1
|
Black J, Lebel RR, Garg R, de Koning M, Ruivenkamp C, Goel H, Smith SC. Proximal Deletions of 14q32.2 Result in Severe Neurodevelopmental Outcomes, Congenital Anomalies, and Dysmorphic Features. Am J Med Genet A 2025:e64042. [PMID: 40110997 DOI: 10.1002/ajmg.a.64042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/03/2025] [Accepted: 02/25/2025] [Indexed: 03/22/2025]
Abstract
Deletions of chromosome 14q32.2 often involve the imprinted region of chromosome 14, giving rise to paternal or maternal UPD(14)-like phenotypes. A few individuals with deletions that spare the imprinted region have been reported, with significant variability in deletion size and gene involvement. Four patients with proximal deletions of 14q32.2 were gathered from the primary authors' clinic or through the DECIPHER database. Informed consent for inclusion in this study was obtained from all participants. A retrospective chart review was performed, and medical history records were compiled and analyzed. We report four patients with similar deletions of 14q32.2, three of whom do not involve the imprinted region. These deletions overlapped for 13 different genes, three of which are associated with autosomal dominant conditions: BCL11B, CCNK, and YY1. All four patients presented with prenatal and/or postnatal growth restriction, feeding problems, congenital urogenital anomalies, hypotonia, severe intellectual and developmental disability, and similar dysmorphic features. We propose that deletions involving BCL11B, CCNK, and YY1 result in a discrete clinical entity entailing a severe neurodevelopmental phenotype, characteristic facial features, and congenital anomalies. We propose the nomenclature of proximal 14q32.2 deletion syndrome.
Collapse
Affiliation(s)
- Jennifer Black
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Robert Roger Lebel
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Ria Garg
- Center for Development, Behavior, and Genetics, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Maayke de Koning
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Himanshu Goel
- Hunter Genetics, Hunter New England Local Health District, Waratah, New South Wales, Australia
- University of Newcastle, Callaghan, New South Wales, Australia
| | - Scott C Smith
- Department of Pathology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
2
|
Pereira MF, Finazzi V, Rizzuti L, Aprile D, Aiello V, Mollica L, Riva M, Soriani C, Dossena F, Shyti R, Castaldi D, Tenderini E, Carminho-Rodrigues MT, Bally JF, de Vries BBA, Gabriele M, Vitriolo A, Testa G. YY1 mutations disrupt corticogenesis through a cell type specific rewiring of cell-autonomous and non-cell-autonomous transcriptional programs. Mol Psychiatry 2025:10.1038/s41380-025-02929-x. [PMID: 39987231 DOI: 10.1038/s41380-025-02929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Germline mutations of YY1 cause Gabriele-de Vries syndrome (GADEVS), a neurodevelopmental disorder featuring intellectual disability and a wide range of systemic manifestations. To dissect the cellular and molecular mechanisms underlying GADEVS, we combined large-scale imaging, single-cell multiomics and gene regulatory network reconstruction in 2D and 3D patient-derived physiopathologically relevant cell lineages. YY1 haploinsufficiency causes a pervasive alteration of cell type specific transcriptional networks, disrupting corticogenesis at the level of neural progenitors and terminally differentiated neurons, including cytoarchitectural defects reminiscent of GADEVS clinical features. Transcriptional alterations in neurons propagated to neighboring astrocytes through a major non-cell autonomous pro-inflammatory effect that grounds the rationale for modulatory interventions. Together, neurodevelopmental trajectories, synaptic formation and neuronal-astrocyte cross talk emerged as salient domains of YY1 dosage-dependent vulnerability. Mechanistically, cell type resolved reconstruction of gene regulatory networks uncovered the regulatory interplay between YY1, NEUROG2 and ETV5 and its aberrant rewiring in GADEVS. Our findings underscore the reach of advanced in vitro models in capturing developmental antecedents of clinical features and exposing their underlying mechanisms to guide the search for targeted interventions.
Collapse
Affiliation(s)
- Marlene F Pereira
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Veronica Finazzi
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Ludovico Rizzuti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Davide Aprile
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Vittorio Aiello
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Luca Mollica
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Matteo Riva
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Chiara Soriani
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | | | - Reinald Shyti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Davide Castaldi
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Erika Tenderini
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
| | | | - Julien F Bally
- Service of Neurology, Department of Clinical Neurosciences, Lausanne University Hospital & University of Lausanne, Lausanne, Switzerland
| | | | - Michele Gabriele
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
| | - Alessandro Vitriolo
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Giuseppe Testa
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milan, Italy.
