as PARK-GBA, PARK-LRRK2, and PARK-SNCA, visual hallucinations related to dopamine replacement therapy are frequent as well as are delusions in PARK-LRRK2 and PARK-SNCA, but not in PARK-GBA. Different types of delusions and hallucinations are found in Huntington's disease and other choreic disorders. In Tourette's syndrome, paranoid delusions as well as visual, olfactory, and auditory hallucinations have been described, which usually develop after an average of 10 years of disease. Delusions in ataxias are more frequent in ATX-TBP, ATX-ATN1, and ATX-ATXN3, whereas it is rare in Friedreich's ataxia. Psychosis is also a prominent and frequent clinical feature in Fahr's disease, Wilson's disease, neurodegeneration with brain iron accumulation, and some lysosomal storage disorders, whereas it is uncommon in atypical parkinsonisms and dystonia. Psychosis usually occurs at late disease stages, but may appear as onset symptoms of the disease, especially in Wilson's disease, Huntington's disease, late-onset Tays-Sachs, and Niemann-Pick. CONCLUSION Psychosis is a frequent comorbidity in most hyper- and hypokinetic movement disorders. Appropriate recognition is relevant both in the early and late disease stages.
Collapse
Affiliation(s)
- Malco Rossi
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Pontificia Universidad Catolica Argentina (UCA)Buenos AiresArgentina
| | - Nicole Farcy
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Sergio E. Starkstein
- School of Psychiatry and Clinical NeurosciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Marcelo Merello
- Movement Disorders Section, Neuroscience DepartmentRaul Carrea Institute for Neurological Research (FLENI)Buenos AiresArgentina
- Pontificia Universidad Catolica Argentina (UCA)Buenos AiresArgentina
- Argentine National Scientific and Technological Research Council (CONICET)Buenos AiresArgentina
| |
Collapse
|
24
|
Morales-Briceño H, Mohammad SS, Post B, Fois AF, Dale RC, Tchan M, Fung VSC. Clinical and neuroimaging phenotypes of genetic parkinsonism from infancy to adolescence. Brain 2019; 143:751-770. [DOI: 10.1093/brain/awz345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/29/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
AbstractGenetic early-onset parkinsonism presenting from infancy to adolescence (≤21 years old) is a clinically diverse syndrome often combined with other hyperkinetic movement disorders, neurological and imaging abnormalities. The syndrome is genetically heterogeneous, with many causative genes already known. With the increased use of next-generation sequencing in clinical practice, there have been novel and unexpected insights into phenotype-genotype correlations and the discovery of new disease-causing genes. It is now recognized that mutations in a single gene can give rise to a broad phenotypic spectrum and that, conversely different genetic disorders can manifest with a similar phenotype. Accurate phenotypic characterization remains an essential step in interpreting genetic findings in undiagnosed patients. However, in the past decade, there has been a marked expansion in knowledge about the number of both disease-causing genes and phenotypic spectrum of early-onset cases. Detailed knowledge of genetic disorders and their clinical expression is required for rational planning of genetic and molecular testing, as well as correct interpretation of next-generation sequencing results. In this review we examine the relevant literature of genetic parkinsonism with ≤21 years onset, extracting data on associated movement disorders as well as other neurological and imaging features, to delineate syndromic patterns associated with early-onset parkinsonism. Excluding PRKN (parkin) mutations, >90% of the presenting phenotypes have a complex or atypical presentation, with dystonia, abnormal cognition, pyramidal signs, neuropsychiatric disorders, abnormal imaging and abnormal eye movements being the most common features. Furthermore, several imaging features and extraneurological manifestations are relatively specific for certain disorders and are important diagnostic clues. From the currently available literature, the most commonly implicated causes of early-onset parkinsonism have been elucidated but diagnosis is still challenging in many cases. Mutations in ∼70 different genes have been associated with early-onset parkinsonism or may feature parkinsonism as part of their phenotypic spectrum. Most of the cases are caused by recessively inherited mutations, followed by dominant and X-linked mutations, and rarely by mitochondrially inherited mutations. In infantile-onset parkinsonism, the phenotype of hypokinetic-rigid syndrome is most commonly caused by disorders of monoamine synthesis. In childhood and juvenile-onset cases, common genotypes include PRKN, HTT, ATP13A2, ATP1A3, FBX07, PINK1 and PLA2G6 mutations. Moreover, Wilson’s disease and mutations in the manganese transporter are potentially treatable conditions and should always be considered in the differential diagnosis in any patient with early-onset parkinsonism.
Collapse
Affiliation(s)
- Hugo Morales-Briceño
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Shekeeb S Mohammad
- Neurology Department, Children’s Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Bart Post
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Parkinson Centre Nijmegen (ParC) Nijmegen, The Netherlands
| | - Alessandro F Fois
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| | - Russell C Dale
- Neurology Department, Children’s Westmead Hospital, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
- Department of Genetic Medicine, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Victor S C Fung
- Movement Disorders Unit, Neurology Department, Westmead Hospital, Westmead, NSW 2145, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
25
|
Niemann N, Jankovic J. Juvenile parkinsonism: Differential diagnosis, genetics, and treatment. Parkinsonism Relat Disord 2019; 67:74-89. [DOI: 10.1016/j.parkreldis.2019.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/24/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
|
26
|
Heins-Marroquin U, Jung PP, Cordero-Maldonado ML, Crawford AD, Linster CL. Phenotypic assays in yeast and zebrafish reveal drugs that rescue ATP13A2 deficiency. Brain Commun 2019; 1:fcz019. [PMID: 32954262 PMCID: PMC7425419 DOI: 10.1093/braincomms/fcz019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/27/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Mutations in ATP13A2 (PARK9) are causally linked to the rare neurodegenerative disorders Kufor-Rakeb syndrome, hereditary spastic paraplegia and neuronal ceroid lipofuscinosis. This suggests that ATP13A2, a lysosomal cation-transporting ATPase, plays a crucial role in neuronal cells. The heterogeneity of the clinical spectrum of ATP13A2-associated disorders is not yet well understood and currently, these diseases remain without effective treatment. Interestingly, ATP13A2 is widely conserved among eukaryotes, and the yeast model for ATP13A2 deficiency was the first to indicate a role in heavy metal homeostasis, which was later confirmed in human cells. In this study, we show that the deletion of YPK9 (the yeast orthologue of ATP13A2) in Saccharomyces cerevisiae leads to growth impairment in the presence of Zn2+, Mn2+, Co2+ and Ni2+, with the strongest phenotype being observed in the presence of zinc. Using the ypk9Δ mutant, we developed a high-throughput growth rescue screen based on the Zn2+ sensitivity phenotype. Screening of two libraries of Food and Drug Administration-approved drugs identified 11 compounds that rescued growth. Subsequently, we generated a zebrafish model for ATP13A2 deficiency and found that both partial and complete loss of atp13a2 function led to increased sensitivity to Mn2+. Based on this phenotype, we confirmed two of the drugs found in the yeast screen to also exert a rescue effect in zebrafish-N-acetylcysteine, a potent antioxidant, and furaltadone, a nitrofuran antibiotic. This study further supports that combining the high-throughput screening capacity of yeast with rapid in vivo drug testing in zebrafish can represent an efficient drug repurposing strategy in the context of rare inherited disorders involving conserved genes. This work also deepens the understanding of the role of ATP13A2 in heavy metal detoxification and provides a new in vivo model for investigating ATP13A2 deficiency.
