1
|
Qin K, Li Y, Liu Y, Xue L, Wang Z, Xian W, Tu R, Yang B, Ning F, Xie A. Divergent amygdala function in proposed brain-first and body-first Parkinson's disease: a resting-state functional magnetic resonance imaging study. J Affect Disord 2025; 382:123-130. [PMID: 40250815 DOI: 10.1016/j.jad.2025.04.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 04/05/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND The newly proposed α-Synuclein Origin and Connectome (SOC) Model classifies Parkinson's disease (PD) patients into brain-first and body-first subtypes. In brain-first patients, α-synuclein may originate in the amygdala of one cerebral hemisphere and disseminate ipsilaterally via the neural connectome. This study aimed to investigate the differences in clinical characteristics and amygdala function between these two subtypes and to evaluate whether amygdala function could serve as a marker for subtype distinctions. METHODS Resting-state functional MRI data of 66 early-stage PD patients and 17 healthy controls (HC) were retrieved from the Parkinson's Progression Markers Initiative database. PD patients with REM Sleep Behavior Disorder (RBD) were classified as the body-first subtype, while those without RBD were classified as the brain-first subtype. RESULTS We found that body-first patients had a longer disease duration and more severe autonomic dysfunction compared to brain-first patients. Amygdala-related FC in brain-first patients was similar to that in the HC group, with both groups showing stronger FC between the bilateral amygdala and the right postcentral gyrus than body-first patients. Importantly, the abnormal amygdala-related FC was negatively correlated with SCOPA-Aut scores (r = -0.361, P = 0.002) in PD patients. ROC analysis indicated that the area under the curve for the FC was 0.834. CONCLUSION Our findings suggest that the amygdala-related FC may serve as an effective indicator to differentiate brain-first and body-first subtypes. Moreover, functional abnormalities in the amygdala contribute to autonomic dysfunction, rather than depression or anxiety in early-stage PD patients. Further validation of these findings in trials with larger cohorts is needed.
Collapse
Affiliation(s)
- Kunpeng Qin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yaqing Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yumei Liu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Li Xue
- Record room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zihan Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenke Xian
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruizi Tu
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bohan Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fangbo Ning
- Department of Neurology, Taian City Central Hospital, Taian, China.
| | - Anmu Xie
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Totsune T, Baba T, Hasegawa T, Takeda A. The Heart of the Matter: Cardiac Denervation Casts Doubt on the Brain-First Versus Body-First Hypothesis of Parkinson's Disease. Mov Disord 2025; 40:807-812. [PMID: 40099489 PMCID: PMC12089921 DOI: 10.1002/mds.30174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 03/20/2025] Open
Affiliation(s)
- Tomoko Totsune
- Department of NeurologyNational Hospital Organization Sendai Nishitaga HospitalSendaiJapan
- Department of Aging Research and Geriatric MedicineInstitute of Development, Aging and Cancer, Tohoku UniversitySendaiJapan
| | - Toru Baba
- Department of NeurologyNational Hospital Organization Sendai Nishitaga HospitalSendaiJapan
| | - Takafumi Hasegawa
- Department of NeurologyNational Hospital Organization Sendai Nishitaga HospitalSendaiJapan
| | - Atsushi Takeda
- Department of NeurologyNational Hospital Organization Sendai Nishitaga HospitalSendaiJapan
- Department of Cognitive & Motor AgingTohoku University Graduate School of MedicineSendaiJapan
| |
Collapse
|
3
|
Schröter N, Matinpalo L, Hosp JA, Reisert M, Philpsen L, Jost WH, Wiendl H, Urbach H, Rijntjes M, Rau A. Amygdala neurodegeneration differentiates brain-first and body-first Parkinson's disease: An MRI study. Parkinsonism Relat Disord 2025; 135:107827. [PMID: 40209563 DOI: 10.1016/j.parkreldis.2025.107827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Two distinct patterns of alpha-synuclein spread in Parkinson's disease were proposed with a body-first and a brain-first subtype. The body-first subtype originates in the periphery, while the brain-first subtype initiates in the central nervous system, notably affecting the amygdala. OBJECTIVES This retrospective cross-sectional study compared the integrity of the substantia nigra and amygdala between body-first and brain-first Parkinson's disease subtypes. METHODS We analyzed data from 30 Parkinson's disease patients, classified into body-first (n = 21) and brain-first (n = 9) subtypes based on REM sleep behavior disorder history. Microstructural integrity was assessed using diffusion microstructure MRI. RESULTS No significant differences were found in the substantia nigra between subtypes. However, amygdala degeneration was significantly pronounced in the "brain-first" compared to the "body-first" group reflected by increased free interstitial fluid (p = 0.02, Cohen's d = -1.22). CONCLUSIONS The degeneration of amygdala is distinctively pronounced in "brain-first" Parkinson's disease, supporting differential disease progression patterns between subtypes.
