1
|
Mahjoub Y, Szejko N, Gan LS, Adeoti JA, Nitsche MA, Vicario CM, Pringsheim TM, Martino D. Randomized Controlled Trial of Transcranial Direct Current Stimulation over the Supplementary Motor Area in Tourette Syndrome. Mov Disord Clin Pract 2025; 12:313-324. [PMID: 39614604 PMCID: PMC11952956 DOI: 10.1002/mdc3.14285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) over the supplementary motor area (SMA) has shown promise in Tourette syndrome (TS), but previous studies were limited in size and stimulation duration. OBJECTIVE The aim was to explore the efficacy and safety of multiple sessions of cathodal tDCS over the bilateral SMA on tic severity in TS. METHODS A double-blind, randomized, sham-controlled trial 1 mA cathodal tDCS over bilateral SMA was performed in participants with TS older than 16 years. The intervention involved two 20-min periods of stimulation with either sham or active tDCS per day, over 5 consecutive days, during which participants actively suppressed tics. Tic severity was measured using the Yale Global Tic Severity Scale Total Tic Severity (YGTSS-TTS, primary outcome) score at baseline, day 5 (visit 5), and 1 week later (visit 6). Questionnaires focusing on comorbidities were performed at baseline and visit 6. RESULTS Twenty-four participants were randomly assigned (12 active, 12 sham; 8 women; median age: 26). We observed a significant effect of visit on YGTSS-TSS, but no significant effect of treatment or treatment × visit interaction emerged. In contrast, a statistically significant effect of the treatment × visit interaction was observed for the motor tic subscore, with significantly larger improvement in the active arm. Furthermore, we detected a significantly larger decrease in premonitory urge intensity at visit 6 after active stimulation. No effect was detected on severity of comorbidities. CONCLUSIONS This preliminary study suggests that bilateral tDCS over the SMA provides small, but significant benefits in reducing motor tic severity in TS.
Collapse
Affiliation(s)
- Yasamin Mahjoub
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Natalia Szejko
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Department of BioethicsMedical University of WarsawWarsawPoland
| | - Liu Shi Gan
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
| | - Janet Adesewa Adeoti
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
| | - Michael A. Nitsche
- Department of Psychology and NeurosciencesLeibniz Research Centre for Working Environment and Human FactorsDortmundGermany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld UniversityBielefeldGermany
| | - Carmelo M. Vicario
- Department of Cognitive Sciences, Psychology, Education and Cultural StudiesUniversity of MessinaMessinaItaly
| | - Tamara M. Pringsheim
- Department of Clinical Neurosciences, Psychiatry, Pediatrics, and Community Health SciencesUniversity of CalgaryCalgaryCanada
| | - Davide Martino
- Department of Clinical Neurosciences, Cumming School of MedicineUniversity of CalgaryCalgaryCanada
- Hotchkiss Brain Institute, University of CalgaryCalgaryCanada
| |
Collapse
|
2
|
Kurvits L, Stenner MP, Guo S, Neumann WJ, Haggard P, Ganos C. Rapid Compensation for Noisy Voluntary Movements in Adults with Primary Tic Disorders. Mov Disord 2024; 39:955-964. [PMID: 38661451 DOI: 10.1002/mds.29775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND It has been proposed that tics and premonitory urges in primary tic disorders (PTD), like Tourette syndrome, are a manifestation of sensorimotor noise. However, patients with tics show no obvious movement imprecision in everyday life. One reason could be that patients have strategies to compensate for noise that disrupts performance (ie, noise that is task-relevant). OBJECTIVES Our goal was to unmask effects of elevated sensorimotor noise on the variability of voluntary movements in patients with PTD. METHODS We tested 30 adult patients with PTD (23 male) and 30 matched controls in a reaching task designed to unmask latent noise. Subjects reached to targets whose shape allowed for variability either in movement direction or extent. This enabled us to decompose variability into task-relevant versus less task-relevant components, where the latter should be less affected by compensatory strategies than the former. In alternating blocks, the task-relevant target dimension switched, allowing us to explore the temporal dynamics with which participants adjusted movement variability to changes in task demands. RESULTS Both groups accurately reached to targets, and adjusted movement precision based on target shape. However, when task-relevant dimensions of the target changed, patients initially produced movements that were more variable than controls, before regaining precision after several reaches. This effect persisted across repeated changes in the task-relevant dimension across the experiment, and therefore did not reflect an effect of novelty, or differences in learning. CONCLUSIONS Our results suggest that patients with PTD generate noisier voluntary movements compared with controls, but rapidly compensate according to current task demands. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lille Kurvits
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Department of Neurology, Charité University Hospital, Berlin, Germany
| | - Max-Philipp Stenner
- Department of Neurology, University Hospital Magdeburg, Magdeburg, Germany
- Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, Jena-Magdeburg-Halle, Germany
| | - Siqi Guo
- Department of Neurology, Charité University Hospital, Berlin, Germany
| | | | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Christos Ganos
- Department of Neurology, Charité University Hospital, Berlin, Germany
