1
|
Paparella G, Stragà C, Pesenti N, Dal Molin V, Martorel GA, Merotto V, Genova C, Piazza A, Piccoli G, Panzeri E, Rufini A, Testi R, Martinuzzi A. A Pilot Phase 2 Randomized Trial to Evaluate the Safety and Potential Efficacy of Etravirine in Friedreich Ataxia Patients. CHILDREN (BASEL, SWITZERLAND) 2024; 11:958. [PMID: 39201893 PMCID: PMC11352957 DOI: 10.3390/children11080958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024]
Abstract
BACKGROUND A drug repositioning effort supported the possible use of the anti-HIV drug etravirine as a disease-modifying drug for Friedreich ataxia (FRDA). Etravirine increases frataxin protein and corrects the biochemical defects in cells derived from FRDA patients. Because of these findings, and since etravirine displays a favorable safety profile, we conducted a pilot open-label phase 2 clinical trial assessing the safety and potential efficacy of etravirine in FRDA patients. METHODS Thirty-five patients were stratified into three severity groups and randomized to etravirine 200 mg/day or 400 mg/day. They were treated for 4 months. Safety endpoints were the number and type of adverse events and number of dropouts. Efficacy endpoints were represented by changes in peak oxygen uptake and workload as measured by incremental exercise test, SARA score, cardiac measures, measures of QoL and disability. Data were collected 4 months before the start of the treatment (T - 4), at the start (T0), at the end (T4) and 4 months after the termination of the treatment (T + 4). RESULTS Etravirine was reasonably tolerated, and adverse events were generally mild. Four months of etravirine treatment did not significantly increase the peak oxygen uptake but was associated with a change in the progression of the SARA score (p value < 0.001), compared to the 4 months pre- and post-treatment. It also significantly increased peak workload (p value = 0.021). No changes in the cardiac measures were observed. Health and QoL measures showed a worsening at the suspension of the drug. CONCLUSIONS In this open trial etravirine treatment was safe, reasonably well tolerated and appreciably improved neurological function and exercise performance. Even though a placebo effect cannot be ruled out, these results suggest that etravirine may represent a potential therapeutic agent in FRDA deserving testing in a randomized placebo-controlled clinical trial.
Collapse
Affiliation(s)
- Gabriella Paparella
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Cristina Stragà
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Nicola Pesenti
- Department of Statistics and Quantitative Methods, Division of Biostatistics, Epidemiology and Public Health, University of Milano-Bicocca, 20126 Milan, Milan, Italy
| | - Valentina Dal Molin
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Gian Antonio Martorel
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Vasco Merotto
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Cristina Genova
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Arianna Piazza
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Giuseppe Piccoli
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| | - Elena Panzeri
- Department of Bosisio Parini, Scientific Institute IRCCS E. Medea, 23842 Bosisio Parini, Lecco, Italy
| | - Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Andrea Martinuzzi
- Department of Conegliano, Scientific Institute IRCCS E. Medea, 31015 Conegliano, Treviso, Italy; (G.P.)
| |
Collapse
|
2
|
Cilenti NA, Tamaroff JG, Capiola CJ, Faig W, McBride MG, Paridon SM, O'Malley S, Edelson JB, Lynch DR, McCormack SE, Lin KY. Cardiopulmonary exercise testing on adaptive equipment in children and adults with Friedreich ataxia. Muscle Nerve 2024; 69:613-619. [PMID: 38515223 PMCID: PMC11013735 DOI: 10.1002/mus.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
INTRODUCTION/AIMS Traditional exercise is often difficult for individuals with Friedreich ataxia (FRDA), and evidence is limited regarding how to measure exercise performance in this population. We evaluated the feasibility, reliability, and natural history of adaptive cardiopulmonary exercise test (CPET) performance in children and adults with FRDA. METHODS Participants underwent CPET on either an arm cycle ergometer (ACE) or recumbent leg cycle ergometer (RLCE) at up to four visits (baseline, 2 weeks, 4 weeks, and 1 year). Maximum work, oxygen consumption (peak VO2), oxygen (O2) pulse, and anaerobic threshold (AT) were measured in those who reached maximal volition. Test-retest reliability was assessed with intraclass coefficients, and longitudinal change was assessed using regression analysis. RESULTS In our cohort (N = 23), median age was 18 years (interquartile range [IQR], 14-23), median age of FRDA onset was 8 years (IQR 6-13), median Friedreich Ataxia Rating Scale score was 58 (IQR 54-62), and GAA repeat length on the shorter FXN allele (GAA1) was 766 (IQR, 650-900). Twenty-one (91%) completed a maximal CPET (n = 8, ACE and n = 13, RLCE). Age, sex, and GAA1 repeat length were each associated with peak VO2. Preliminary estimates demonstrated reasonable agreement between visits 2 and 3 for peak work by both ACE and RLCE, and for peak VO2, O2 pulse, and AT by RLCE. We did not detect significant performance changes over 1 year. DISCUSSION Adaptive CPET is feasible in FRDA, a relevant clinical trial outcome for interventions that impact exercise performance and will increase access to participation as well as generalizability of findings.