Collapse
Affiliation(s)
- Ursula Heins-Marroquin
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | - Paul P Jung
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| | | | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
- Institute for Orphan Drug Discovery, Bremer Innovations- und Technologiezentrum, 28359 Bremen, Germany
| | - Carole L Linster
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
| |
Collapse
|
27
|
McNeil-Gauthier AL, Brais B, Rouleau G, Anoja N, Ducharme S. Successful treatment of psychosis in a patient with Kufor-Rakeb syndrome with low dose aripiprazole: a case report. Neurocase 2019; 25:133-137. [PMID: 31232173 DOI: 10.1080/13554794.2019.1625928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We present a case of a 32-year-old male with Kufor-Rakeb syndrome (KRS), a form of juvenile parkinsonism due to mutations of the ATP13A2 gene at PARK9 locus. The patient was seen for daily behavioral outbursts and psychotic symptoms. At first assessment, CGI scale was estimated at 5; "Markedly ill". Aripiprazole was started at 2 mg and then increased to 3 mg. Two years later, psychotic symptoms were judged to be "much improved" (CGI-C = 2). This significant improvement without drug-induced motor side effects suggests that aripiprazole at low doses (2-5 mg) is effective and tolerated in patients with KRS.
Collapse
Affiliation(s)
| | - Bernard Brais
- b Department of Neurology & Neurosurgery , Montreal , Canada
| | - Guy Rouleau
- b Department of Neurology & Neurosurgery , Montreal , Canada
| | - Nancy Anoja
- b Department of Neurology & Neurosurgery , Montreal , Canada
| | - Simon Ducharme
- c McConnell Brain Imaging Centre , Montreal Neurological Institute , McGill University , Montreal Canada.,d Department of Psychiatry , McGill University Health Center , Montreal , Canada
| |
Collapse
|
28
|
de Bot S, Kamsteeg EJ, Van De Warrenburg BPC. Complicated hereditary spastic paraplegia due to ATP13A2 mutations: what's in a name? Brain 2019; 140:e73. [PMID: 29112699 DOI: 10.1093/brain/awx280] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Susanne de Bot
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart P C Van De Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Schmutz I, Jagannathan V, Bartenschlager F, Stein VM, Gruber AD, Leeb T, Katz ML. ATP13A2 missense variant in Australian Cattle Dogs with late onset neuronal ceroid lipofuscinosis. Mol Genet Metab 2019; 127:95-106. [PMID: 30956123 PMCID: PMC6548654 DOI: 10.1016/j.ymgme.2018.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are lysosomal storage disorders characterized by progressive neurodegeneration and declines in neurological functions. Pathogenic sequence variants in at least 13 genes underlie different forms of NCL, almost all of which are recessively inherited. To date 13 sequence variants in 8 canine orthologs of human NCL genes have been found to occur in 11 dog breeds in which they result in progressive neurological disorders similar to human NCLs. Canine NCLs can serve as models for preclinical evaluation of therapeutic interventions for these disorders. In most NCLs, the onset of neurological signs occurs in childhood, but some forms have adult onsets. Among these is CLN12 disease, also known as Kufor-Rakeb syndrome, PARK9, and spastic paraplegia78. These disorders result from variants in ATP13A2 which encodes a putative transmembrane ion transporter important for lysosomal function. Three Australian Cattle Dogs (a female and two of her offspring) were identified with a progressive neurological disorder with an onset of clinical signs at approximately 6 years of age. The affected dogs exhibited clinical courses and histopathology characteristic of the NCLs. Whole genome sequence analysis of one of these dogs revealed a homozygous c.1118C > T variant in ATP13A2 that predicts a nonconservative p.(Thr373Ile) amino acid substitution. All 3 affected dogs were homozygous for this variant, which was heterozygous in 42 of 394 unaffected Australian Cattle Dogs, the remainder of which were homozygous for the c.1118C allele. The high frequency of the mutant allele in this breed suggests that further screening for this variant should identify additional homozygous dogs and indicates that it would be advisable to perform such screening prior to breeding Australian Cattle Dogs.