Collapse
Affiliation(s)
- Nils Schröter
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Matinpalo
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Lea Philpsen
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Heinz Wiendl
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Li S, Jiao F, Li X, Xu Z, Hu T, Liang X, Wu J, Wang J, Zuo C, Tang Y. Plasma GFAP and NfL associate with cerebral glucose metabolism in putative brain-first and body-first Parkinson's disease subtypes. NPJ Parkinsons Dis 2025; 11:54. [PMID: 40121206 PMCID: PMC11929867 DOI: 10.1038/s41531-025-00898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 02/17/2025] [Indexed: 03/25/2025] Open
Abstract
The recently proposed body-first and brain-first subtypes are classified based on the initial localization of α-synuclein inclusions. This study investigated plasma biomarkers and cerebral glucose metabolism characteristics in putative brain-first and body-first subtypes in PD subjects. PD patients without possible RBD (PDpRBD-) (n = 58) and with possible RBD symptoms discovered before motor symptoms (PDpRBD+) (n = 43) were recruited. Single-molecule array (SimoA) was used for measuring plasma biomarkers, including glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), Tau and phosphorylated-tau 181 (pTau-181). All participants underwent 18F-fluorodeoxyglucose (FDG) PET scans. Compared to PDpRBD- patients, PDpRBD+ patients exhibited significantly increased plasma GFAP levels and reduced 18F-FDG uptake in cortical regions. Notably, plasma GFAP and NfL levels correlated with cerebral glucose metabolism in PDpRBD- patients. Our study identified the association between plasma GFAP and NfL levels and cerebral glucose metabolism in PDpRBD- patients. Further large-scale longitudinal studies are required.
Collapse
Affiliation(s)
- Shiyu Li
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fangyang Jiao
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiuyuan Li
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiheng Xu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianyu Hu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianjun Wu
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Zuo
- Department of Nuclear Medicine &PET Center, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yilin Tang
- Department of Neurology and National Research Center for Aging and Medicine & National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
5
|
Zhao Y, Xu C, Chen Y, Gong T, Zhuo M, Zhao C, Sun Z, Chen W, Xiang Y, Wang G. Glymphatic dysfunction exacerbates cognitive decline by triggering cortical degeneration in Parkinson's disease: evidence from diffusion-tensor MRI. Brain Commun 2025; 7:fcaf029. [PMID: 39980740 PMCID: PMC11840164 DOI: 10.1093/braincomms/fcaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/09/2024] [Accepted: 02/15/2025] [Indexed: 02/22/2025] Open
Abstract
The glymphatic system may play a central role in cognitive impairment associated with Parkinson's disease, but its relationship with regional cortical atrophy is not fully explored. To explore associations among glymphatic dysfunction, regional cortical degeneration and cognitive impairment in Parkinson's disease participants, we evaluated 51 participants with documented Parkinson's disease (28 men; age, 61.65 ± 8.27 years) and 30 age- and sex-matched normal controls (11 men; age, 59.2 ± 5.90 years) who underwent 3.0-T MRI of the brain, including high-resolution T1-weighted imaging and diffusion-tensor imaging along the perivascular space as a surrogate for glymphatic flow. Cortical grey matter volume was segmented automatically based on three-dimensional T1-weighted sequences. Cognitive function was assessed by Mini-Mental State Examination. The relationship between glymphatic dysfunction, cognitive decline and regional cortical degeneration was explored. The participants with Parkinson's disease revealed lower diffusion-tensor imaging along the perivascular space (1.45 ± 0.17 versus 1.64 ± 0.17, P < 0.0001) as compared with normal controls, indicating disturbed glymphatic flow. Glymphatic dysfunction was associated with cognitive scores (r = 0.54, P = 0.003). Diffusion-tensor imaging along the perivascular space values were positively associated with the volume of specific cortical regions (all P-values <0.05) including the temporal pole, posterior orbital gyrus, orbital part of the inferior frontal gyrus, frontal operculum, central operculum and anterior cingulate gyrus. Mediation analysis within the Parkinson's disease participants indicated that the relationship between glymphatic dysfunction and cognitive scores was partially mediated by the integrity of orbital part of the inferior frontal gyrus and anterior cingulate gyrus. Glymphatic dysfunction is associated with cognitive decline in Parkinson's disease, whereas the distribution of regional cortical degeneration may constitute the link between glymphatic dysfunction and cognitive impairment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Changyuan Xu