- Movement Disorder Clinic, Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, University of Toronto, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Quoilin C, Chaise F, Duque J, de Timary P. Relationship between transcranial magnetic stimulation markers of motor control and clinical recovery in obsessive compulsive disorder/Gilles de la Tourette syndrome: a proof of concept case study. Front Psychiatry 2024; 15:1307344. [PMID: 38304284 PMCID: PMC10832049 DOI: 10.3389/fpsyt.2024.1307344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Background Obsessive compulsive disorder (OCD) and Gilles de la Tourette syndrome (GTS) are neurodevelopmental disorders characterized by difficulties in controlling intrusive thoughts (obsessions) and undesired actions (tics), respectively. Both conditions have been associated with abnormal inhibition but a tangible deficit of inhibitory control abilities is controversial in GTS. Methods Here, we examined a 25 years-old male patient with severe OCD symptoms and a mild form of GTS, where impairments in motor control were central. Transcranial magnetic stimulation (TMS) was applied over the primary motor cortex (M1) to elicit motor-evoked potentials (MEPs) during four experimental sessions, allowing us to assess the excitability of motor intracortical circuitry at rest as well as the degree of MEP suppression during action preparation, a phenomenon thought to regulate movement initiation. Results When tested for the first time, the patient presented a decent level of MEP suppression during action preparation, but he exhibited a lack of intracortical inhibition at rest, as evidenced by reduced short-interval intracortical inhibition (SICI) and long-interval intracortical inhibition (LICI). Interestingly, the patient's symptomatology drastically improved over the course of the sessions (reduced obsessions and tics), coinciding with feedback given on his good motor control abilities. These changes were reflected in the TMS measurements, with a significant strengthening of intracortical inhibition (SICI and LICI more pronounced than previously) and a more selective tuning of MEPs during action preparation; MEPs became even more suppressed, or selectively facilitated depending on the behavioral condition in which they we probed. Conclusion This study highlights the importance of better understanding motor inhibitory mechanisms in neurodevelopmental disorders and suggests a biofeedback approach as a potential novel treatment.
Collapse
Affiliation(s)
- Caroline Quoilin
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Fostine Chaise
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Julie Duque
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Philippe de Timary
- CoActions Lab, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
- Department of Adult Psychiatry, Cliniques universitaires Saint-Luc, Brussels, Belgium
| |
Collapse
|
4
|
Rae CL, Raykov P, Ambridge EM, Colling LJ, Gould van Praag CD, Bouyagoub S, Polanski L, Larsson DEO, Critchley HD. Elevated representational similarity of voluntary action and inhibition in Tourette syndrome. Brain Commun 2023; 5:fcad224. [PMID: 37705680 PMCID: PMC10497185 DOI: 10.1093/braincomms/fcad224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 09/15/2023] Open
Abstract
Many people with Tourette syndrome are able to volitionally suppress tics, under certain circumstances. To understand better the neural mechanisms that underlie this ability, we used functional magnetic resonance neuroimaging to track regional brain activity during performance of an intentional inhibition task. On some trials, Tourette syndrome and comparison participants internally chose to make or withhold a motor action (a button press), while on other trials, they followed 'Go' and 'NoGo' instructions to make or withhold the same action. Using representational similarity analysis, a functional magnetic resonance neuroimaging multivariate pattern analysis technique, we assessed how Tourette syndrome and comparison participants differed in neural activity when choosing to make or to withhold an action, relative to externally cued responses on Go and NoGo trials. Analyses were pre-registered, and the data and code are publicly available. We considered similarity of action representations within regions implicated as critical to motor action release or inhibition and to symptom expression in Tourette syndrome, namely the pre-supplementary motor area, inferior frontal gyrus, insula, caudate nucleus and primary motor cortex. Strikingly, in the Tourette syndrome compared to the comparison group, neural activity within the pre-supplementary motor area displayed greater representational similarity across all action types. Within the pre-supplementary motor area, there was lower response-specific differentiation of activity relating to action and inhibition plans and to internally chosen and externally cued actions, implicating the region as a functional nexus in the symptomatology of Tourette syndrome. Correspondingly, patients with Tourette syndrome may experience volitional tic suppression as an effortful and tiring process because, at the top of the putative motor decision hierarchy, activity within the population of neurons facilitating action is overly similar to activity within the population of neurons promoting inhibition. However, not all pre-supplementary motor area group differences survived correction for multiple comparisons. Group differences in representational similarity were also present in the primary motor cortex. Here, representations of internally chosen and externally cued inhibition were more differentiated in the Tourette syndrome group than in the comparison group, potentially a consequence of a weaker voluntary capacity earlier in the motor hierarchy to suppress actions proactively. Tic severity and premonitory sensations correlated with primary motor cortex and caudate nucleus representational similarity, but these effects did not survive correction for multiple comparisons. In summary, more rigid pre-supplementary motor area neural coding across action categories may constitute a central feature of Tourette syndrome, which can account for patients' experience of 'unvoluntary' tics and effortful tic suppression.