Collapse
Affiliation(s)
- Nicolette A. Cilenti
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jaclyn G. Tamaroff
- Division of Pediatric Endocrinology and Diabetes, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christopher J. Capiola
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Walter Faig
- Biostatistics and Data Management Core, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Michael G. McBride
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Stephen M. Paridon
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shannon O'Malley
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Jonathan B. Edelson
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David R. Lynch
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shana E. McCormack
- Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kimberly Y. Lin
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Pane C, Marra AM, Aliberti L, Campanile M, Coscetta F, Crisci G, D'Assante R, Marsili A, Puorro G, Salzano A, Cittadini A, Saccà F. Rationale and protocol of a double-blind, randomized, placebo-controlled trial to test the efficacy, safety, and tolerability of dimethyl fumarate in Friedreich Ataxia (DMF-FA-201). Front Neurosci 2023; 17:1260977. [PMID: 37746147 PMCID: PMC10513368 DOI: 10.3389/fnins.2023.1260977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction Friedreich Ataxia (FRDA) is an autosomal recessive neurodegenerative disorder that causes gait and limb ataxia, dysarthria, and impaired vibratory sense, with cardiomyopathy being the predominant cause of death. There is no approved therapy, which results in the use of symptomatic treatments and the chronic support of physiotherapy. Dimethyl fumarate (DMF) is a fumaric acid ester used for the treatment of psoriasis and Multiple Sclerosis (MS). It induces Nrf2 in vitro and in vivo, and it increases frataxin in FRDA patient lymphoblasts, in mouse models, and in MS treated patients. Methods The aim of our study is to investigate if DMF can increase the expression of the FXN gene and frataxin protein and ameliorate in-vivo detectable measures of mitochondrial dysfunction in FRDA. The study is composed of a screening visit and two sequential 12-week phases: a core phase and an extension phase. During the first phase (core), patients will be randomly assigned to either the DMF or a placebo group in a 1:1 ratio. During the first week, patients will receive a total daily dose of 240 mg of DMF or placebo; from the second week of treatment, the dose will be increased to two 120 mg tablets BID for a total daily dose of 480 mg. During the second phase (extension), all patients will be treated with DMF. EudraCT number 2021-006274-23. Endpoints The primary endpoint will be a change in FXN gene expression level after 12 weeks of treatment. Secondary endpoints will be frataxin protein level, cardiopulmonary exercise test outputs, echocardiographic measures, Nrf2 pathway and mitochondrial biogenesis gene expression, safety, clinical scales, and quality of life scales. Conclusions This is the first study aimed at exploring the ability of DMF, an already available treatment for MS and psoriasis, to correct the biological deficits of FRDA and potentially improve mitochondrial respiration in-vivo.
Collapse
Affiliation(s)
- Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Alberto Maria Marra
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Ludovica Aliberti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Mario Campanile
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Federica Coscetta
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Giulia Crisci
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Roberta D'Assante
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Angela Marsili
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | - Giorgia Puorro
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| | | | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University, Naples, Italy
| |
Collapse
|
4
|
Keita M, McIntyre K, Rodden LN, Schadt K, Lynch DR. Friedreich ataxia: clinical features and new developments. Neurodegener Dis Manag 2022; 12:267-283. [PMID: 35766110 PMCID: PMC9517959 DOI: 10.2217/nmt-2022-0011] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Friedreich's ataxia (FRDA), a neurodegenerative disease characterized by ataxia and other neurological features, affects 1 in 50,000-100,000 individuals in the USA. However, FRDA also includes cardiac, orthopedic and endocrine dysfunction, giving rise to many secondary disease characteristics. The multifaceted approach for clinical care has necessitated the development of disease-specific clinical care guidelines. New developments in FRDA include the advancement of clinical drug trials targeting the NRF2 pathway and frataxin restoration. Additionally, a novel understanding of gene silencing in FRDA, reflecting a variegated silencing pattern, will have applications to current and future therapeutic interventions. Finally, new perspectives on the neuroanatomy of FRDA and its developmental features will refine the time course and anatomical targeting of novel approaches.
Collapse
Affiliation(s)
- Medina Keita
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kellie McIntyre
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Layne N Rodden
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kim Schadt
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Lynch
- Departments of Pediatrics & Neurology, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Effects of Exercise on Heart Failure with Preserved Ejection Fraction: An Updated Review of Literature. J Cardiovasc Dev Dis 2022; 9:jcdd9080241. [PMID: 36005405 PMCID: PMC9409671 DOI: 10.3390/jcdd9080241] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents the most common HF phenotype of patients aged > 65 years, with an incidence and a prevalence that are constantly growing. The HFpEF cardinal symptom is exercise intolerance (EI), defined as the impaired ability to perform physical activity and to reach the predicted age-related level of exercise duration in the absence of symptoms—such as fatigue or dyspnea—and is associated with a poor quality of life, a higher number of hospitalizations, and poor outcomes. The evidence of the protective effect between exercise and adverse cardiovascular outcomes is numerous and long-established. Regular exercise is known to reduce cardiovascular events and overall mortality both in apparently healthy individuals and in patients with established cardiovascular disease, representing a cornerstone in the prevention and treatment of many cardio-metabolic conditions. Several studies have investigated the role of exercise in HFpEF patients. The present review aims to dwell upon the effects of exercise on HFpEF. For this purpose, the relevant data from a literature search (PubMed, EMBASE, and Medline) were reviewed. The analysis of these studies underlines the fact that exercise training programs improve the cardiorespiratory performance of HFpEF patients in terms of the increase in peak oxygen uptake, the 6 min walk test distance, and the ventilatory threshold; on the other hand, diastolic or systolic functions are generally unchanged or only partially modified by exercise, suggesting that multiple mechanisms contribute to the improvement of exercise tolerance in HFpEF patients. In conclusion, considering that exercise training programs are able to improve the cardiorespiratory performance of HFpEF patients, the prescription of exercise training programs should be encouraged in stable HFpEF patients, and further research is needed to better elucidate the pathophysiological mechanisms underpinning the beneficial effects described.
Collapse
|
6
|
Recessive cerebellar and afferent ataxias - clinical challenges and future directions. Nat Rev Neurol 2022; 18:257-272. [PMID: 35332317 DOI: 10.1038/s41582-022-00634-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Cerebellar and afferent ataxias present with a characteristic gait disorder that reflects cerebellar motor dysfunction and sensory loss. These disorders are a diagnostic challenge for clinicians because of the large number of acquired and inherited diseases that cause cerebellar and sensory neuron damage. Among such conditions that are recessively inherited, Friedreich ataxia and RFC1-associated cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) include the characteristic clinical, neuropathological and imaging features of ganglionopathies, a distinctive non-length-dependent type of sensory involvement. In this Review, we discuss the typical and atypical phenotypes of Friedreich ataxia and CANVAS, along with the features of other recessive ataxias that present with a ganglionopathy or polyneuropathy, with an emphasis on recently described clinical features, natural history and genotype-phenotype correlations. We review the main developments in understanding the complex pathology that affects the sensory neurons and cerebellum, which seem to be most vulnerable to disorders that affect mitochondrial function and DNA repair mechanisms. Finally, we discuss disease-modifying therapeutic advances in Friedreich ataxia, highlighting the most promising candidate molecules and lessons learned from previous clinical trials.