Collapse
Affiliation(s)
- Isabelle Schmutz
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Florian Bartenschlager
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Veronika M Stein
- Department of Clinical Veterinary Sciences, Vetsuisse Faculty, University of Bern, CH-3012 Bern, Switzerland
| | - Achim D Gruber
- Department of Veterinary Pathology, College of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Martin L Katz
- Mason Eye Institute, University of Missouri School of Medicine, Columbia, MO, USA.
| |
Collapse
|
30
|
Spataro R, Kousi M, Farhan SMK, Willer JR, Ross JP, Dion PA, Rouleau GA, Daly MJ, Neale BM, La Bella V, Katsanis N. Mutations in ATP13A2 (PARK9) are associated with an amyotrophic lateral sclerosis-like phenotype, implicating this locus in further phenotypic expansion. Hum Genomics 2019; 13:19. [PMID: 30992063 PMCID: PMC6469102 DOI: 10.1186/s40246-019-0203-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis [1] is a genetically heterogeneous neurodegenerative disorder, characterized by late-onset degeneration of motor neurons leading to progressive limb and bulbar weakness, as well as of the respiratory muscles, which is the primary cause of disease fatality. To date, over 25 genes have been implicated as causative in ALS with C9orf72, SOD1, FUS, and TARDBP accounting for the majority of genetically positive cases. RESULTS We identified two patients of Italian and French ancestry with a clinical diagnosis of juvenile-onset ALS who were mutation-negative in any of the known ALS causative genes. Starting with the index case, a consanguineous family of Italian origin, we performed whole-exome sequencing and identified candidate pathogenic mutations in 35 genes, 27 of which were homozygous. We next parsed all candidates against a cohort of 3641 ALS cases; only ATP13A2 was found to harbor recessive changes, in a patient with juvenile-onset ALS, similar to the index case. In vivo complementation of ATP13A2 using a zebrafish surrogate model that focused on the assessment of motor neuron morphology and cerebellar integrity confirmed the role of this gene in central and peripheral nervous system maintenance and corroborated the damaging direction of effect of the change detected in the index case of this study. CONCLUSIONS We here expand the phenotypic spectrum associated with genetic variants in ATP13A2 that previously comprised Kufor-Rakeb syndrome, spastic paraplegia 78, and neuronal ceroid lipofuscinosis type 12 (CLN12), to also include juvenile-onset ALS, as supported by both genetic and functional data. Our findings highlight the importance of establishing a complete genetic profile towards obtaining an accurate clinical diagnosis.
Collapse
Affiliation(s)
| | - Maria Kousi
- Center for Human Disease Modeling, Duke University Medical Center, Carmichael Building, 300 North Duke Street, Suite 48-118, Durham, NC, 27701, USA.,MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), Cambridge, MA, USA.,The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sali M K Farhan
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jason R Willer
- Center for Human Disease Modeling, Duke University Medical Center, Carmichael Building, 300 North Duke Street, Suite 48-118, Durham, NC, 27701, USA
| | - Jay P Ross
- Montreal Neurological Institute, and Hospital, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Patrick A Dion
- Montreal Neurological Institute, and Hospital, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Guy A Rouleau
- Montreal Neurological Institute, and Hospital, McGill University, Montréal, QC, Canada.,Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mark J Daly
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Benjamin M Neale
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vincenzo La Bella
- ALS Clinical Research Center, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, via G La Loggia 1, 90129, Palermo, Italy.
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Carmichael Building, 300 North Duke Street, Suite 48-118, Durham, NC, 27701, USA.
| |
Collapse
|
31
|
Wang R, Tan J, Chen T, Han H, Tian R, Tan Y, Wu Y, Cui J, Chen F, Li J, Lv L, Guan X, Shang S, Lu J, Zhang Z. ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion. J Cell Biol 2019; 218:267-284. [PMID: 30538141 PMCID: PMC6314552 DOI: 10.1083/jcb.201804165] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/28/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Mutations in ATP13A2 cause Kufor-Rakeb syndrome, an autosomal recessive form of juvenile-onset atypical Parkinson's disease (PD). Recent work tied ATP13A2 to autophagy and other cellular features of neurodegeneration, but how ATP13A2 governs numerous cellular functions in PD pathogenesis is not understood. In this study, the ATP13A2-deficient mouse developed into aging-dependent phenotypes resembling those of autophagy impairment. ATP13A2 deficiency impaired autophagosome-lysosome fusion in cultured cells and in in vitro reconstitution assays. In ATP13A2-deficient cells or Drosophila melanogaster or mouse tissues, lysosomal localization and activity of HDAC6 were reduced, with increased acetylation of tubulin and cortactin. Wild-type HDAC6, but not a deacetylase-inactive mutant, restored autophagosome-lysosome fusion, antagonized cortactin hyperacetylation, and promoted lysosomal localization of cortactin in ATP13A2-deficient cells. Mechanistically, ATP13A2 facilitated recruitment of HDAC6 and cortactin to lysosomes. Cortactin overexpression in cultured cells reversed ATP13A2 deficiency-associated impairment of autophagosome-lysosome fusion. PD-causing ATP13A2 mutants failed to rescue autophagosome-lysosome fusion or to promote degradation of protein aggregates and damaged mitochondria. These results suggest that ATP13A2 recruits HDAC6 to lysosomes to deacetylate cortactin and promotes autophagosome-lysosome fusion and autophagy. This study identifies ATP13A2 as an essential molecular component for normal autophagy flux in vivo and implies potential treatments targeting HDAC6-mediated autophagy for PD.
Collapse
Affiliation(s)
- Ruoxi Wang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Tingting Chen
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Hailong Han
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Runyi Tian
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Ya Tan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Yiming Wu
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jingyi Cui
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Fang Chen
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jie Li
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Lu Lv
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Xinjie Guan
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Shuai Shang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
| | - Jiahong Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Zhuohua Zhang
- Institute of Molecular Precision Medicine, Xiangya Hospital and Center for Medical Genetics, Central South University, Changsha, Hunan, China
- Department of Neurosciences, School of Medicine, University of South China, Hengyang, Hunan, China
| |
Collapse
|
32
|
Genetic mimics of the non-genetic atypical parkinsonian disorders – the ‘atypical’ atypical. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:327-351. [DOI: 10.1016/bs.irn.2019.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
33
|
Iron Pathophysiology in Neurodegeneration with Brain Iron Accumulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1173:153-177. [DOI: 10.1007/978-981-13-9589-5_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Parkinson's Disease and Metal Storage Disorders: A Systematic Review. Brain Sci 2018; 8:brainsci8110194. [PMID: 30384510 PMCID: PMC6267486 DOI: 10.3390/brainsci8110194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 11/21/2022] Open
Abstract
Metal storage disorders (MSDs) are a set of rare inherited conditions with variable clinical pictures including neurological dysfunction. The objective of this study was, through a systematic review, to identify the prevalence of Parkinsonism in patients with MSDs in order to uncover novel pathways implemented in Parkinson’s disease. Human studies describing patients of any age with an MSD diagnosis were analysed. Foreign language publications as well as animal and cellular studies were excluded. Searches were conducted through PubMed and Ovid between April and September 2018. A total of 53 publications were identified including 43 case reports, nine cross-sectional studies, and one cohort study. The publication year ranged from 1981 to 2018. The most frequently identified MSDs were Pantothenate kinase-associated neurodegeneration (PKAN) with 11 papers describing Parkinsonism, Hereditary hemochromatosis (HH) (7 papers), and Wilson’s disease (6 papers). The mean ages of onset of Parkinsonism for these MSDs were 33, 53, and 48 years old, respectively. The Parkinsonian features described in the PKAN and HH patients were invariably atypical while the majority (4/6) of the Wilson’s disease papers had a typical picture. This paper has highlighted a relationship between MSDs and Parkinsonism. However, due to the low-level evidence identified, further research is required to better define what the relationship is.