Collapse
Affiliation(s)
- Charlotte L Rae
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | - Petar Raykov
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
| | | | | | | | - Samira Bouyagoub
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
| | - Liliana Polanski
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin 14195, Germany
| | - Dennis E O Larsson
- School of Psychology, University of Sussex, Brighton BN1 9QH, UK
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
| | - Hugo D Critchley
- Department of Neuroscience, Brighton & Sussex Medical School, Brighton BN1 9RY, UK
- Sussex Partnership NHS Foundation Trust, Worthing BN3 7HZ, UK
| |
Collapse
|
5
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
6
|
van der Veen S, Caviness JN, Dreissen YE, Ganos C, Ibrahim A, Koelman JH, Stefani A, Tijssen MA. Myoclonus and other jerky movement disorders. Clin Neurophysiol Pract 2022; 7:285-316. [PMID: 36324989 PMCID: PMC9619152 DOI: 10.1016/j.cnp.2022.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/27/2022] Open
Abstract
Myoclonus and other jerky movements form a large heterogeneous group of disorders. Clinical neurophysiology studies can have an important contribution to support diagnosis but also to gain insight in the pathophysiology of different kind of jerks. This review focuses on myoclonus, tics, startle disorders, restless legs syndrome, and periodic leg movements during sleep. Myoclonus is defined as brief, shock-like movements, and subtypes can be classified based the anatomical origin. Both the clinical phenotype and the neurophysiological tests support this classification: cortical, cortical-subcortical, subcortical/non-segmental, segmental, peripheral, and functional jerks. The most important techniques used are polymyography and the combination of electromyography-electroencephalography focused on jerk-locked back-averaging, cortico-muscular coherence, and the Bereitschaftspotential. Clinically, the differential diagnosis of myoclonus includes tics, and this diagnosis is mainly based on the history with premonitory urges and the ability to suppress the tic. Electrophysiological tests are mainly applied in a research setting and include the Bereitschaftspotential, local field potentials, transcranial magnetic stimulation, and pre-pulse inhibition. Jerks due to a startling stimulus form the group of startle syndromes. This group includes disorders with an exaggerated startle reflex, such as hyperekplexia and stiff person syndrome, but also neuropsychiatric and stimulus-induced disorders. For these disorders polymyography combined with a startling stimulus can be useful to determine the pattern of muscle activation and thus the diagnosis. Assessment of symptoms in restless legs syndrome and periodic leg movements during sleep can be performed with different validated scoring criteria with the help of electromyography.
Collapse
Affiliation(s)
- Sterre van der Veen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
| | - John N. Caviness
- Department of Neurology, Mayo Clinic Arizona, Movement Neurophysiology Laboratory, Scottsdale, AZ, USA
| | - Yasmine E.M. Dreissen
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Christos Ganos
- Movement Disorders and Neuromodulation Unit, Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes H.T.M. Koelman
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marina A.J. Tijssen
- Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Expertise Centre Movement Disorders Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands,Corresponding author at: Department of Neurology, University of Groningen, University Medical Centre Groningen (UMCG), PO Box 30.001, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
7
|
Jannati A, Ryan MA, Kaye HL, Tsuboyama M, Rotenberg A. Biomarkers Obtained by Transcranial Magnetic Stimulation in Neurodevelopmental Disorders. J Clin Neurophysiol 2022; 39:135-148. [PMID: 34366399 PMCID: PMC8810902 DOI: 10.1097/wnp.0000000000000784] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
SUMMARY Transcranial magnetic stimulation (TMS) is a method for focal brain stimulation that is based on the principle of electromagnetic induction where small intracranial electric currents are generated by a powerful fluctuating magnetic field. Over the past three decades, TMS has shown promise in the diagnosis, monitoring, and treatment of neurological and psychiatric disorders in adults. However, the use of TMS in children has been more limited. We provide a brief introduction to the TMS technique; common TMS protocols including single-pulse TMS, paired-pulse TMS, paired associative stimulation, and repetitive TMS; and relevant TMS-derived neurophysiological measurements including resting and active motor threshold, cortical silent period, paired-pulse TMS measures of intracortical inhibition and facilitation, and plasticity metrics after repetitive TMS. We then discuss the biomarker applications of TMS in a few representative neurodevelopmental disorders including autism spectrum disorder, fragile X syndrome, attention-deficit hyperactivity disorder, Tourette syndrome, and developmental stuttering.