- Department of Oncology and Hemato-Oncology, University of Milan, Via Santa Sofia 9, 20122, Milan, Italy.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
3
|
Shin IJ, Kim YS, Lee JY, Kim MS, Yoon JH, Park DG. Adult-onset YY1-associated combined dystonia syndrome with infantile nystagmus as a diagnostic clue. Parkinsonism Relat Disord 2024; 124:106995. [PMID: 38703422 DOI: 10.1016/j.parkreldis.2024.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/29/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Affiliation(s)
- In Ja Shin
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yoon Seob Kim
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Joo-Yeon Lee
- Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Min Seung Kim
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Jung Han Yoon
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Don Gueu Park
- Department of Neurology, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Tshilenge KT, Bons J, Aguirre CG, Geronimo-Olvera C, Shah S, Rose J, Gerencser AA, Mak SK, Ehrlich ME, Bragg DC, Schilling B, Ellerby LM. Proteomic analysis of X-linked dystonia parkinsonism disease striatal neurons reveals altered RNA metabolism and splicing. Neurobiol Dis 2024; 190:106367. [PMID: 38042508 PMCID: PMC11103251 DOI: 10.1016/j.nbd.2023.106367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
X-linked dystonia-parkinsonism (XDP) is a rare neurodegenerative disease endemic to the Philippines. The genetic cause for XDP is an insertion of a SINE-VNTR-Alu (SVA)-type retrotransposon within intron 32 of TATA-binding protein associated factor 1 (TAF1) that causes an alteration of TAF1 splicing, partial intron retention, and decreased transcription. Although TAF1 is expressed in all organs, medium spiny neurons (MSNs) within the striatum are one of the cell types most affected in XDP. To define how mutations in the TAF1 gene lead to MSN vulnerability, we carried out a proteomic analysis of human XDP patient-derived neural stem cells (NSCs) and MSNs derived from induced pluripotent stem cells. NSCs and MSNs were grown in parallel and subjected to quantitative proteomic analysis in data-independent acquisition mode on the Orbitrap Eclipse Tribrid mass spectrometer. Subsequent functional enrichment analysis demonstrated that neurodegenerative disease-related pathways, such as Huntington's disease, spinocerebellar ataxia, cellular senescence, mitochondrial function and RNA binding metabolism, were highly represented. We used weighted coexpression network analysis (WGCNA) of the NSC and MSN proteomic data set to uncover disease-driving network modules. Three of the modules significantly correlated with XDP genotype when compared to the non-affected control and were enriched for DNA helicase and nuclear chromatin assembly, mitochondrial disassembly, RNA location and mRNA processing. Consistent with aberrant mRNA processing, we found splicing and intron retention of TAF1 intron 32 in XDP MSN. We also identified TAF1 as one of the top enriched transcription factors, along with YY1, ATF2, USF1 and MYC. Notably, YY1 has been implicated in genetic forms of dystonia. Overall, our proteomic data set constitutes a valuable resource to understand mechanisms relevant to TAF1 dysregulation and to identify new therapeutic targets for XDP.
Collapse
Affiliation(s)
| | - Joanna Bons
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Carlos Galicia Aguirre
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA
| | | | - Samah Shah
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Jacob Rose
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Akos A Gerencser
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Sally K Mak
- The Buck Institute for Research on Aging, Novato, California 94945, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D Cristopher Bragg
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Department of Neurology, The Collaborative Center for X-linked Dystonia-Parkinsonism, Massachusetts General Hospital, Charlestown, MA, USA
| | - Birgit Schilling
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| | - Lisa M Ellerby
- The Buck Institute for Research on Aging, Novato, California 94945, USA; University of Southern California, Leonard Davis School of Gerontology, 3715 McClintock Ave, Los Angeles, CA 90893, USA.