Collapse
|
35
|
Lunati A, Lesage S, Brice A. The genetic landscape of Parkinson's disease. Rev Neurol (Paris) 2018; 174:628-643. [PMID: 30245141 DOI: 10.1016/j.neurol.2018.08.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/18/2023]
Abstract
The cause of Parkinson's disease (PD) remains unknown in most patients. Since 1997, with the first genetic mutation known to cause PD described in SNCA gene, many other genes with Mendelian inheritance have been identified. We summarize genetic, clinical and neuropathological findings related to the 27 genes reported in the literature since 1997, associated either with autosomal dominant (AD): LRRK2, SNCA, VPS35, GCH1, ATXN2, DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, CHCHD2, and GBA; or autosomal recessive (AR) inheritance: PRKN, PINK1, DJ1, ATP13A2, PLA2G6, FBXO7, DNAJC6, SYNJ1, SPG11, VPS13C, PODXL, and PTRHD1; or an X-linked transmission: RAB39B. Clinical and neuropathological variability among genes is great. LRRK2 mutation carriers present a phenotype similar to those with idiopathic PD whereas, depending on the SNCA mutations, the phenotype ranges from early onset typical PD to dementia with Lewy bodies, including many other atypical forms. DNAJC6 nonsense mutations lead to a very severe phenotype whereas DNAJC6 missense mutations cause a more typical form. PRKN, PINK1 and DJ1 cases present with typical early onset PD with slow progression, whereas other AR genes present severe atypical Parkinsonism. RAB39B is responsible for a typical phenotype in women and a variable phenotype in men. GBA is a major PD risk factor often associated with dementia. A growing number of reported genes described as causal genes (DNAJC13, TMEM230, GIGYF2, HTRA2, RIC3, EIF4G1, UCHL1, and CHCHD2) are still awaiting replication or indeed have not been replicated, thus raising questions as to their pathogenicity. Phenotypic data collection and next generation sequencing of large numbers of cases and controls are needed to differentiate pathogenic dominant mutations with incomplete penetrance from rare, non-pathogenic variants. Although known genes cause a minority of PD cases, their identification will lead to a better understanding their pathological mechanisms, and may contribute to patient care, genetic counselling, prognosis determination and finding new therapeutic targets.
Collapse
Affiliation(s)
- A Lunati
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France
| | - S Lesage
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France
| | - A Brice
- Inserm U1127, CNRS UMR 7225, UPMC université Paris 06 UMR S1127, Sorbonne université, institut du cerveau et de la moelle épinière, ICM, 75013 Paris, France; Département de génétique, hôpital Pitié-Salpêtrière, AP-HP, 75013 Paris, France.
| |
Collapse
|
36
|
Inzelberg R, Estrada-Cuzcano A, Laitman Y, De Vriendt E, Friedman E, Jordanova A. Kufor-Rakeb Syndrome/PARK9: One Novel and One Possible Recurring Ashkenazi ATP13A2 Mutation. JOURNAL OF PARKINSONS DISEASE 2018; 8:399-403. [DOI: 10.3233/jpd-181360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Rivka Inzelberg
- Departments of Neurology and Neurosurgery, Tel Aviv University, Tel Aviv, Israel
| | - Alejandro Estrada-Cuzcano
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerpen, Belgium
| | - Yael Laitman
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | - Els De Vriendt
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerpen, Belgium
| | - Eitan Friedman
- Departments of Internal Medicine and Genetics and Biochemistry Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Sheba Medical Center, Tel-Hashomer, Israel
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, University of Antwerp, Antwerpen, Belgium
| |
Collapse
|
37
|
Rayaprolu S, Seven YB, Howard J, Duffy C, Altshuler M, Moloney C, Giasson BI, Lewis J. Partial loss of ATP13A2 causes selective gliosis independent of robust lipofuscinosis. Mol Cell Neurosci 2018; 92:17-26. [PMID: 29859891 DOI: 10.1016/j.mcn.2018.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 02/05/2023] Open
Abstract
Loss-of-function mutations in ATP13A2 are associated with three neurodegenerative diseases: a rare form of Parkinson's disease termed Kufor-Rakeb syndrome (KRS), a lysosomal storage disorder termed neuronal ceroid lipofuscinosis (NCL), and a form of hereditary spastic paraplegia (HSP). Furthermore, recent data suggests that heterozygous carriers of mutations in ATP13A2 may confer risk for the development of Parkinson's disease, similar to the association of mutations in glucocerebrosidase (GBA) with both Parkinson's disease and Gaucher's disease, a lysosomal storage disorder. Mutations in ATP13A2 are generally thought to be loss of function; however, the lack of human autopsy tissue has prevented the field from determining the pathological consequences of losing functional ATP13A2. We and others have previously neuropathologically characterized mice completely lacking murine Atp13a2, demonstrating the presence of lipofuscinosis within the brain - a key feature of NCL, one of the diseases to which ATP13A2 mutations have been linked. To determine if loss of one functional Atp13a2 allele can serve as a risk factor for disease, we have now assessed heterozygous Atp13a2 knockout mice for key features of NCL. In this report, we demonstrate that loss of one functional Atp13a2 allele leads to both microgliosis and astrocytosis in multiple brain regions compared to age-matched controls; however, levels of lipofuscin were only modestly elevated in the cortex of heterozygous Atp13a2 knockout mice over controls. This data suggests the possibility that partial loss of ATP13A2 causes inflammatory changes within the brain which appear to be independent of robust lipofuscinosis. This study suggests that heterozygous loss-of-function mutations in ATP13A2 are likely harmful and indicates that glial involvement in the disease process may be an early event that positions the CNS for subsequent disease development.