Collapse
|
7
|
Rufini A, Malisan F, Condò I, Testi R. Drug Repositioning in Friedreich Ataxia. Front Neurosci 2022; 16:814445. [PMID: 35221903 PMCID: PMC8863941 DOI: 10.3389/fnins.2022.814445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Friedreich ataxia is a rare neurodegenerative disorder caused by insufficient levels of the essential mitochondrial protein frataxin. It is a severely debilitating disease that significantly impacts the quality of life of affected patients and reduces their life expectancy, however, an adequate cure is not yet available for patients. Frataxin function, although not thoroughly elucidated, is associated with assembly of iron-sulfur cluster and iron metabolism, therefore insufficient frataxin levels lead to reduced activity of many mitochondrial enzymes involved in the electron transport chain, impaired mitochondrial metabolism, reduced ATP production and inefficient anti-oxidant response. As a consequence, neurons progressively die and patients progressively lose their ability to coordinate movement and perform daily activities. Therapeutic strategies aim at restoring sufficient frataxin levels or at correcting some of the downstream consequences of frataxin deficiency. However, the classical pathways of drug discovery are challenging, require a significant amount of resources and time to reach the final approval, and present a high failure rate. Drug repositioning represents a viable alternative to boost the identification of a therapy, particularly for rare diseases where resources are often limited. In this review we will describe recent efforts aimed at the identification of a therapy for Friedreich ataxia through drug repositioning, and discuss the limitation of such strategies.
Collapse
Affiliation(s)
- Alessandra Rufini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
- *Correspondence: Alessandra Rufini,
| | - Florence Malisan
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
- Fratagene Therapeutics, Rome, Italy
| |
Collapse
|
8
|
Jain P, Badgujar L, Spoorendonk J, Buesch K. Clinical evidence of interventions assessed in Friedreich ataxia: a systematic review. THERAPEUTIC ADVANCES IN RARE DISEASE 2022; 3:26330040221139872. [PMID: 37180421 PMCID: PMC10032438 DOI: 10.1177/26330040221139872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/21/2022] [Indexed: 05/16/2023]
Abstract
Objectives The rare inherited autosomal recessive disease Friedreich ataxia (FA) causes progressive neurodegenerative changes and disability in patients. A systematic literature review (SLR) was carried out to understand and summarize the published efficacy and safety of therapeutic interventions in this disease. Methods Database searches were carried out in MEDLINE, Embase, and Cochrane by two independent reviewers. In addition, trial registries and conference proceedings were hand-searched. Results Thirty-two publications were deemed eligible according to PICOS criteria. Twenty-four publications detail randomized controlled trials. The most frequently identified therapeutic intervention was idebenone (n = 11), followed by recombinant erythropoietin (n = 6), omaveloxolone (n = 3), and amantadine hydrochloride (n = 2). Other therapeutic interventions were investigated in one publication: A0001, CoQ10, creatine, deferiprone, interferon-γ-1b, the L-carnitine levorotatory form of 5-hydroxytryptophan, luvadaxistat, resveratrol, RT001, and vatiquinone (EPI-743). These studies included patients from 8 to 73 years old, and disease duration varied from 4.7 to 19 years. Disease severity as per the mean GAA1 and GAA2 allele repeat length ranged from 350 to 930 and 620 to 987 nucleotides, respectively. Most frequently reported efficacy outcomes were the International Cooperative Ataxia Rating Scale (ICARS, n = 10), the Friedreich Ataxia Rating Scale (modified FARS and FARS-neuro, n = 12), the Scale for Assessment and Rating of Ataxia (SARA, n = 7), and the Activities of Daily Living scale (ADL, n = 8). Each of these assesses the severity of disability in FA patients. In many studies, patients with FA deteriorated according to these severity scales regardless of treatment, or inconclusive results were found. Generally, these therapeutic interventions were well-tolerated and safe. Serious adverse events were atrial fibrillation (n = 1), craniocerebral injury (n = 1), and ventricular tachycardia (n = 1). Conclusion Identified literature showed a considerable unmet need for therapeutic interventions that halt or slow the deteriorating nature of FA. Novel efficacious drugs should be investigated that aim to improve symptoms or slow disease progression.
Collapse
Affiliation(s)
- Paridhi Jain
- OPEN Health Group, Zenia Building, Hiranandani
Circle, Hiranandani Business Park, Thane, Mumbai 400607, Maharashtra,
India
| | | | | | | |
Collapse
|
9
|
De Luca M, Iacono O, Valente V, Giardino F, Crisci G, Lettieri M, Marra A, Giallauria F, Oliviero U. Can pulse wave velocity (PWV) alone express arterial stiffness? A neglected tool for vascular function assessment. J Basic Clin Physiol Pharmacol 2021; 33:373-379. [PMID: 34284526 DOI: 10.1515/jbcpp-2021-0193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022]
Abstract
Arterial stiffness, defined as the rigidity of the arterial wall, is the consequence of vascular aging and is associated with the full spectrum of cardiovascular diseases. Carotid-femoral pulse wave velocity (cf-PWV) is the gold standard method for arterial stiffness evaluation: it measures the velocity of the arterial pulse along the thoracic and abdominal aorta alongside arterial distensibility. Its value rises as stiffness progresses. Cf-PWV is helpful to assess residual cardiovascular risk (CVR) in hypertension (HT). In fact, an increase in pulsatility and arterial stiffness predicts CVR in patients affected by arterial HT, independently of other risk factors. Arterial stiffness can predict cardiovascular events in several other clinical conditions such as heart failure, diabetes, and pulmonary HT. However, cf-PWV has not been yet included in routine clinical practice so far. A possible reason might be its methodological and theoretical limitations (inaccuracy in the traveled distance, intra and interindividual variability, lack of well-defined references values, and age- and blood pressure-independent cutoff). To exceed these limits a strict adherence to guidelines, use of analytical approaches, and possibility of integrating the results with other stiffness examinations are essential approaches.