| |
Collapse
|
5
|
Yang J, Yu C, Lyn N, Liu L, Li D, Shang Q. Clinical analysis of Gabriele-de Vries caused by YY1 mutations and literature review. Mol Genet Genomic Med 2024; 12:e2281. [PMID: 37658636 PMCID: PMC10767417 DOI: 10.1002/mgg3.2281] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/29/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Gabriele-de Vries syndrome is a rare autosomal dominant genetic disease characterized by global development delay/intellectual disability, delayed language development, feeding difficulties, and distinctive facial dysmorphism. It is caused by pathogenic variants in YY1. METHODS The current report describes a female patient with motor delay and a facial dysmorphism phenotype. We identified pathogenic mutations in the patient by whole-exome sequencing and confirmed them by Sanger sequencing. RESULTS A novel heterozygous frameshift mutation NM_003403.5:c.458_476del (p. V153fs*97) in the YY1 gene was detected in the proband. Finally, we provide a case-based review of the clinical features associated with Gabriele-de Vries syndrome. A total of 28 patients with genetic abnormalities and clinical phenotypes have been reported in the literature thus far. CONCLUSIONS The mutation site is reported for the first time, and its discovery would expand the mutation spectrum of the YY1 gene. The main clinical manifestations of Gabriele-de Vries syndrome are developmental delay/intellectual disability, craniofacial dysplasia, intrauterine growth delay, low birth weight, feeding difficulties, and rare congenital malformations. Genetic tests are crucial techniques for its diagnosis because of its nonspecific clinical manifestations.
Collapse
Affiliation(s)
- Jingjing Yang
- Department of Pediatric Rehabilitation MedicineChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Chaonan Yu
- Department of Pediatric Rehabilitation MedicineChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Nan Lyn
- Department of Pediatric Rehabilitation MedicineChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Lei Liu
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Dongxiao Li
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic DiseasesChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| | - Qing Shang
- Department of Pediatric Rehabilitation MedicineChildren's Hospital Affiliated to Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
6
|
Chawla T, Kumar NK, Goyal V. Heterozygous YY1 mutation - A mimicker of SGCE-myoclonus-dystonia. Parkinsonism Relat Disord 2023; 117:105846. [PMID: 37690905 DOI: 10.1016/j.parkreldis.2023.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/16/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Tanushree Chawla
- Department of Neurology, Institute of Neurosciences, Medanta, The Medicity, Gurugram, Haryana, India
| | - Natasha K Kumar
- Consultant Clinical Neuropsychologist, Institute of Neurosciences, Medanta, The Medicity, Gurugram, Haryana, India
| | - Vinay Goyal
- Department of Neurology, Institute of Neurosciences, Medanta, The Medicity, Gurugram, Haryana, India.
| |
Collapse
|
7
|
Yellajoshyula D. Transcriptional regulatory network for neuron-glia interactions and its implication for DYT6 dystonia. DYSTONIA (LAUSANNE, SWITZERLAND) 2023; 2:11796. [PMID: 38737544 PMCID: PMC11087070 DOI: 10.3389/dyst.2023.11796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Advances in sequencing technologies have identified novel genes associated with inherited forms of dystonia, providing valuable insights into its genetic basis and revealing diverse genetic pathways and mechanisms involved in its pathophysiology. Since identifying genetic variation in the transcription factor coding THAP1 gene linked to isolated dystonia, numerous investigations have employed transcriptomic studies in DYT-THAP1 models to uncover pathogenic molecular mechanisms underlying dystonia. This review examines key findings from transcriptomic studies conducted on in vivo and in vitro DYT-THAP1 models, which demonstrate that the THAP1-regulated transcriptome is diverse and cell-specific, yet it is bound and co-regulated by a common set of proteins. Prominent among its functions, THAP1 and its co-regulatory network target molecular pathways critical for generating myelinating oligodendrocytes that ensheath axons and generate white matter in the central nervous system. Several lines of investigation have demonstrated the importance of myelination and oligodendrogenesis in motor function during development and in adults, emphasizing the non-cell autonomous contributions of glial cells to neural circuits involved in motor function. Further research on the role of myelin abnormalities in motor deficits in DYT6 models will enhance our understanding of axon-glia interactions in dystonia pathophysiology and provide potential therapeutic interventions targeting these pathways.