Collapse
Affiliation(s)
- Ali Jannati
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Mary A. Ryan
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Harper Lee Kaye
- Behavioral Neuroscience Program, Division of Medical Sciences, Boston University School of Medicine, Boston, USA
| | - Melissa Tsuboyama
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Dyke K, Jackson G, Jackson S. Non-invasive brain stimulation as therapy: systematic review and recommendations with a focus on the treatment of Tourette syndrome. Exp Brain Res 2021; 240:341-363. [PMID: 34643763 PMCID: PMC8858270 DOI: 10.1007/s00221-021-06229-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/18/2021] [Indexed: 01/06/2023]
Abstract
Tourette syndrome (TS) is a neurodevelopmental condition characterised by tics, which are stereotyped movements and/or vocalisations. Tics often cause difficulties in daily life and many with TS express a desire to reduce and/or gain control over them. No singular effective treatment exists for TS, and while pharmacological and behavioural interventions can be effective, the results are variable, and issues relating to access, availability and side effects can be barriers to treatment. Consequently, over the past decade, there has been increasing interest into the potential benefits of non-invasive brain stimulation (NIBS) approaches. This systematic review highlights work exploring NIBS as a potential treatment for TS. On balance, the results tentatively suggest that multiple sessions of stimulation applied over the supplementary motor area (SMA) may help to reduce tics. However, a number of methodological and theoretical issues limit the strength of this conclusion, with the most problematic being the lack of large-scale sham-controlled studies. In this review, methodological and theoretical issues are discussed, unanswered questions highlighted and suggestions for future work put forward.
Collapse
Affiliation(s)
- Katherine Dyke
- School of Psychology, University of Nottingham, Nottingham, UK.
| | - Georgina Jackson
- Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK.,School of Medicine, The University of Nottingham, Nottingham, UK
| | - Stephen Jackson
- School of Psychology, University of Nottingham, Nottingham, UK.,Institute of Mental Health, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
9
|
Hannah R, Aron AR. Towards real-world generalizability of a circuit for action-stopping. Nat Rev Neurosci 2021; 22:538-552. [PMID: 34326532 PMCID: PMC8972073 DOI: 10.1038/s41583-021-00485-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2021] [Indexed: 02/07/2023]
Abstract
Two decades of cross-species neuroscience research on rapid action-stopping in the laboratory has provided motivation for an underlying prefrontal-basal ganglia circuit. Here we provide an update of key studies from the past few years. We conclude that this basic neural circuit is on increasingly firm ground, and we move on to consider whether the action-stopping function implemented by this circuit applies beyond the simple laboratory stop signal task. We advance through a series of studies of increasing 'real-worldness', starting with laboratory tests of stopping of speech, gait and bodily functions, and then going beyond the laboratory to consider neural recordings and stimulation during moments of control presumably required in everyday activities such as walking and driving. We end by asking whether stopping research has clinical relevance, focusing on movement disorders such as stuttering, tics and freezing of gait. Overall, we conclude there are hints that the prefrontal-basal ganglia action-stopping circuit that is engaged by the basic stop signal task is recruited in myriad scenarios; however, truly proving this for real-world scenarios requires a new generation of studies that will need to overcome substantial technical and inferential challenges.
Collapse
Affiliation(s)
- Ricci Hannah
- Department of Psychology, University of California San Diego, San Diego, CA, USA.
| | - Adam R Aron
- Department of Psychology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
10
|
Augustine F, Nebel MB, Mostofsky SH, Mahone EM, Singer HS. Aberrant prefrontal cortical-striatal functional connectivity in children with primary complex motor stereotypies. Cortex 2021; 142:272-282. [PMID: 34303880 DOI: 10.1016/j.cortex.2021.05.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/24/2020] [Accepted: 05/21/2021] [Indexed: 11/28/2022]
Abstract
Motor stereotypies are rhythmic, repetitive, prolonged, predictable, and purposeless movements that stop with distraction. Although once believed to occur only in children with neurodevelopmental disorders such as autism, the presence and persistence of complex motor stereotypies (CMS) in otherwise typically developing children (primary CMS) has been well-established. Little, however, is known about the underlying pathophysiology of these unwanted actions. The aim of the present study was to use resting-state functional magnetic resonance imaging to evaluate functional connectivity within frontal-striatal circuits that are essential for goal-directed and habitual activity in children with primary complex motor stereotypies. Functional connectivity between prefrontal cortical and striatal regions, considered essential for developing goal-directed behaviors, was reduced in children with primary CMS compared to their typically developing peers. In contrast, functional connectivity between motor/premotor and striatal regions, critical for developing and regulating habitual behaviors, did not differ between groups. This documented alteration of prefrontal to striatal connectivity could provide the underlying mechanism for the presence and persistence of complex motor stereotypies in otherwise developmentally normal children.