Collapse
Affiliation(s)
- Mariarosaria De Luca
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Olimpia Iacono
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Valeria Valente
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Federica Giardino
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Giulia Crisci
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Maddalena Lettieri
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Alberto Marra
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
- Center for Pulmonary Hypertension, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
| | - Francesco Giallauria
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| | - Ugo Oliviero
- Department of Translational Medical Sciences, "Federico II" University, Naples, Italy
| |
Collapse
|
10
|
Vittori DC, Chamorro ME, Hernández YV, Maltaneri RE, Nesse AB. Erythropoietin and derivatives: Potential beneficial effects on the brain. J Neurochem 2021; 158:1032-1057. [PMID: 34278579 DOI: 10.1111/jnc.15475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Erythropoietin (Epo), the main erythropoiesis-stimulating factor widely prescribed to overcome anemia, is also known nowadays for its cytoprotective action on non-hematopoietic tissues. In this context, Epo showed not only its ability to cross the blood-brain barrier, but also its expression in the brain of mammals. In clinical trials, recombinant Epo treatment has been shown to stimulate neurogenesis; improve cognition; and activate antiapoptotic, antioxidant, and anti-inflammatory signaling pathways. These mechanisms, proposed to characterize a neuroprotective property, opened new perspectives on the Epo pharmacological potencies. However, many questions arise about a possible physiological role of Epo in the central nervous system (CNS) and the factors or environmental conditions that induce its expression. Although Epo may be considered a strong candidate to be used against neuronal damage, long-term treatments, particularly when high Epo doses are needed, may induce thromboembolic complications associated with increases in hematocrit and blood viscosity. To avoid these adverse effects, different Epo analogs without erythropoietic activity but maintaining neuroprotection ability are currently being investigated. Carbamylated erythropoietin, as well as alternative molecules like Epo fusion proteins and partial peptides of Epo, seems to match this profile. This review will focus on the discussion of experimental evidence reported in recent years linking erythropoietin and CNS function through investigations aimed at finding benefits in the treatment of neurodegenerative diseases. In addition, it will review the proposed mechanisms for novel derivatives which may clarify and, eventually, improve the neuroprotective action of Epo.
Collapse
Affiliation(s)
- Daniela C Vittori
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - María E Chamorro
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Yender V Hernández
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Romina E Maltaneri
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Alcira B Nesse
- Department of Biological Chemistry, National Scientific and Technical Research Council, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
11
|
Abstract
Exercise intolerance represents a typical feature of heart failure with preserved ejection fraction (HFpEF), and is associated with a poor quality of life, frequent hospitalizations, and increased all-cause mortality. The cardiopulmonary exercise test is the best method to quantify exercise intolerance, and allows detection of the main mechanism responsible for the exercise limitation, influencing treatment and prognosis. Exercise training programs improve exercise tolerance in HFpEF. However, studies are needed to identify appropriate type and duration. This article discusses the pathophysiology of exercise limitation in HFpEF, describes methods of determining exercise tolerance class, and evaluates prognostic implications and potential therapeutic strategies.
Collapse
|
12
|
Pane C, Salzano A, Trinchillo A, Del Prete C, Casali C, Marcotulli C, Defazio G, Guardasole V, Vastarella R, Giallauria F, Puorro G, Marsili A, De Michele G, Filla A, Cittadini A, Saccà F. Safety and feasibility of upper limb cardiopulmonary exercise test in Friedreich ataxia. Eur J Prev Cardiol 2020; 29:445-451. [DOI: 10.1093/eurjpc/zwaa134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Abstract
Aims
To explore the feasibility of upper limbs cardiopulmonary exercise test (CPET) in Friedreich ataxia (FRDA) patients and to compare the results with sex, age, and body mass index (BMI) matched cohort of healthy controls (HC).
Methods and results
Cardiopulmonary exercise test was performed using an upper limbs cycle ergometer on fasting subjects. Peak oxygen uptake (peak VO2) was recorded as the mean value of VO2 during a 20 s period at the maximal effort of the test at an appropriate respiratory exchange rate. The ventilatory anaerobic threshold (AT) was detected by the use of the V-slope method. We performed echocardiography with an ultrasound system equipped with a 2.5 MHz multifrequency transducer for complete M-mode, two-dimensional, Doppler, and Tissue Doppler Imaging analyses. We studied 55 FRDA and 54 healthy matched controls (HC). Peak VO2 showed a significant 31% reduction in FRDA patients compared to HC (15.2 ± 5.7 vs. 22.0 ± 6.1 mL/kg/min; P < 0.001). Peak workload was reduced by 41% in FRDA (42.9 ± 12.5 vs. 73.1 ± 21.2 W; P < 0.001). In FRDA patients, peak VO2 is inversely correlated with the Scale for Assessment and Rating of Ataxia score, disease duration, and 9HPT performance, and directly correlated with activities of daily living. The AT occurred at 48% of peak workload time in FRDA patients and at 85% in HC (P < 0.001).
Conclusions
Upper limb CPET is useful in the assessment of exercise tolerance and a possible tool to determine the functional severity of the mitochondrial oxidative defect in patients with FRDA. The cardiopulmonary exercise test is an ideal functional endpoint for Phases II and III trials through a simple, non-invasive, and safe exercise test.
Collapse
Affiliation(s)
- Chiara Pane
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Andrea Salzano
- IRCCS SDN, Diagnostic and Nuclear Research Institute, Via E Gianturco, Naples, 80143, Italy
| | - Assunta Trinchillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Claudia Del Prete
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Via Faggiana 34, Latina, Italy
| | - Christian Marcotulli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Polo Pontino, Via Faggiana 34, Latina, Italy
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, University of Cagliari, SS 554 km 4.500, Cagliari, Italy
| | - Vincenzo Guardasole
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy
| | - Rossella Vastarella
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy
| | - Giorgia Puorro
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Angela Marsili
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Giovanna De Michele
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University, Via S Pansini 5, Naples, 80131, Italy
| | - Francesco Saccà
- Department of Neurosciences, Reproductive and Odontostomatological Sciences (DNSRO), Federico II University, Via S. Pansini 5, Naples, Italy
| |
Collapse
|
13
|
Zesiewicz TA, Hancock J, Ghanekar SD, Kuo SH, Dohse CA, Vega J. Emerging therapies in Friedreich's Ataxia. Expert Rev Neurother 2020; 20:1215-1228. [PMID: 32909841 PMCID: PMC8018609 DOI: 10.1080/14737175.2020.1821654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Friedreich's ataxia (FRDA) is a progressive, neurodegenerative disease that results in gait and limb ataxia, diabetes, cardiac hypertrophy, and scoliosis. At the cellular level, FRDA results in the deficiency of frataxin, a mitochondrial protein that plays a vital role in iron homeostasis and amelioration of oxidative stress. No cure currently exists for FRDA, but exciting therapeutic developments which target different parts of the pathological cascade are on the horizon. AREAS COVERED Areas covered include past and emerging therapies for FRDA, including antioxidants and mitochondrial-related agents, nuclear factor erythroid-derived 2-related factor 2 (Nrf2) activators, deuterated polyunsaturated fatty acids, iron chelators, histone deacetylase (HDAC) inhibitors, trans-activator of transcription (TAT)-frataxin, interferon gamma (IFNγ), erythropoietin, resveratrol, gene therapy, and anti-sense oligonucleotides (ASOs), among others. EXPERT OPINION While drug discovery has been challenging, new and exciting prospective treatments for FRDA are currently on the horizon, including pharmaceutical agents and gene therapy. Agents that enhance mitochondrial function, such as Nrf2 activators, dPUFAs and catalytic antioxidants, as well as novel methods of frataxin augmentation and genetic modulation will hopefully provide treatment for this devastating disease.