Collapse
|
8
|
Di Fonzo A, Jinnah HA, Zech M. Dystonia genes and their biological pathways. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:61-103. [PMID: 37482402 DOI: 10.1016/bs.irn.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany.
| |
Collapse
|
9
|
Dos Santos SR, Piergiorge RM, Rocha J, Abdala BB, Gonçalves AP, Pimentel MMG, Santos-Rebouças CB. A de novo YY1 missense variant expanding the Gabriele-de Vries syndrome phenotype and affecting X-chromosome inactivation. Metab Brain Dis 2022; 37:2431-2440. [PMID: 35829845 DOI: 10.1007/s11011-022-01024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/04/2022] [Indexed: 11/30/2022]
Abstract
Yin and Yang 1 gene (YY1; MIM#600,013) is recognized as a dual transcriptional activating and repressing factor, RNA-binding protein, and 3D chromatin regulator, with multi roles in neurodevelopmental and maintenance pathways. YY1 haploinsufficiency caused either by heterozygous sequence variants or deletions involving the whole gene has been recently associated with Gabriele-de Vries syndrome (GADEVS), a rare congenital autosomal dominant condition, leading to intellectual disability (ID) and multiple physical/behavioural abnormalities. Herein, we describe clinical and molecular findings from a Brazilian female harbouring a de novo missense pathogenic variant in YY1 gene (NM_003403.5:c.1106A > G; p.Asn369Ser) found by whole exome sequencing with potential implications for protein structure and function. Undescribed or uncommon clinical features in this patient included non-febrile seizures, severe scoliosis, hearing impairment, and chorioretinitis. Further bioinformatics analyses using YY1-other protein interaction networks reinforced the involvement of YY1 interactors in such phenotypes, in exception of chorioretinitis. Moreover, X-chromosome inactivation (XCI) skewing was evidenced in the patient and attributed to the haploinsufficiency of YY1, which direct and indirectly interacts with numerous XCI key regulators. Besides expanding the mutational and phenotype spectrum of GADEVS, our results highlight the role of YY1 as an essential autosomal regulator of XCI epigenetic process.
Collapse
Affiliation(s)
- Suely Rodrigues Dos Santos
- Gaffrée and Guinle University Hospital, Federal University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jady Rocha
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Barbosa Abdala
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andressa Pereira Gonçalves
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
- Departamento de Genética, Instituto de Biologia Roberto Alcantara Gomes, Universidade Do Estado Do Rio de Janeiro, Rua São Francisco Xavier, 524, PHLC - sala 501F, Maracanã 20550-013, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Di Fonzo A, Albanese A, Jinnah HH. The apparent paradox of phenotypic diversity and shared mechanisms across dystonia syndromes. Curr Opin Neurol 2022; 35:502-509. [PMID: 35856917 PMCID: PMC9309988 DOI: 10.1097/wco.0000000000001076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We describe here how such mechanisms shared by different genetic forms can give rise to motor performance dysfunctions with a clinical aspect of dystonia. RECENT FINDINGS The continuing discoveries of genetic causes for dystonia syndromes are transforming our view of these disorders. They share unexpectedly common underlying mechanisms, including dysregulation in neurotransmitter signaling, gene transcription, and quality control machinery. The field has further expanded to include forms recently associated with endolysosomal dysfunction. SUMMARY The discovery of biological pathways shared between different monogenic dystonias is an important conceptual advance in the understanding of the underlying mechanisms, with a significant impact on the pathophysiological understanding of clinical phenomenology. The functional relationship between dystonia genes could revolutionize current dystonia classification systems, classifying patients with different monogenic forms based on common pathways. The most promising effect of these advances is on future mechanism-based therapeutic approaches.