Collapse
Affiliation(s)
- Sruti Rayaprolu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Yasin B Seven
- McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; Department of Physical Therapy, University of Florida, Gainesville, FL 32610, USA; Center for Respiratory Research and Rehabilitation, University of Florida, Gainesville, FL 32610, USA
| | - John Howard
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Colin Duffy
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Marcelle Altshuler
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Christina Moloney
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
| | - Jada Lewis
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA; Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
38
|
Chatterjee K, Choudhury S, Shubham S, Mondal B, Basu P, Kumar H. Siblings with unusual presentation of early onset Parkinson's disease with dual heterozygous PARK2 and PARK 9 mutation. Parkinsonism Relat Disord 2018; 52:117-118. [PMID: 29606608 DOI: 10.1016/j.parkreldis.2018.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 03/04/2018] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
Affiliation(s)
- Koustav Chatterjee
- Department of Neurology and RGCM Research Centre, Institute of Neurosciences, Kolkata, India.
| | - Supriyo Choudhury
- Department of Neurology and RGCM Research Centre, Institute of Neurosciences, Kolkata, India.
| | - Shantanu Shubham
- Department of Neurology and RGCM Research Centre, Institute of Neurosciences, Kolkata, India.
| | - Banashree Mondal
- Department of Neurology and RGCM Research Centre, Institute of Neurosciences, Kolkata, India.
| | - Purba Basu
- Department of Neurology and RGCM Research Centre, Institute of Neurosciences, Kolkata, India.
| | - Hrishikesh Kumar
- Department of Neurology and RGCM Research Centre, Institute of Neurosciences, Kolkata, India.
| |
Collapse
|
39
|
Rohani M, Lang AE, Sina F, Elahi E, Fasano A, Hardy J, Bras J, Alavi A. Action Myoclonus and Seizure in Kufor-Rakeb Syndrome. Mov Disord Clin Pract 2017; 5:195-199. [PMID: 30868101 DOI: 10.1002/mdc3.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/15/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
Background Kufor-Rakeb syndrome (KRS) is a rare autosomal recessive neurologic disease with diverse phenotypic features. Herein we report an Iranian KRS family with seizure and action myoclonus in addition to other typical manifestations of this syndrome. Method All family members underwent careful neurologic examination. Exome sequencing was performed and ATP13A2 variation genotyped in all family members. Results Cognitive deficits, hypokinesia, rigidity, spasticity, brisk deep tendon reflexes, upward gaze palsy, tremor, and facial-faucial-finger mini-myoclonus were the common manifestations of all affected siblings. Two cases had seizure and the most severely affected sibling demonstrated severe action myoclonus. Exome sequencing identified a homozygous nonsense mutation c.2455C>T;p.Arg819* in ATP13A2 gene. Conclusions We reported five KRS affected siblings who manifested myoclonus and seizure. The most severely affected one demonstrated action myoclonus, which has not been reported so far.
Collapse
Affiliation(s)
- Mohammad Rohani
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Toronto Western Hospital and Division of Neurology University of Toronto Toronto Ontario Canada.,Department of Neurology Hazrat Rasool Hospital Iran University of Medical Sciences Tehran Iran
| | - Anthony E Lang
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Toronto Western Hospital and Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Research Institute Toronto Ontario Canada
| | - Farzad Sina
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Toronto Western Hospital and Division of Neurology University of Toronto Toronto Ontario Canada
| | - Elahe Elahi
- School of Biology College of Science University of Tehran Tehran Iran
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease Toronto Western Hospital and Division of Neurology University of Toronto Toronto Ontario Canada.,Krembil Research Institute Toronto Ontario Canada
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Molecular Neuroscience Institute of Neurology University College London Queen Square, London WC1N 3BG UK
| | - Jose Bras
- UK Dementia Research Institute at UCL and Department of Molecular Neuroscience Institute of Neurology University College London Queen Square, London WC1N 3BG UK
| | - Afagh Alavi
- Genetics research center University of Social Welfare and Rehabilitation Sciences Tehran Iran
| |
Collapse
|
40
|
Pretegiani E, Optican LM. Eye Movements in Parkinson's Disease and Inherited Parkinsonian Syndromes. Front Neurol 2017; 8:592. [PMID: 29170650 PMCID: PMC5684125 DOI: 10.3389/fneur.2017.00592] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/23/2017] [Indexed: 12/02/2022] Open
Abstract
Despite extensive research, the functions of the basal ganglia (BG) in movement control have not been fully understood. Eye movements, particularly saccades, are convenient indicators of BG function. Here, we review the main oculomotor findings reported in Parkinson’s disease (PD) and genetic parkinsonian syndromes. PD is a progressive, neurodegenerative disorder caused by dopaminergic cell loss within the substantia nigra pars compacta, resulting in depletion of striatal dopamine and subsequent increased inhibitory BG output from the internal globus pallidus and the substantia nigra pars reticulata. Eye movement abnormalities are common in PD: anomalies are more evident in voluntary than reflexive saccades in the initial stages, but visually guided saccades may also be involved at later stages. Saccadic hypometria (including abnormally fragmented saccades), reduced accuracy, and increased latency are among the most prominent deficits. PD patients show also unusually frequent and large square wave jerks and impaired inhibition of reflexive saccades when voluntary mirror saccades are required. Poor convergence ability and altered pursuit are common. Inherited parkinsonisms are a heterogeneous group of rare syndromes due to gene mutations causing symptoms resembling those of PD. Eye movement characteristics of some parkinsonisms have been studied. While sharing some PD features, each syndrome has a distinctive profile that could contribute to better define the clinical phenotype of parkinsonian disorders. Moreover, because the pathogenesis and the underlying neural circuit failure of inherited parkinsonisms are often well defined, they might offer a better prospect than idiopathic PD to understand the BG function.