Collapse
Affiliation(s)
- Theresa A. Zesiewicz
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa Florida, James A Haley Veteran’s Hospital, Tampa, Florida, USA
| | - Joshua Hancock
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa Florida, James A Haley Veteran’s Hospital, Tampa, Florida, USA
| | - Shaila D. Ghanekar
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa Florida, James A Haley Veteran’s Hospital, Tampa, Florida, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, New York, NY, USA
| | - Carlos A. Dohse
- Universidad Central Del Caribe School of Medicine, Bayamon, Puerto Rico
| | - Joshua Vega
- University of South Florida (USF) Department of Neurology, USF Ataxia Research Center, Tampa Florida, James A Haley Veteran’s Hospital, Tampa, Florida, USA
| |
Collapse
|
14
|
Choi JH, Shin C, Kim HJ, Jeon B. Placebo response in degenerative cerebellar ataxias: a descriptive review of randomized, placebo-controlled trials. J Neurol 2020; 269:62-71. [PMID: 33219422 DOI: 10.1007/s00415-020-10306-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/18/2022]
Abstract
Placebo response in degenerative cerebellar ataxias (CAs) has never been studied despite the large number of randomized controlled trials (RCTs) that have been conducted. In this descriptive review, we aimed to examine the placebo response in patients with CAs. We performed a literature search on PubMed for RCTs on CAs that were published from 1977 to January 2020 and collected data on the changes from the baseline to the endpoint on various objective ataxia-associated clinical rating scales. We reviewed 56 clinical trials, finally including 35 parallel-group studies and excluding 21 cross-over studies. The included studies were categorized as follows: (1) studies showing significant improvements in one or more ataxia scales in the placebo groups (n = 3); (2) studies reporting individual placebo responders with improvements in one or more ataxia scales in the placebo groups (n = 5)-the overall proportion of placebo responders was 31.9%; (3) studies showing mean changes in the direction of improvement in at least one ataxia scale in the placebo groups, though not statistically significant (n = 19); (4) studies showing no placebo response in any of the ataxia scales in the placebo groups (n = 4); (5) studies where data on the placebo groups were unavailable (n = 9). This review demonstrated the placebo response in patients with CAs on various objective ataxia scales. Our study emphasizes that the placebo response should be considered when designing, analyzing, and interpreting clinical trials and in clinical practice in CA patients.
Collapse
Affiliation(s)
- Ji-Hyun Choi
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.,Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea
| | - Chaewon Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong-si, South Korea.,Department of Neurology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| |
Collapse
|
15
|
Arcuria G, Marcotulli C, Amuso R, Dattilo G, Galasso C, Pierelli F, Casali C. Developing an objective evaluating system to quantify the degree of upper limb movement impairment in patients with severe Friedreich's ataxia. Neurol Sci 2020; 41:1577-1587. [PMID: 31993871 DOI: 10.1007/s10072-020-04249-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND The use of standardized tools and objective measurements is essential to test the effectiveness of new drugs or rehabilitative protocols. Friedreich's ataxia (FRDA) patients with severe disease are often unable to perform the quantitative measurement tests currently used. AIM The purpose of our study was to develop an easy-to-use application, for touchscreen devices, able to quantify the degree of upper limb movement impairment in patients with severe Friedreich's ataxia. The APP, which we named "Twelve-Red-Squares App-Coo-Test" (12-RSACT), assesses the upper limb ataxia by measuring the test execution time. METHODS All patients were clinically evaluated using the Composite Cerebellar Functional Severity (CCFS) and the Scale for the Assessment and Rating of Ataxia (SARA). We recruited 92 healthy subjects and 36 FRDA patients with a SARA mean value of 28.8.1 ± 8.2. All participants in our study underwent upper limb movement assessment using the new 12-RSACT, the Click Test, and a well-established system, i.e., the Nine-Hole Peg Test (9HPT). RESULTS We observed a strong linear correlation between the measurements obtained with the 12-RSACT and those obtained with 9HPT, Click Test, CCFS, and SARA. The 12-RSACT was characterized by excellent internal consistency and intra-rater and test-retest reliability. The minimal detectable change (MDC%) was excellent too. Additionally, the 12-RSACT turned out to be faster and easier to perform compared with the 9HPT. CONCLUSION The 12-RSACT is an inexpensive test and is easy to use, which can be administered quickly. Therefore, 12-RSACT is a promising tool to assess the upper limb ataxia in FRDA patients and even those with severe diseases.
Collapse
Affiliation(s)
- Giuseppe Arcuria
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza - University of Rome - Polo Pontino, Via Faggiana 34, 40100, Latina, Italy.