Collapse
Affiliation(s)
- Alessio Di Fonzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neurology Unit, Milan, Italy
| | - Alberto Albanese
- Department of Neurology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Hyder H. Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Emory University School of Medicine, Atlanta GA, 30322, USA
| |
Collapse
|
11
|
Dzinovic I, Winkelmann J, Zech M. Genetic intersection between dystonia and neurodevelopmental disorders: Insights from genomic sequencing. Parkinsonism Relat Disord 2022; 102:131-140. [DOI: 10.1016/j.parkreldis.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 10/15/2022]
|
12
|
Diaw SH, Ott F, Münchau A, Lohmann K, Busch H. Emerging role of a systems biology approach to elucidate factors of reduced penetrance: transcriptional changes in THAP1-linked dystonia as an example. MED GENET-BERLIN 2022; 34:131-141. [PMID: 38835919 PMCID: PMC11006298 DOI: 10.1515/medgen-2022-2126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Pathogenic variants in THAP1 can cause dystonia with a penetrance of about 50 %. The underlying mechanisms are unknown and can be considered as means of endogenous disease protection. Since THAP1 encodes a transcription factor, drivers of this variability putatively act at the transcriptome level. Several transcriptome studies tried to elucidate THAP1 function in diverse cellular and mouse models, including mutation carrier-derived cells and iPSC-derived neurons, unveiling various differentially expressed genes and affected pathways. These include nervous system development, dopamine signalling, myelination, or cell-cell adhesion. A network diffusion analysis revealed mRNA splicing, mitochondria, DNA repair, and metabolism as significant pathways that may represent potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Sokhna Haissatou Diaw
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Fabian Ott
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, 23562 Lübeck, Germany
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hauke Busch
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
13
|
Cherik F, Reilly J, Kerkhof J, Levy M, McConkey H, Barat-Houari M, Butler KM, Coubes C, Lee JA, Le Guyader G, Louie RJ, Patterson WG, Tedder ML, Bak M, Hammer TB, Craigen W, Démurger F, Dubourg C, Fradin M, Franciskovich R, Frengen E, Friedman J, Palares NR, Iascone M, Misceo D, Monin P, Odent S, Philippe C, Rouxel F, Saletti V, Strømme P, Thulin PC, Sadikovic B, Genevieve D. DNA methylation episignature in Gabriele-de Vries syndrome. Genet Med 2022; 24:905-914. [PMID: 35027293 DOI: 10.1016/j.gim.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Gabriele-de Vries syndrome (GADEVS) is a rare genetic disorder characterized by developmental delay and/or intellectual disability, hypotonia, feeding difficulties, and distinct facial features. To refine the phenotype and to better understand the molecular basis of the syndrome, we analyzed clinical data and performed genome-wide DNA methylation analysis of a series of individuals carrying a YY1 variant. METHODS Clinical data were collected for 13 individuals not yet reported through an international call for collaboration. DNA was collected for 11 of these individuals and 2 previously reported individuals in an attempt to delineate a specific DNA methylation signature in GADEVS. RESULTS Phenotype in most individuals overlapped with the previously described features. We described 1 individual with atypical phenotype, heterozygous for a missense variant in a domain usually not involved in individuals with YY1 pathogenic missense variations. We also described a specific peripheral blood DNA methylation profile associated with YY1 variants. CONCLUSION We reported a distinct DNA methylation episignature in GADEVS. We expanded the clinical profile of GADEVS to include thin/sparse hair and cryptorchidism. We also highlighted the utility of DNA methylation episignature analysis for classification of variants of unknown clinical significance.
Collapse
Affiliation(s)
- Florian Cherik
- Department of Medical Genetics, Reference Centre for Rare Diseases, Developmental Anomalies and Malformation Syndromes Sud-Est, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Jack Reilly
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Jennifer Kerkhof
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences and Saint Joseph's Healthcare, London, Ontario, Canada
| | - Michael Levy
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences and Saint Joseph's Healthcare, London, Ontario, Canada
| | - Haley McConkey
- Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences and Saint Joseph's Healthcare, London, Ontario, Canada
| | - Mouna Barat-Houari
- Autoinflammatory and Rare Diseases Unit, Medical Genetic Department for Rare Diseases and Personalized Medicine, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Kameryn M Butler
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC
| | - Christine Coubes
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Montpellier University Hospital, Montpellier, France
| | - Jennifer A Lee
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC
| | - Gwenael Le Guyader
- Clinical Genetics Department, Poitiers University Hospital, Poitiers, France
| | - Raymond J Louie
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC
| | - Wesley G Patterson
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC
| | - Matthew L Tedder