Collapse
Affiliation(s)
- Farhan Augustine
- Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Biological Sciences, University of Maryland Baltimore County, USA.
| | - Mary B Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Neurology, Johns Hopkins University School of Medicine, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, USA; Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, USA
| | | | - Harvey S Singer
- Department of Neurology, Johns Hopkins University School of Medicine, USA; Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
11
|
Guerra A, Rocchi L, Grego A, Berardi F, Luisi C, Ferreri F. Contribution of TMS and TMS-EEG to the Understanding of Mechanisms Underlying Physiological Brain Aging. Brain Sci 2021; 11:405. [PMID: 33810206 PMCID: PMC8004753 DOI: 10.3390/brainsci11030405] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the human brain, aging is characterized by progressive neuronal loss, leading to disruption of synapses and to a degree of failure in neurotransmission. However, there is increasing evidence to support the notion that the aged brain has a remarkable ability to reorganize itself, with the aim of preserving its physiological activity. It is important to develop objective markers able to characterize the biological processes underlying brain aging in the intact human, and to distinguish them from brain degeneration associated with many neurological diseases. Transcranial magnetic stimulation (TMS), coupled with electromyography or electroencephalography (EEG), is particularly suited to this aim, due to the functional nature of the information provided, and thanks to the ease with which it can be integrated with behavioral manipulation. In this review, we aimed to provide up to date information about the role of TMS and TMS-EEG in the investigation of brain aging. In particular, we focused on data about cortical excitability, connectivity and plasticity, obtained by using readouts such as motor evoked potentials and transcranial evoked potentials. Overall, findings in the literature support an important potential contribution of TMS to the understanding of the mechanisms underlying normal brain aging. Further studies are needed to expand the current body of information and to assess the applicability of TMS findings in the clinical setting.
Collapse
Affiliation(s)
| | - Lorenzo Rocchi
- Department of Clinical and Movements Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| | - Alberto Grego
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Francesca Berardi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Concetta Luisi
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
| | - Florinda Ferreri
- Department of Neuroscience, University of Padua, 35122 Padua, Italy; (A.G.); (F.B.); (C.L.)
- Department of Clinical Neurophysiology, Kuopio University Hospital, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
12
|
Ganos C, Neumann WJ, Müller-Vahl KR, Bhatia KP, Hallett M, Haggard P, Rothwell J. The Phenomenon of Exquisite Motor Control in Tic Disorders and its Pathophysiological Implications. Mov Disord 2021; 36:1308-1315. [PMID: 33739492 DOI: 10.1002/mds.28557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022] Open
Abstract
The unifying characteristic of movement disorders is the phenotypic presentation of abnormal motor outputs, either as isolated phenomena or in association with further clinical, often neuropsychiatric, features. However, the possibility of a movement disorder also characterized by supranormal or enhanced volitional motor control has not received attention. Based on clinical observations and cases collected over a number of years, we here describe the intriguing clinical phenomenon that people with tic disorders are often able to control specific muscle contractions as part of their tic behaviors to a degree that most humans typically cannot. Examples are given in accompanying video documentation. We explore medical literature on this topic and draw analogies with early research of fine motor control physiology in healthy humans. By systematically analyzing the probable sources of this unusual capacity, and focusing on neuroscientific accounts of voluntary motor control, sensory feedback, and the role of motor learning in tic disorders, we provide a novel pathophysiological account explaining both the presence of exquisite control over motor output and that of overall tic behaviors. We finally comment on key questions for future research on the topic and provide concluding remarks on the complex movement disorder of tic behaviors. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Christos Ganos
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolf-Julian Neumann
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kirsten R Müller-Vahl
- Clinic of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Mark Hallett
- Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - John Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
13
|
Rae CL, Parkinson J, Betka S, Gouldvan Praag CD, Bouyagoub S, Polyanska L, Larsson DEO, Harrison NA, Garfinkel SN, Critchley HD. Amplified engagement of prefrontal cortex during control of voluntary action in Tourette syndrome. Brain Commun 2021; 2:fcaa199. [PMID: 33409490 PMCID: PMC7772099 DOI: 10.1093/braincomms/fcaa199] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 12/17/2022] Open
Abstract