| | - Christian Marcotulli
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza - University of Rome - Polo Pontino, Via Faggiana 34, 40100, Latina, Italy
| | - Raffaele Amuso
- Department of Science and Information Technology, I.I.S. Ettore Majorana, Piazza Sen. Marescalchi 2, Piazza Armerina, EN, Italy
| | - Giuliano Dattilo
- Department of Mathematical, Physical and Natural Sciences, University of Rome "Sapienza", Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio Galasso
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza - University of Rome - Polo Pontino, Via Faggiana 34, 40100, Latina, Italy
| | | | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza - University of Rome - Polo Pontino, Via Faggiana 34, 40100, Latina, Italy
| |
Collapse
|
16
|
Gottesfeld JM. Molecular Mechanisms and Therapeutics for the GAA·TTC Expansion Disease Friedreich Ataxia. Neurotherapeutics 2019; 16:1032-1049. [PMID: 31317428 PMCID: PMC6985418 DOI: 10.1007/s13311-019-00764-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Friedreich ataxia (FRDA), the most common inherited ataxia, is caused by transcriptional silencing of the nuclear FXN gene, encoding the essential mitochondrial protein frataxin. Currently, there is no approved therapy for this fatal disorder. Gene silencing in FRDA is due to hyperexpansion of the triplet repeat sequence GAA·TTC in the first intron of the FXN gene, which results in chromatin histone modifications consistent with heterochromatin formation. Frataxin is involved in mitochondrial iron homeostasis and the assembly and transfer of iron-sulfur clusters to various mitochondrial enzymes and components of the electron transport chain. Frataxin insufficiency leads to progressive spinocerebellar neurodegeneration, causing symptoms of gait and limb ataxia, slurred speech, muscle weakness, sensory loss, and cardiomyopathy in many patients, resulting in death in early adulthood. Numerous approaches are being taken to find a treatment for FRDA, including excision or correction of the repeats by genome engineering methods, gene activation with small molecules or artificial transcription factors, delivery of frataxin to affected cells by protein replacement therapy, gene therapy, or small molecules to increase frataxin protein levels, and therapies aimed at countering the cellular consequences of reduced frataxin. This review will summarize the mechanisms involved in repeat-mediated gene silencing and recent efforts aimed at development of therapeutics.
Collapse
Affiliation(s)
- Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, 92037, USA.
| |
Collapse
|
17
|
Costabile T, Capretti V, Abate F, Liguori A, Paciello F, Pane C, De Rosa A, Peluso S, De Michele G, Filla A, Saccà F. Emotion Recognition and Psychological Comorbidity in Friedreich's Ataxia. THE CEREBELLUM 2019; 17:336-345. [PMID: 29327279 DOI: 10.1007/s12311-018-0918-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Friedreich's ataxia (FRDA) is an autosomal recessive disease presenting with ataxia, corticospinal signs, peripheral neuropathy, and cardiac abnormalities. Little effort has been made to understand the psychological and emotional burden of the disease. The aim of our study was to measure patients' ability to recognize emotions using visual and non-verbal auditory hints, and to correlate this ability with psychological, neuropsychological, and neurological variables. We included 20 patients with FRDA, and 20 age, sex, and education matched healthy controls (HC). We measured emotion recognition using the Geneva Emotion Recognition Test (GERT). Neuropsychological status was assessed measuring memory, executive functions, and prosopagnosia. Psychological tests were Patient Health Questionnaire-9 (PHQ-9), State Trait Anxiety Inventory-state/-trait (STAI-S/-T), and Structured Clinical Interview for DSM Disorders II. FRDA patients scored worse at the global assessment and showed impaired immediate visuospatial memory and executive functions. Patients presented lower STAI-S scores, and similar scores at the STAI-T, and PHQ-9 as compared to HC. Three patients were identified with personality disorders. Emotion recognition was impaired in FRDA with 29% reduction at the total GERT score (95% CI - 44.8%, - 12.6%; p < 0.001; Cohen's d = 1.2). Variables associated with poor GERT scores were the 10/36 spatial recall test, the Ray Auditory Verbal Learning Test, the Montreal Cognitive Assessment, and the STAI-T (R2 = 0.906; p < 0.001). FRDA patients have impaired emotion recognition that may be secondary to neuropsychological impairment. Depression and anxiety were not higher in FRDA as compared to HC and should not be considered as part of the disease.
Collapse
Affiliation(s)
- Teresa Costabile
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Veronica Capretti
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Filomena Abate
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Agnese Liguori
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Francesca Paciello
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Chiara Pane
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Anna De Rosa
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Silvio Peluso
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Giuseppe De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Alessandro Filla
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Via Pansini, 5, 80131, Naples, NA, Italy.
| |
Collapse
|
18
|
Boesch S, Indelicato E. Erythropoietin and Friedreich Ataxia: Time for a Reappraisal? Front Neurosci 2019; 13:386. [PMID: 31105516 PMCID: PMC6491891 DOI: 10.3389/fnins.2019.00386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/04/2019] [Indexed: 12/24/2022] Open
Abstract
Friedreich ataxia (FRDA) is a rare neurological disorder due to deficiency of the mitochondrial protein frataxin. Frataxin deficiency results in impaired mitochondrial function and iron deposition in affected tissues. Erythropoietin (EPO) is a cytokine which was mostly known as a key regulator of erythropoiesis until cumulative evidence showed additional neurotrophic and neuroprotective properties. These features offered the rationale for advancement of EPO in clinical trials in different neurological disorders in the past years, including FRDA. Several mechanisms of action of EPO may be beneficial in FRDA. First of all, EPO exposure results in frataxin upregulation in vitro and in vivo. By promoting erythropoiesis, EPO influences iron metabolism and induces shifts in iron pool which may ameliorate conditions of free iron excess and iron accumulation. Furthermore, EPO signaling is crucial for mitochondrial gene activation and mitochondrial biogenesis. Up to date nine clinical trials investigated the effects of EPO and derivatives in FRDA. The majority of these studies had a proof-of-concept design. Considering the natural history of FRDA, all of them were too short in duration and not powered for clinical changes. However, these studies addressed significant issues in the treatment with EPO, such as (1) the challenge of the dose finding, (2) stability of frataxin up-regulation, (3) continuous versus intermittent stimulation with EPO/regimen, or (4) tissue changes after EPO exposure in humans in vivo (muscle biopsy, brain imaging). Despite several clinical trials in the past, no treatment is available for the treatment of FRDA. Current lines of research focus on gene therapy, frataxin replacement strategies and on regulation of key metabolic checkpoints such as NrF2. Due to potential crosstalk with all these mechanisms, interventions on the EPO pathway still represent a valuable research field. The recent development of small EPO mimetics which maintain cytoprotective properties without erythropoietic action may open a new era in EPO research for the treatment of FRDA.