- Greenwood Genetic Center, JC Self Research Institute of Human Genetics, Greenwood, SC
| | - Mads Bak
- Clinical genetic department, Righospitalet, Copenhagen, Denmark
| | - Trine Bjørg Hammer
- Clinical genetic department, Righospitalet, Copenhagen, Denmark; Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Dianalund, Denmark
| | - William Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Florence Démurger
- Medical Genetics Department, Bretagne-Atlantique Hospital, Vannes, France
| | - Christèle Dubourg
- Department of Molecular Genetics and Genomics, Rennes University Hospital, Rennes, France; Univ Rennes, CNRS, IGDR, UMR 6290, Rennes, France
| | - Mélanie Fradin
- Department of Clinical Genetics, Reference Centre for Rare Diseases, CLAD Ouest, Rennes University Hospital, Rennes, France
| | - Rachel Franciskovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Texas Children's Hospital, Houston, TX
| | - Eirik Frengen
- Department of Medical Genetics, Oslo University Hospitals and University of Oslo, Oslo, Norway
| | - Jennifer Friedman
- Departments of Neurosciences and Pediatrics, University of California San Diego, San Diego, CA; Division of Neurology, Rady Children's Hospital, San Diego, CA; Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA
| | - Nathalie Ruiz Palares
- Autoinflammatory and Rare Diseases Unit, Medical Genetic Department for Rare Diseases and Personalized Medicine, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Doriana Misceo
- Department of Medical Genetics, Oslo University Hospitals and University of Oslo, Oslo, Norway
| | - Pauline Monin
- Department of Medical Genetics, Women Mother Children Hospital, Hospices Civils de Lyon, Lyon, France
| | - Sylvie Odent
- Department of Medical Genetics, Reference Center for Developmental Anomalies, CLAD Ouest, Rennes University Hospital, ERN ITHACA, CNRS UMR 6290, Genetics and Development Institute, Rennes University, Rennes, France
| | - Christophe Philippe
- Functional Unit of Innovative Diagnosis for Rare Diseases, Dijon Bourgogne University Hospital, Dijon, France
| | - Flavien Rouxel
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Montpellier University Hospital, Montpellier, France
| | - Veronica Saletti
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Petter Strømme
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, and University of Oslo, Oslo, Norway
| | | | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada; Molecular Diagnostics Program and Verspeeten Clinical Genome Centre, London Health Sciences and Saint Joseph's Healthcare, London, Ontario, Canada.
| | - David Genevieve
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Montpellier University Hospital, Montpellier, France.
| |
Collapse
|
14
|
Yellajoshyula D, Rogers AE, Kim AJ, Kim S, Pappas SS, Dauer WT. A pathogenic DYT-THAP1 dystonia mutation causes hypomyelination and loss of YY1 binding. Hum Mol Genet 2022; 31:1096-1104. [PMID: 34686877 PMCID: PMC8976427 DOI: 10.1093/hmg/ddab310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022] Open
Abstract
Dystonia is a disabling disease that manifests as prolonged involuntary twisting movements. DYT-THAP1 is an inherited form of isolated dystonia caused by mutations in THAP1 encoding the transcription factor THAP1. The phe81leu (F81L) missense mutation is representative of a category of poorly understood mutations that do not occur on residues critical for DNA binding. Here, we demonstrate that the F81L mutation (THAP1F81L) impairs THAP1 transcriptional activity and disrupts CNS myelination. Strikingly, THAP1F81L exhibits normal DNA binding but causes a significantly reduced DNA binding of YY1, its transcriptional partner that also has an established role in oligodendrocyte lineage progression. Our results suggest a model of molecular pathogenesis whereby THAP1F81L normally binds DNA but is unable to efficiently organize an active transcription complex.
Collapse
Affiliation(s)
| | - Abigail E Rogers
- Molecular Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Audrey J Kim
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sumin Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel S Pappas
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - William T Dauer
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
15
|
Pabian-Jewuła S, Bragiel-Pieczonka A, Rylski M. Ying Yang 1 engagement in brain pathology. J Neurochem 2022; 161:236-253. [PMID: 35199341 DOI: 10.1111/jnc.15594] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Herein, we discuss data concerning the involvement of transcription factor Yin Yang 1 (YY1) in the development of brain diseases, highlighting mechanisms of its pathological actions. YY1 plays an important role in the developmental and adult pathology of the nervous system. YY1 is essential for neurulation as well as maintenance and differentiation of neuronal progenitor cells and oligodendrocytes regulating both neural and glial tissues of the brain. Lack of a YY1 gene causes many developmental abnormalities and anatomical malformations of the central nervous system (CNS). Once dysregulated, YY1 exerts multiple neuropathological actions being involved in the induction of many brain disorders like stroke, epilepsy, Alzheimer's and Parkinson's diseases, autism spectrum disorder, dystonia, and brain tumors. Better understanding of YY1's dysfunction in the nervous system may lead to the development of novel therapeutic strategies related to YY1's actions.