Tourette syndrome is characterized by ‘unvoluntary’ tics, which are compulsive, yet often temporarily suppressible. The inferior frontal gyrus is implicated in motor control, including inhibition of pre-potent actions through influences on downstream subcortical and motor regions. Although tic suppression in Tourette syndrome also engages the inferior frontal gyrus, it is unclear whether such prefrontal control of action is also dysfunctional: Tic suppression studies do not permit comparison with control groups, and neuroimaging studies of motor inhibition can be confounded by the concurrent expression or suppression of tics. Here, patients with Tourette syndrome were directly compared to control participants when performing an intentional inhibition task during functional MRI. Tic expression was recorded throughout for removal from statistical models. Participants were instructed to make a button press in response to Go cues, withhold responses to NoGo cues, and decide whether to press or withhold to ‘Choose’ cues. Overall performance was similar between groups, for both intentional inhibition rates (% Choose-Go) and reactive NoGo inhibition commission errors. A subliminal face prime elicited no additional effects on intentional or reactive inhibition. Across participants, the task activated prefrontal and motor cortices and subcortical nuclei, including pre-supplementary motor area, inferior frontal gyrus, insula, caudate nucleus, thalamus and primary motor cortex. In Tourette syndrome, activity was elevated in the inferior frontal gyrus, insula and basal ganglia, most notably within the right inferior frontal gyrus during voluntary action and inhibition (Choose-Go and Choose-NoGo), and reactive inhibition (NoGo-correct). Anatomically, the locus of this inferior frontal gyrus hyperactivation during control of voluntary action matched that previously reported for tic suppression. In Tourette syndrome, activity within the caudate nucleus was also enhanced during both intentional (Choose-NoGo) and reactive (NoGo-correct) inhibition. Strikingly, despite the absence of overt motor behaviour, primary motor cortex activity increased in patients with Tourette syndrome but decreased in controls during both reactive and intentional inhibition. Additionally, severity of premonitory sensations scaled with functional connectivity of the pre-supplementary motor area to the caudate nucleus, globus pallidus and thalamus when choosing to respond (Choose-Go). Together, these results suggest that patients with Tourette syndrome use equivalent prefrontal mechanisms to suppress tics and withhold non-tic actions, but require greater inferior frontal gyrus engagement than controls to overcome motor drive from hyperactive downstream regions, notably primary motor cortex. Moreover, premonitory sensations may cue midline motor regions to generate tics through interactions with the basal ganglia.
Collapse
Affiliation(s)
- Charlotte L Rae
- School of Psychology, University of Sussex, Sussex BN1 9QH, UK
| | - Jim Parkinson
- School of Psychology, University of Sussex, Sussex BN1 9QH, UK
| | - Sophie Betka
- Department of Neuroscience, Brighton & Sussex Medical School, Sussex BN1 9RY, UK
| | | | - Samira Bouyagoub
- Department of Neuroscience, Brighton & Sussex Medical School, Sussex BN1 9RY, UK
| | - Liliana Polyanska
- Department of Neuroscience, Brighton & Sussex Medical School, Sussex BN1 9RY, UK
| | | | - Neil A Harrison
- Department of Neuroscience, Brighton & Sussex Medical School, Sussex BN1 9RY, UK
| | - Sarah N Garfinkel
- Sackler Centre for Consciousness Science, University of Sussex, Sussex, UK
| | - Hugo D Critchley
- Sackler Centre for Consciousness Science, University of Sussex, Sussex, UK
| |
Collapse
|
14
|
Kleimaker M, Kleimaker A, Weissbach A, Colzato LS, Beste C, Bäumer T, Münchau A. Non-invasive Brain Stimulation for the Treatment of Gilles de la Tourette Syndrome. Front Neurol 2020; 11:592258. [PMID: 33244309 PMCID: PMC7683779 DOI: 10.3389/fneur.2020.592258] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
Gilles de la Tourette Syndrome is a multifaceted neuropsychiatric disorder typically commencing in childhood and characterized by motor and phonic tics. Its pathophysiology is still incompletely understood. However, there is convincing evidence that structural and functional abnormalities in the basal ganglia, in cortico-striato-thalamo-cortical circuits, and some cortical areas including medial frontal regions and the prefrontal cortex as well as hyperactivity of the dopaminergic system are key findings. Conventional therapeutic approaches in addition to counseling comprise behavioral treatment, particularly habit reversal therapy, oral pharmacotherapy (antipsychotic medication, alpha-2-agonists) and botulinum toxin injections. In treatment-refractory Tourette syndrome, deep brain stimulation, particularly of the internal segment of the globus pallidus, is an option for a small minority of patients. Based on pathophysiological considerations, non-invasive brain stimulation might be a suitable alternative. Repetitive transcranial magnetic stimulation appears particularly attractive. It can lead to longer-lasting alterations of excitability and connectivity in cortical networks and inter-connected regions including the basal ganglia through the induction of neural plasticity. Stimulation of the primary motor and premotor cortex has so far not been shown to be clinically effective. Some studies, though, suggest that the supplementary motor area or the temporo-parietal junction might be more appropriate targets. In this manuscript, we will review the evidence for the usefulness of repetitive transcranial magnetic stimulation and transcranial electric stimulation as treatment options in Tourette syndrome. Based on pathophysiological considerations we will discuss the rational for other approaches of non-invasive brain stimulation including state informed repetitive transcranial magnetic stimulation.