Collapse
Affiliation(s)
- Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
19
|
Ferrucci R, Bocci T, Cortese F, Ruggiero F, Priori A. Noninvasive Cerebellar Stimulation as a Complement Tool to Pharmacotherapy. Curr Neuropharmacol 2019; 17:14-20. [PMID: 29141551 PMCID: PMC6341494 DOI: 10.2174/1570159x15666171114142422] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/09/2017] [Accepted: 11/06/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cerebellar ataxias represent a wide and heterogeneous group of diseases characterized by balance and coordination disturbance, dysarthria, dyssynergia and adyadococinesia, caused by a dysfunction in the cerebellum. In recent years there has been growing interest in discovering therapeutical strategy for specific forms of cerebellar ataxia. Together with pharmacological studies, there has been growing interest in non-invasive cerebellar stimulation techniques to improve ataxia and limb coordination. Both transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are non-invasive techniques to modulate cerebro and cerebellar cortex excitability using magnetic or electric fields. METHODS Here we aim to review the most relevant studies regarding the application of TMS and tDCS for the treatment of cerebellar ataxia. CONCLUSION As pharmacological strategies were shown to be effective in specific forms of cerebellar ataxia and are not devoid of collateral effects, non-invasive stimulation may represent a promising strategy to improve residual cerebellar circuits functioning and a complement tool to pharmacotherapy.
Collapse
Affiliation(s)
- Roberta Ferrucci
- Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy.,Ca' Granda IRCCS Foundation Hospital, Milan, Italy.,III Neurological Clinic San Paolo Hospital Milan, Italy
| | - Tommaso Bocci
- Ca' Granda IRCCS Foundation Hospital, Milan, Italy.,Department of Clinical and Experimental Medicine, Cisanello Neurology Unit, Pisa University Medical School, Pisa, Italy
| | - Francesca Cortese
- Ca' Granda IRCCS Foundation Hospital, Milan, Italy.,Fracastoro Hospital, San Bonifacio, Verona, Italy.,Department of Medico- Surgical Science and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | | | - Alberto Priori
- Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan Medical School, Milan, Italy.,Ca' Granda IRCCS Foundation Hospital, Milan, Italy.,III Neurological Clinic San Paolo Hospital Milan, Italy
| |
Collapse
|
20
|
Salzano A, D'Assante R, Lander M, Arcopinto M, Bossone E, Suzuki T, Cittadini A. Hormonal Replacement Therapy in Heart Failure: Focus on Growth Hormone and Testosterone. Heart Fail Clin 2019; 15:377-391. [PMID: 31079696 DOI: 10.1016/j.hfc.2019.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A growing body of evidence led to the hypothesis that heart failure (HF) could be considered a multiple hormone deficiency syndrome. Deficiencies in the main anabolic axes cannot be considered as mere epiphenomena, are very common in HF, and are clearly associated with poor cardiovascular performance and outcomes. Growth hormone deficiency and testosterone deficiency play a pivotal role and the replacement treatment is an innovative therapy that should be considered. This article appraises the current evidence regarding growth hormone and testosterone deficiencies in HF and reviews novel findings about the treatment of these conditions in HF.
Collapse
Affiliation(s)
- Andrea Salzano
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK; Department of Translational Medical Sciences, Federico II University, Via Pansini 5, Naples 80138, Italy
| | | | - Mark Lander
- Department of Acute Medicine, University College London Hospitals NHS Foundation Trust, 235 Euston Road, London NW1 2BU, UK
| | - Michele Arcopinto
- Department of Translational Medical Sciences, Federico II University, Via Pansini 5, Naples 80138, Italy; Emergency Department, A Cardarelli Hospital, Via Cardarelli 9, Naples 80131, Italy
| | - Eduardo Bossone
- Cardiology Division, A Cardarelli Hospital, Via Cardarelli 9, Naples 80131, Italy
| | - Toru Suzuki
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, University of Leicester, Glenfield Hospital, Groby Road, Leicester LE3 9QP, UK
| | - Antonio Cittadini
- Department of Translational Medical Sciences, Federico II University, Via Pansini 5, Naples 80138, Italy; Interdisciplinary Research Centre in Biomedical Materials (CRIB), Piazzale Tecchio 80, Naples 80125, Italy.
| |
Collapse
|
21
|
Salzano A, Marra AM, D’Assante R, Arcopinto M, Bossone E, Suzuki T, Cittadini A. Biomarkers and Imaging. Heart Fail Clin 2019; 15:321-331. [DOI: 10.1016/j.hfc.2018.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Salzano A, Marra AM, D’Assante R, Arcopinto M, Suzuki T, Bossone E, Cittadini A. Growth Hormone Therapy in Heart Failure. Heart Fail Clin 2018; 14:501-515. [DOI: 10.1016/j.hfc.2018.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Rummey C, Kichula E, Lynch DR. Clinical trial design for Friedreich ataxia - Where are we now and what do we need? Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1449638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Christian Rummey
- Departments of Neurology and Pediatrics, Clinical Data Science GmbH, Basel, Switzerland
| | - Elizabeth Kichula
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R. Lynch
- Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
24
|
Miller JL, Rai M, Frigon NL, Pandolfo M, Punnonen J, Spencer JR. Erythropoietin and small molecule agonists of the tissue-protective erythropoietin receptor increase FXN expression in neuronal cells in vitro and in Fxn-deficient KIKO mice in vivo. Neuropharmacology 2017; 123:34-45. [PMID: 28504123 DOI: 10.1016/j.neuropharm.2017.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 12/19/2022]
Abstract
Friedreich's ataxia (FA) is a progressive neurodegenerative disease caused by reduced levels of the mitochondrial protein frataxin (FXN). Recombinant human erythropoietin (rhEPO) increased FXN protein in vitro and in early clinical studies, while no published reports evaluate rhEPO in animal models of FA. STS-E412 and STS-E424 are novel small molecule agonists of the tissue-protective, but not the erythropoietic EPO receptor. We find that rhEPO, STS-E412 and STS-E424 increase FXN expression in vitro and in vivo. RhEPO, STS-E412 and STS-E424 increase FXN by up to 2-fold in primary human cortical cells and in retinoic-acid differentiated murine P19 cells. In primary human cortical cells, the increase in FXN protein was accompanied by an increase in FXN mRNA, detectable within 4 h. RhEPO and low nanomolar concentrations of STS-E412 and STS-E424 also increase FXN in normal and FA patient-derived PBMC by 20%-40% within 24 h, an effect that was comparable to that by HDAC inhibitor 4b. In vivo, STS-E412 increased Fxn mRNA and protein in wild-type C57BL6/j mice. RhEPO, STS-E412, and STS-E424 increase FXN expression in the heart of FXN-deficient KIKO mice. In contrast, FXN expression in the brains of KIKO mice increased following treatment with STS-E412 and STS-E424, but not following treatment with rhEPO. Unexpectedly, rhEPO-treated KIKO mice developed severe splenomegaly, while no splenomegaly was observed in STS-E412- or STS-E424-treated mice. RhEPO, STS-E412 and STS-E424 upregulate FXN expression in vitro at equal efficacy, however, the effects of the small molecules on FXN expression in the CNS are superior to rhEPO in vivo.