Collapse
Affiliation(s)
- Sylwia Pabian-Jewuła
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Aneta Bragiel-Pieczonka
- Department of Clinical Cytology, Centre of Postgraduate Medical Education, 99/103 Marymoncka Street, 01-813, Warsaw, Poland
| | - Marcin Rylski
- Department of Radiology, Institute of Psychiatry and Neurology, 9 Sobieski Street, Warsaw, Poland
| |
Collapse
|
16
|
Indelicato E, Zech M, Amprosi M, Boesch S. Untangling neurodevelopmental disorders in the adulthood: a movement disorder is the clue. Orphanet J Rare Dis 2022; 17:55. [PMID: 35172867 PMCID: PMC8848801 DOI: 10.1186/s13023-022-02218-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/06/2022] [Indexed: 11/23/2022] Open
Abstract
Background The genetic landscape of neurodevelopmental disorders is constantly expanding and children with early-onset neurological phenotypes increasingly receive a genetic diagnosis. Nonetheless, the awareness of the chronic course of these conditions, and consequently their recognition and management in the adult population, is still limited. Results Herein, we describe four patients with rare neurodevelopmental disorders (SON, ZMYND11, DNMT1 and YY1-related diseases), who received a genetic assignment only in the adulthood. All these patients had an early developmental delay and displayed a movement disorder (dystonia/ataxia/tremor) which manifested for the first time, or worsened, in the adulthood, prompting the referral to a neurologist. This phenotypic combination led eventually to the genetic testing. We report previously unrecognized features and highlight the peculiarities of the adult presentation of four neurodevelopmental disorders. Conclusions This report expands the current knowledge on four rare neurodevelopmental disorders (SON, ZMYND11, DNMT1 and YY1), which was mainly based on reports from paediatric cases. This case series emphasize the importance of a tight neurological surveillance extending beyond the childhood.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Michael Zech
- Institut for Neurogenetics, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Oberschleißheim, Munich-Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Matthias Amprosi
- Center for Rare Movement Disorders Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| |
Collapse
|
17
|
Doummar D, Treven M, Qebibo L, Devos D, Ghoumid J, Ravelli C, Kranz G, Krenn M, Demailly D, Cif L, Davion JB, Zimprich F, Burglen L, Zech M. Childhood-onset progressive dystonia associated with pathogenic truncating variants in CHD8. Ann Clin Transl Neurol 2021; 8:1986-1990. [PMID: 34415117 PMCID: PMC8528468 DOI: 10.1002/acn3.51444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
Originally described as a risk factor for autism, CHD8 loss‐of‐function variants have recently been associated with a wider spectrum of neurodevelopmental abnormalities. We further expand the CHD8‐related phenotype with the description of two unrelated patients who presented with childhood‐onset progressive dystonia. Whole‐exome sequencing conducted in two independent laboratories revealed a CHD8 nonsense variant in one patient and a frameshift variant in the second. The patients had strongly overlapping phenotypes characterized by generalized dystonia with mild‐to‐moderate neurodevelopmental comorbidity. Deep brain stimulation led to clinical improvement in both cases. We suggest that CHD8 should be added to the growing list of neurodevelopmental disorder‐associated genes whose mutations can also result in dystonia‐dominant phenotypes.
Collapse
Affiliation(s)
- Diane Doummar
- Pediatric Neurology Department, Movement Disorders Center, Armand Trousseau Hospital, AP-HP.Sorbonne Université, Paris, France
| | - Marco Treven
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, 3400, Austria
| | - Leila Qebibo
- Cerebellar Malformations and Congenital diseases Reference Center and Neurogenetics Lab, Department of Genetics, Armand Trousseau Hospital, AP-HP.Sorbonne Université, Paris, France
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille, France.,Neuroscience Cognition Research Centre, Lille, France.,Neurology and Movement Disorders Department, CHU Lille, Licend, Lille, 59000, France
| | - Jamal Ghoumid
- CHU Lille, University of Lille, ULR7364 RADEME, Lille, France
| | - Claudia Ravelli
- Pediatric Neurology Department, Movement Disorders Center, Armand Trousseau Hospital, AP-HP.Sorbonne Université, Paris, France
| | | | - Martin Krenn
- Department of Neurology, Medical University of Vienna, Vienna, Austria.,School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France.,Faculté de médecine, Université de Montpellier, France
| | - Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France.,Faculté de médecine, Université de Montpellier, France
| | | | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Lydie Burglen
- Cerebellar Malformations and Congenital diseases Reference Center and Neurogenetics Lab, Department of Genetics, Armand Trousseau Hospital, AP-HP.Sorbonne Université, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Michael Zech
- School of Medicine, Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|