Collapse
Affiliation(s)
- Maximilian Kleimaker
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Alexander Kleimaker
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| |
Collapse
|
15
|
Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L. On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases. Front Neurol 2020; 11:584664. [PMID: 33224098 PMCID: PMC7669623 DOI: 10.3389/fneur.2020.584664] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases are a collection of disorders that result in the progressive degeneration and death of neurons. They are clinically heterogenous and can present as deficits in movement, cognition, executive function, memory, visuospatial awareness and language. Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation tool that allows for the assessment of cortical function in vivo. We review how TMS has been used for the investigation of three neurodegenerative diseases that differ in their neuroanatomical axes: (1) Motor cortex-corticospinal tract (motor neuron diseases), (2) Non-motor cortical areas (dementias), and (3) Subcortical structures (parkinsonisms). We also make four recommendations that we hope will benefit the use of TMS in neurodegenerative diseases. Firstly, TMS has traditionally been limited by the lack of an objective output and so has been confined to stimulation of the motor cortex; this limitation can be overcome by the use of concurrent neuroimaging methods such as EEG. Given that neurodegenerative diseases progress over time, TMS measures should aim to track longitudinal changes, especially when the aim of the study is to look at disease progression and symptomatology. The lack of gold-standard diagnostic confirmation undermines the validity of findings in clinical populations. Consequently, diagnostic certainty should be maximized through a variety of methods including multiple, independent clinical assessments, imaging and fluids biomarkers, and post-mortem pathological confirmation where possible. There is great interest in understanding the mechanisms by which symptoms arise in neurodegenerative disorders. However, TMS assessments in patients are usually carried out during resting conditions, when the brain network engaged during these symptoms is not expressed. Rather, a context-appropriate form of TMS would be more suitable in probing the physiology driving clinical symptoms. In all, we hope that the recommendations made here will help to further understand the pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
16
|
Rawji V, Modi S, Latorre A, Rocchi L, Hockey L, Bhatia K, Joyce E, Rothwell JC, Jahanshahi M. Impaired automatic but intact volitional inhibition in primary tic disorders. Brain 2020; 143:906-919. [PMID: 32125364 PMCID: PMC7089661 DOI: 10.1093/brain/awaa024] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/02/2019] [Accepted: 12/11/2019] [Indexed: 01/10/2023] Open
Abstract
The defining character of tics is that they can be transiently suppressed by volitional effort of will, and at a behavioural level this has led to the concept that tics result from a failure of inhibition. However, this logic conflates the mechanism responsible for the production of tics with that used in suppressing them. Volitional inhibition of motor output could be increased to prevent the tic from reaching the threshold for expression, although this has been extensively investigated with conflicting results. Alternatively, automatic inhibition could prevent the initial excitation of the striatal tic focus-a hypothesis we have previously introduced. To reconcile these competing hypotheses, we examined different types of motor inhibition in a group of 19 patients with primary tic disorders and 15 healthy volunteers. We probed proactive and reactive inhibition using the conditional stop-signal task, and applied transcranial magnetic stimulation to the motor cortex, to assess movement preparation and execution. We assessed automatic motor inhibition with the masked priming task. We found that volitional movement preparation, execution and inhibition (proactive and reactive) were not impaired in tic disorders. We speculate that these mechanisms are recruited during volitional tic suppression, and that they prevent expression of the tic by inhibiting the nascent excitation released by the tic generator. In contrast, automatic inhibition was abnormal/impaired in patients with tic disorders. In the masked priming task, positive and negative compatibility effects were found for healthy controls, whereas patients with tics exhibited strong positive compatibility effects, but no negative compatibility effect indicative of impaired automatic inhibition. Patients also made more errors on the masked priming task than healthy control subjects and the types of errors were consistent with impaired automatic inhibition. Errors associated with impaired automatic inhibition were positively correlated with tic severity. We conclude that voluntary movement preparation/generation and volitional inhibition are normal in tic disorders, whereas automatic inhibition is impaired-a deficit that correlated with tic severity and thus may constitute a potential mechanism by which tics are generated.