Collapse
Affiliation(s)
- James L Miller
- STATegics, Inc., 428 Oakmead Pkwy, Sunnyvale, CA 94085, USA.
| | - Myriam Rai
- Université Libre de Bruxelles, Campus Erasme, CP601, Route de Lennik 808, 1070 Bruxelles, Belgium
| | | | - Massimo Pandolfo
- Université Libre de Bruxelles, Campus Erasme, CP601, Route de Lennik 808, 1070 Bruxelles, Belgium
| | - Juha Punnonen
- STATegics, Inc., 428 Oakmead Pkwy, Sunnyvale, CA 94085, USA
| | | |
Collapse
|
25
|
Saccà F, Costabile T, Abate F, Liguori A, Paciello F, Pane C, De Rosa A, Manganelli F, De Michele G, Filla A. Normalization of timed neuropsychological tests with the PATA rate and nine-hole pegboard tests. J Neuropsychol 2017; 12:471-483. [PMID: 28477351 DOI: 10.1111/jnp.12125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 03/19/2017] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Despite neurological patients show frequent physical impairment, timed neuropsychological tests do not take this into account during scoring procedures. OBJECTIVE We propose a normalization method based on the PATA Rate Task (PRT) and on the nine-hole pegboard test (9HPT) as a measure of dysarthria and upper limb dysfunction. METHODS We tested 65 healthy controls on timed neuropsychological tests (Attentional Matrices [AM], Trail Making Test, Symbol Digit Modalities Test, Verbal Fluencies) to determine the time spent on phonation or on hand movement during test execution. We developed correction formulas to normalize test times considering the patient's PRT/9HPT, their normality limits, and the test timing. We tested the method on 24 patients with Friedreich Ataxia (FRDA), as a model of motor and speech impairment. RESULTS In healthy controls, phonation or hand movement is 13.5-61.7% of total test time. In FRDA patients, the effect of normalization improved all test results (range: 0.51-48.4%; p < .001). FRDA patients had worst scores in all tests when compared to controls, and the difference remained significant after correction except for the AM. At the individual level, the normalization method improved equivalent scores with fever patients showing impaired scores after correction. CONCLUSIONS We propose an innovative normalization method to reduce the impact of neurological disability on timed neuropsychological tests. This could be easily integrated in a clinical setting, as it requires a simple preliminary test with the PRT and 9HPT.
Collapse
Affiliation(s)
- Francesco Saccà
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Teresa Costabile
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Filomena Abate
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Agnese Liguori
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Francesca Paciello
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Anna De Rosa
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Fiore Manganelli
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Giuseppe De Michele
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Alessandro Filla
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| |
Collapse
|
26
|
Bürk K. Friedreich Ataxia: current status and future prospects. CEREBELLUM & ATAXIAS 2017; 4:4. [PMID: 28405347 PMCID: PMC5383992 DOI: 10.1186/s40673-017-0062-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/24/2017] [Indexed: 01/23/2023]
Abstract
Friedreich ataxia (FA) represents the most frequent type of inherited ataxia. Most patients carry homozygous GAA expansions in the first intron of the frataxin gene on chromosome 9. Due to epigenetic alterations, frataxin expression is significantly reduced. Frataxin is a mitochondrial protein. Its deficiency leads to mitochondrial iron overload, defective energy supply and generation of reactive oxygen species. This review gives an overview over clinical and genetic aspects of FA and discusses current concepts of frataxin biogenesis and function as well as new therapeutic strategies.
Collapse
Affiliation(s)
- Katrin Bürk
- University of Marburg, and Paracelsus-Elena Klinik, Klinikstr. 16, 34128 Kassel, Germany
| |
Collapse
|
27
|
Marsili A, Puorro G, Pane C, de Rosa A, Defazio G, Casali C, Cittadini A, de Michele G, Florio BE, Filla A, Saccà F. Stability of erythropoietin repackaging in polypropylene syringes for clinical use. Saudi Pharm J 2017; 25:290-293. [PMID: 28344481 PMCID: PMC5355549 DOI: 10.1016/j.jsps.2016.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/08/2016] [Indexed: 12/30/2022] Open
Abstract
Introduction: Epoetin alfa (Eprex®) is a subcutaneous, injectable formulation of short half-life recombinant human erythropoietin (rHuEPO). To current knowledge there are no published studies regarding the stability of rHuEPO once repackaging occurs (r-EPO) for clinical trial purposes. Materials and methods: We assessed EPO concentration in Eprex® and r-EPO syringes at 0, 60, 90, and 120 days after repackaging in polypropylene syringes. R-EPO was administered to 56 patients taking part in a clinical trial in Friedreich Ataxia. Serum EPO levels were measured at baseline and 48 h after r-EPO administration. Results: No differences were found between r-EPO and Eprex® syringes, but both globally decreased in total EPO content during storage at 4 °C. Patients receiving r-EPO had similar levels in EPO content as expected from previous trials in Friedreich Ataxia and from pharmacokinetics studies in healthy volunteers. Discussion: We demonstrate that repackaging of EPO does not alter its concentration if compared to the original product (Eprex®). This is true both for repackaging procedures and for the stability in polypropylene tubes. The expiration date of r-EPO can be extended from 1 to 4 months after repackaging, in accordance with pharmacopeia rules.
Collapse
Affiliation(s)
- Angela Marsili
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Giorgia Puorro
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Chiara Pane
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Anna de Rosa
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Giovanni Defazio
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, "Aldo Moro" University of Bari, Bari, Italy
| | - Carlo Casali
- Department of Medical-Surgical Sciences and Biotechnologies, Polo Pontino-Sapienza University of Rome, Latina, Italy
| | - Antonio Cittadini
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Giuseppe de Michele
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | | | - Alessandro Filla
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| | - Francesco Saccà
- Department of Neurosciences, Odontostomatological and Reproductive Sciences, University Federico II, Naples, Italy
| |
Collapse
|