Collapse
Affiliation(s)
- Elena Pretegiani
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, United States
| | - Lance M Optican
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, United States
| |
Collapse
|
41
|
Schneider SA, Alcalay RN. Neuropathology of genetic synucleinopathies with parkinsonism: Review of the literature. Mov Disord 2017; 32:1504-1523. [PMID: 29124790 PMCID: PMC5726430 DOI: 10.1002/mds.27193] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/27/2022] Open
Abstract
Clinical-pathological studies remain the gold-standard for the diagnosis of Parkinson's disease (PD). However, mounting data from genetic PD autopsies challenge the diagnosis of PD based on Lewy body pathology. Most of the confirmed genetic risks for PD show heterogenous neuropathology, even within kindreds, which may or may not include Lewy body pathology. We review the literature of genetic PD autopsies from cases with molecularly confirmed PD or parkinsonism and summarize main findings on SNCA (n = 25), Parkin (n = 20, 17 bi-allelic and 3 heterozygotes), PINK1 (n = 5, 1 bi-allelic and 4 heterozygotes), DJ-1 (n = 1), LRRK2 (n = 55), GBA (n = 10 Gaucher disease patients with parkinsonism), DNAJC13, GCH1, ATP13A2, PLA2G6 (n = 8 patients, 2 with PD), MPAN (n = 2), FBXO7, RAB39B, and ATXN2 (SCA2), as well as on 22q deletion syndrome (n = 3). Findings from autopsies of heterozygous mutation carriers of genes that are traditionally considered recessively inherited are also discussed. Lewy bodies may be present in syndromes clinically distinctive from PD (eg, MPAN-related neurodegeneration) and absent in patients with clinical PD syndrome (eg, LRRK2-PD or Parkin-PD). Therefore, the authors can conclude that the presence of Lewy bodies are not specific to the diagnosis of PD and that PD can be diagnosed even in the absence of Lewy body pathology. Interventions that reduce alpha-synuclein load may be more justified in SNCA-PD or GBA-PD than in other genetic forms of PD. The number of reported genetic PD autopsies remains small, and there are limited genotype-clinical-pathological-phenotype studies. Therefore, larger series of autopsies from genetic PD patients are required. © 2017 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Susanne A Schneider
- Department of Neurology, Ludwig-Maximilians-University of München, Munich, Germany
| | - Roy N. Alcalay
- Department of Neurology, Columbia University Medical Center, New York, New York
| |
Collapse
|
42
|
Miranda M, Bustamante ML. Commentary to medical genetics and genomic medicine in Chile: Chilean experience on molecular diagnosis for neurodegenerative disorders. Mol Genet Genomic Med 2017; 5:305-306. [PMID: 28717656 PMCID: PMC5511793 DOI: 10.1002/mgg3.288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this article, the experience in the molecular diagnosis in neurodegenerative disorders in Chile, including present challenges and potential new pathways for development, is explained.![]()
Collapse
Affiliation(s)
- Marcelo Miranda
- Department of NeurologyClínica Las CondesAv. Lo Fontecilla 441Las CondesSantiagoChile
| | - María Leonor Bustamante
- Program of Human GeneticsBiomedical Sciences InstituteAv. Independencia 1027IndependenciaSantiagoChile.,Department of Psychiatry and Mental Health North DivisionFaculty of MedicineUniversity of ChileAv. Independencia 1027IndependenciaSantiagoChile
| |
Collapse
|
43
|
Miranda-Morales E, Meier K, Sandoval-Carrillo A, Salas-Pacheco J, Vázquez-Cárdenas P, Arias-Carrión O. Implications of DNA Methylation in Parkinson's Disease. Front Mol Neurosci 2017; 10:225. [PMID: 28769760 PMCID: PMC5513956 DOI: 10.3389/fnmol.2017.00225] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/03/2017] [Indexed: 12/13/2022] Open
Abstract
It has been 200 years since Parkinson’s disease (PD) was first described, yet many aspects of its etiopathogenesis remain unclear. PD is a progressive and complex neurodegenerative disorder caused by genetic and environmental factors including aging, nutrition, pesticides and exposure to heavy metals. DNA methylation may be altered in response to some of these factors; therefore, it is proposed that epigenetic mechanisms, particularly DNA methylation, can have a fundamental role in gene–environment interactions that are related with PD. Epigenetic changes in PD-associated genes are now widely studied in different populations, to discover the mechanisms that contribute to disease development and identify novel biomarkers for early diagnosis and future pharmacological treatment. While initial studies sought to find associations between promoter DNA methylation and the regulation of associated genes in PD brain tissue, more recent studies have described concordant DNA methylation patterns between blood and brain tissue DNA. These data justify the use of peripheral blood samples instead of brain tissue for epigenetic studies. Here, we summarize the current data about DNA methylation changes in PD and discuss the potential of DNA methylation as a potential biomarker for PD. Additionally, we discuss environmental and nutritional factors that have been implicated in DNA methylation. Although the search for significant DNA methylation changes and gene expression analyses of PD-associated genes have yielded inconsistent and contradictory results, epigenetic modifications remain under investigation for their potential to reveal the link between environmental risk factors and the development of PD.