Collapse
Affiliation(s)
- Vishal Rawji
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Sachin Modi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Leanne Hockey
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Eileen Joyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Marjan Jahanshahi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
17
|
Children with primary complex motor stereotypies show impaired reactive but not proactive inhibition. Cortex 2020; 124:250-259. [DOI: 10.1016/j.cortex.2019.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/26/2019] [Accepted: 12/02/2019] [Indexed: 12/22/2022]
|
18
|
Kurvits L, Martino D, Ganos C. Clinical Features That Evoke the Concept of Disinhibition in Tourette Syndrome. Front Psychiatry 2020; 11:21. [PMID: 32161555 PMCID: PMC7053490 DOI: 10.3389/fpsyt.2020.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/09/2020] [Indexed: 01/14/2023] Open
Abstract
The capacity to efficiently control motor output, by either refraining from prepotent actions or disengaging from ongoing motor behaviors, is necessary for our ability to thrive in a stimulus-rich and socially complex environment. Failure to engage in successful inhibitory motor control could lead to aberrant behaviors typified by an excess of motor performance. In tic disorders and Tourette syndrome (TS) - the most common tic disorder encountered in clinics - surplus motor output is rarely the only relevant clinical sign. A range of abnormal behaviors is often encountered which are historically viewed as "disinhibition phenomena". Here, we present the different clinical features of TS from distinct categorical domains (motor, sensory, complex behavioral) that evoke the concept of disinhibition and discuss their associations. We also present evidence for their consideration as phenomena of inhibitory dysfunction and provide an overview of studies on TS pathophysiology which support this view. We then critically dissect the concept of disinhibition in TS and illuminate other salient aspects, which should be considered in a unitary pathophysiological approach. We briefly touch upon the dangers of oversimplification and emphasize the necessity of conceptual diversity in the scientific exploration of TS, from disinhibition and beyond.
Collapse
Affiliation(s)
- Lille Kurvits
- Department of Neurology, Charité University Hospital, Berlin, Germany
| | - Davide Martino
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Christos Ganos
- Department of Neurology, Charité University Hospital, Berlin, Germany
| |
Collapse
|
19
|
Abstract
Tics are sudden, rapid, recurrent, nonrhythmic motor movements or vocalizations (phonic productions) that are commonly present in children and are required symptoms for the diagnosis of Tourette syndrome. Despite their frequency, the underlying pathophysiology of tics/Tourette syndrome remains unknown. In this review, we discuss a variety of controversies surrounding the pathophysiology of tics, including the following: Are tics voluntary or involuntary? What is the role of the premonitory urge? Are tics due to excess excitatory or deficient inhibition? Is it time to adopt the contemporary version of the cortico-basal ganglia-thalamocortical (CBGTC) circuit? and Do we know the primary abnormal neurotransmitter in Tourette syndrome? Data from convergent clinical and animal model studies support complex interactions among the various CBGTC sites and neurotransmitters. Advances are being made; however, numerous pathophysiologic questions persist.
Collapse
Affiliation(s)
- Harvey S Singer
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Farhan Augustine
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
20
|
Kyriazi M, Kalyva E, Vargiami E, Krikonis K, Zafeiriou D. Premonitory Urges and Their Link With Tic Severity in Children and Adolescents With Tic Disorders. Front Psychiatry 2019; 10:569. [PMID: 31474885 PMCID: PMC6702331 DOI: 10.3389/fpsyt.2019.00569] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/22/2019] [Indexed: 12/15/2022] Open
Abstract
Tics wax and wane regarding their severity, while their expression is affected by non-motor sensory or cognitive elements that are mostly known as "premonitory urges." Since premonitory urges are often used in non-pharmacological interventions to decrease tic severity, it is of interest in the present study to examine whether premonitory urges can actually predict tic severity. Fifty-two children and adolescents diagnosed with tics and Tourette syndrome (29 children with provisional tic disorder, 16 children with chronic motor tic disorder, and 7 children with Tourette syndrome) were included in the study. Their age ranged between 6 and 15.7 years (mean age 9 years and 2 months). All participants completed the YGTSS (Yale Global Tic Severity Scale) in order to assess tic severity and the Premonitory Urge for Tics Scale (PUTS) to measure premonitory urges (PU). Regression analysis revealed that PU were present at a higher rate in older subjects (>12 years of age) than in younger children and with a higher level of tic severity. Although the presence of PU was associated with tic severity across the entire age range, there was a stronger association between PU and tic severity in older children. A better insight into the pathophysiology of premonitory urges could possibly lead to the identification of new therapeutic modalities targeting the sensory initiators of tics in future research.
Collapse
Affiliation(s)
- Maria Kyriazi
- 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Efrosini Kalyva
- 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
- Centre of Child and Adolescent Research and Development, Thessaloniki, Greece
| | - Efthymia Vargiami
- 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| | - Konstantinos Krikonis
- DatAnalysis, Statistical Analysis and Design of Scientific Research, Ioannina, Greece
| | - Dimitrios Zafeiriou
- 1st Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
21
|
Latorre A, Rocchi L, Berardelli A, Bhatia KP, Rothwell JC. The interindividual variability of transcranial magnetic stimulation effects: Implications for diagnostic use in movement disorders. Mov Disord 2019; 34:936-949. [DOI: 10.1002/mds.27736] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 11/08/2022] Open
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
| | - Lorenzo Rocchi
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, SapienzaUniversity of Rome Rome Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Neuromed Pozzilli Isernia Italy
| | - Kailash P. Bhatia
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| | - John C. Rothwell
- Department of Clinical and Movement NeurosciencesQueen Square Institute of Neurology University College London London United Kingdom
| |
Collapse
|