Collapse
Affiliation(s)
- Ernesto Miranda-Morales
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico.,Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - Karin Meier
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de MéxicoMexico City, Mexico
| | - Ada Sandoval-Carrillo
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | - José Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de DurangoDurango, Mexico
| | | | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea GonzálezMexico City, Mexico
| |
Collapse
|
44
|
Fleming SM, Santiago NA, Mullin EJ, Pamphile S, Karkare S, Lemkuhl A, Ekhator OR, Linn SC, Holden JG, Aga DS, Roth JA, Liou B, Sun Y, Shull GE, Schultheis PJ. The effect of manganese exposure in Atp13a2-deficient mice. Neurotoxicology 2017; 64:256-266. [PMID: 28595912 PMCID: PMC10178982 DOI: 10.1016/j.neuro.2017.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/25/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
Abstract
Loss of function mutations in the P5-ATPase ATP13A2 are associated with Kufor-Rakeb Syndrome and Neuronal Ceroid Lipofuscinosis. While the function of ATP13A2 is unclear, in vitro studies suggest it is a lysosomal protein that interacts with the metals manganese (Mn) and zinc and the presynaptic protein alpha-synuclein. Loss of ATP13A2 function in mice causes sensorimotor deficits, enhanced autofluorescent storage material, and accumulation of alpha-synuclein. The present study sought to determine the effect of Mn administration on these same outcomes in ATP13A2-deficient mice. Wildtype and ATP13A2-deficient mice received saline or Mn at 5-9 or 12-19 months for 45days. Sensorimotor function was assessed starting at day 30. Autofluorescence was quantified in multiple brain regions and alpha-synuclein protein levels were determined in the ventral midbrain. Brain Mn, iron, zinc, and copper concentrations were measured in 5-9 month old mice. The results show Mn enhanced sensorimotor function, increased autofluorescence in the substantia nigra, and increased insoluble alpha-synuclein in the ventral midbrain in older ATP13A2-deficient mice. In addition, the Mn regimen used increased Mn concentration in the brain and levels were higher in Mn-treated mutants than controls. These results indicate loss of ATP13A2 function leads to increased sensitivity to Mn in vivo.
Collapse
Affiliation(s)
- Sheila M Fleming
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States.
| | - Nicholas A Santiago
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH, United States
| | | | - Shanta Pamphile
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Swagata Karkare
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Andrew Lemkuhl
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Osunde R Ekhator
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Stephen C Linn
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States
| | - John G Holden
- Department of Neurology, University of Cincinnati, Cincinnati, OH, United States
| | - Diana S Aga
- Department of Chemistry, SUNY Buffalo, Buffalo, NY, United States
| | - Jerome A Roth
- Department of Pharmacology and Toxicology, SUNY Buffalo, Buffalo, NY, United States
| | - Benjamin Liou
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry, and Microbiology, University of Cincinnati, Cincinnati, OH, United States
| | - Patrick J Schultheis
- Department of Biological Sciences, Northern Kentucky University, Highland Heights, KY, United States
| |
Collapse
|
45
|
Estrada-Cuzcano A, Martin S, Chamova T, Synofzik M, Timmann D, Holemans T, Andreeva A, Reichbauer J, De Rycke R, Chang DI, van Veen S, Samuel J, Schöls L, Pöppel T, Mollerup Sørensen D, Asselbergh B, Klein C, Zuchner S, Jordanova A, Vangheluwe P, Tournev I, Schüle R. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78). Brain 2017; 140:287-305. [PMID: 28137957 DOI: 10.1093/brain/aww307] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/29/2016] [Accepted: 10/19/2016] [Indexed: 12/23/2022] Open
Abstract
Hereditary spastic paraplegias are heterogeneous neurodegenerative disorders characterized by progressive spasticity of the lower limbs due to degeneration of the corticospinal motor neurons. In a Bulgarian family with three siblings affected by complicated hereditary spastic paraplegia, we performed whole exome sequencing and homozygosity mapping and identified a homozygous p.Thr512Ile (c.1535C > T) mutation in ATP13A2. Molecular defects in this gene have been causally associated with Kufor-Rakeb syndrome (#606693), an autosomal recessive form of juvenile-onset parkinsonism, and neuronal ceroid lipofuscinosis (#606693), a neurodegenerative disorder characterized by the intracellular accumulation of autofluorescent lipopigments. Further analysis of 795 index cases with hereditary spastic paraplegia and related disorders revealed two additional families carrying truncating biallelic mutations in ATP13A2. ATP13A2 is a lysosomal P5-type transport ATPase, the activity of which critically depends on catalytic autophosphorylation. Our biochemical and immunocytochemical experiments in COS-1 and HeLa cells and patient-derived fibroblasts demonstrated that the hereditary spastic paraplegia-associated mutations, similarly to the ones causing Kufor-Rakeb syndrome and neuronal ceroid lipofuscinosis, cause loss of ATP13A2 function due to transcript or protein instability and abnormal intracellular localization of the mutant proteins, ultimately impairing the lysosomal and mitochondrial function. Moreover, we provide the first biochemical evidence that disease-causing mutations can affect the catalytic autophosphorylation activity of ATP13A2. Our study adds complicated hereditary spastic paraplegia (SPG78) to the clinical continuum of ATP13A2-associated neurological disorders, which are commonly hallmarked by lysosomal and mitochondrial dysfunction. The disease presentation in our patients with hereditary spastic paraplegia was dominated by an adult-onset lower-limb predominant spastic paraparesis. Cognitive impairment was present in most of the cases and ranged from very mild deficits to advanced dementia with fronto-temporal characteristics. Nerve conduction studies revealed involvement of the peripheral motor and sensory nerves. Only one of five patients with hereditary spastic paraplegia showed clinical indication of extrapyramidal involvement in the form of subtle bradykinesia and slight resting tremor. Neuroimaging cranial investigations revealed pronounced vermian and hemispheric cerebellar atrophy. Notably, reduced striatal dopamine was apparent in the brain of one of the patients, who had no clinical signs or symptoms of extrapyramidal involvement.
Collapse
Affiliation(s)
- Alejandro Estrada-Cuzcano
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Teodora Chamova
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Matthis Synofzik
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Dagmar Timmann
- Department of Neurology, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Tine Holemans
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Albena Andreeva
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Jennifer Reichbauer
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Riet De Rycke
- Inflammation Research Center, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Dae-In Chang
- Inflammation Research Center, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sarah van Veen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Jean Samuel
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Ludger Schöls
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany.,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Thorsten Pöppel
- Department of Nuclear Medicine, Essen University Hospital, University of Duisburg-Essen, 45147 Essen, Germany
| | - Danny Mollerup Sørensen
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Bob Asselbergh
- VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Christine Klein
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Stephan Zuchner
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven; 3000 Leuven, Belgium
| | - Ivailo Tournev
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium.,Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Rebecca Schüle
- Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany .,German Center of Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany.,Molecular Neurogenomics Group, VIB Department of Molecular Genetics, University of Antwerp, Universiteitsplein 1, 2610 Antwerpen, Belgium
| |
Collapse
|
46
|
Epigenetics in Parkinson’s Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:363-390. [DOI: 10.1007/978-3-319-53889-1_19] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Abstract
Neurodegeneration with brain iron accumulation (NBIA) describes a heterogeneous group of inherited rare clinical and genetic entities. Clinical core symptoms comprise a combination of early-onset dystonia, pyramidal and extrapyramidal signs with ataxia, cognitive decline, behavioral abnormalities, and retinal and axonal neuropathy variably accompanying these core features. Increased nonphysiologic, nonaging-associated brain iron, most pronounced in the basal ganglia, is often termed the unifying characteristic of these clinically variable disorders, though occurrence and extent can be fluctuating or even absent. Neuropathologically, NBIA disorders usually are associated with widespread axonal spheroids and local iron accumulation in the basal ganglia. Postmortem, Lewy body, TDP-43, or tau pathology has been observed. Genetics have fostered ongoing progress in elucidating underlying pathophysiologic mechanisms of NBIA disorders. Ten associated genes have been established, with many more being suggested as new technologies and data emerge. Clinically, certain symptom combinations can suggest a specific genetic defect. Genetic tests, combined with postmortem neuropathology, usually make for the final disease confirmation. Despite these advances, treatment to date remains mainly symptomatic. This chapter reviews the established genetic defects leading to different NBIA subtypes, highlights phenotypic presentations to direct genetic testing, and briefly discusses the scarce available treatment options and upcoming challenges and future hopes of the field.
Collapse
Affiliation(s)
- Sarah Wiethoff
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom; Center for Neurology and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany.
| | - Henry Houlden
- UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
48
|
"Manganese-induced neurotoxicity: a review of its behavioral consequences and neuroprotective strategies". BMC Pharmacol Toxicol 2016; 17:57. [PMID: 27814772 PMCID: PMC5097420 DOI: 10.1186/s40360-016-0099-0] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 10/19/2016] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential heavy metal. However, Mn’s nutritional aspects are paralleled by its role as a neurotoxicant upon excessive exposure. In this review, we covered recent advances in identifying mechanisms of Mn uptake and its molecular actions in the brain as well as promising neuroprotective strategies. The authors focused on reporting findings regarding Mn transport mechanisms, Mn effects on cholinergic system, behavioral alterations induced by Mn exposure and studies of neuroprotective strategies against Mn intoxication. We report that exposure to Mn may arise from environmental sources, occupational settings, food, total parenteral nutrition (TPN), methcathinone drug abuse or even genetic factors, such as mutation in the transporter SLC30A10. Accumulation of Mn occurs mainly in the basal ganglia and leads to a syndrome called manganism, whose symptoms of cognitive dysfunction and motor impairment resemble Parkinson’s disease (PD). Various neurotransmitter systems may be impaired due to Mn, especially dopaminergic, but also cholinergic and GABAergic. Several proteins have been identified to transport Mn, including divalent metal tranporter-1 (DMT-1), SLC30A10, transferrin and ferroportin and allow its accumulation in the central nervous system. Parallel to identification of Mn neurotoxic properties, neuroprotective strategies have been reported, and these include endogenous antioxidants (for instance, vitamin E), plant extracts (complex mixtures containing polyphenols and non-characterized components), iron chelating agents, precursors of glutathione (GSH), and synthetic compounds that can experimentally afford protection against Mn-induced neurotoxicity.
Collapse
|
49
|
Requejo-Aguilar R, Bolaños JP. Mitochondrial control of cell bioenergetics in Parkinson's disease. Free Radic Biol Med 2016; 100:123-137. [PMID: 27091692 PMCID: PMC5065935 DOI: 10.1016/j.freeradbiomed.2016.04.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/13/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by a selective loss of dopaminergic neurons in the substantia nigra. The earliest biochemical signs of the disease involve failure in mitochondrial-endoplasmic reticulum cross talk and lysosomal function, mitochondrial electron chain impairment, mitochondrial dynamics alterations, and calcium and iron homeostasis abnormalities. These changes are associated with increased mitochondrial reactive oxygen species (mROS) and energy deficiency. Recently, it has been reported that, as an attempt to compensate for the mitochondrial dysfunction, neurons invoke glycolysis as a low-efficient mode of energy production in models of PD. Here, we review how mitochondria orchestrate the maintenance of cellular energetic status in PD, with special focus on the switch from oxidative phosphorylation to glycolysis, as well as the implication of endoplasmic reticulum and lysosomes in the control of bioenergetics.
Collapse
Affiliation(s)
- Raquel Requejo-Aguilar
- Department of Biochemistry and Molecular Biology, University of Cordoba, Institute Maimonides of Biomedical Investigation of Cordoba (IMIBIC), Cordoba, Spain
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca-CSIC, Zacarias Gonzalez, 2, 37007 Salamanca, Spain.
| |
Collapse
|
50
|
Chen P, Culbreth M, Aschner M. Exposure, epidemiology, and mechanism of the environmental toxicant manganese. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:13802-13810. [PMID: 27102617 DOI: 10.1007/s11356-016-6687-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
It has become increasingly apparent that global manganese (Mn) pollution to air and water is a significant threat to human health. Despite this recognition, research is only beginning to comprehend the detrimental effects of exposure. Mn, while essential, is particularly harmful to the central nervous system, and overexposure is symptomatic of several neurological disorders. At-risk populations have been identified, but it is still unclear whether typical exposure levels have any long-term consequences. Those at an elevated risk have diminished intellectual function, learning and memory, and mental development. While the overall mechanism of toxicity is undetermined, Mn has been found to induce oxidative stress, exacerbate mitochondrial dysfunction, dysregulate autophagy, and promote apoptosis, ultimately enhancing neurodegeneration. Extrapolation of this in vitro and in vivo data to humans is difficult. There is a definite need to correlate epidemiological studies with causative effects. It is imperative that research efforts endure, so threats are appropriately identified and exposure properly regulated.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Megan Culbreth
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer Building, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|