- Department of Medical Imaging Center, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Yufan Chen
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Tao Gong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Mengyuan Zhuo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Shandong University, Jinan, Shandong 250021, China
| | - Cheng Zhao
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zhanfang Sun
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Weibo Chen
- Philips Healthcare, Shanghai 200000, China
| | - Yuanyuan Xiang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangbin Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| |
Collapse
|
6
|
Passaretti M, Cilia R, Rinaldo S, Rossi Sebastiano D, Orunesu E, Devigili G, Braccia A, Paparella G, De Riggi M, van Eimeren T, Strafella AP, Lanteri P, Berardelli A, Bologna M, Eleopra R. Neurophysiological markers of motor compensatory mechanisms in early Parkinson's disease. Brain 2024; 147:3714-3726. [PMID: 39189320 PMCID: PMC11531851 DOI: 10.1093/brain/awae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/13/2024] [Indexed: 08/28/2024] Open
Abstract
Compensatory mechanisms in Parkinson's disease are defined as the changes that the brain uses to adapt to neurodegeneration and progressive dopamine reduction. Motor compensation in early Parkinson's disease could, in part, be responsible for a unilateral onset of clinical motor signs despite the presence of bilateral nigrostriatal degeneration. Although several mechanisms have been proposed for compensatory adaptations in Parkinson's disease, the underlying pathophysiology is unclear. Here, we investigate motor compensation in Parkinson's disease by investigating the relationship between clinical signs, dopamine transporter imaging data and neurophysiological measures of the primary motor cortex (M1), using transcranial magnetic stimulation in presymptomatic and symptomatic hemispheres of patients. In this cross-sectional, multicentre study, we screened 82 individuals with Parkinson's disease. Patients were evaluated clinically in their medication OFF state using standardized scales. Sixteen Parkinson's disease patients with bilateral dopamine transporter deficit in the putamina but unilateral symptoms were included. Twenty-eight sex- and age-matched healthy controls were also investigated. In all participants, we tested cortical excitability using single- and paired-pulse techniques, interhemispheric inhibition and cortical plasticity with paired associative stimulation. Data were analysed with ANOVAs, multiple linear regression and logistic regression models. Individual coefficients of motor compensation were defined in patients based on clinical and imaging data, i.e. the motor compensation coefficient. The motor compensation coefficient includes an asymmetry score to balance motor and dopamine transporter data between the two hemispheres, in addition to a hemispheric ratio accounting for the relative mismatch between the magnitude of motor signs and dopaminergic deficit. In patients, corticospinal excitability and plasticity were higher in the presymptomatic compared with the symptomatic M1. Also, interhemispheric inhibition from the presymptomatic to the symptomatic M1 was reduced. Lower putamen binding was associated with higher plasticity and reduced interhemispheric inhibition in the presymptomatic hemisphere. The motor compensation coefficient distinguished the presymptomatic from the symptomatic hemisphere. Finally, in the presymptomatic hemisphere, a higher motor compensation coefficient was associated with lower corticospinal excitability and interhemispheric inhibition and with higher plasticity. In conclusion, the present study suggests that motor compensation involves M1-striatal networks and intercortical connections becoming more effective with progressive loss of dopaminergic terminals in the putamen. The balance between these motor networks seems to be driven by cortical plasticity.
Collapse
Affiliation(s)
- Massimiliano Passaretti
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, 17165 Solna, Sweden
| | - Roberto Cilia
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Sara Rinaldo
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Davide Rossi Sebastiano
- Neurophysiology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Eva Orunesu
- Nuclear Medicine Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Grazia Devigili
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Arianna Braccia
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Thilo van Eimeren
- Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Antonio Paolo Strafella
- Krembil Brain Institute, University Health Network, Toronto, ON M5R 1E8, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M5S 2S1, Canada
| | - Paola Lanteri
- Neurophysiology Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy
- IRCCS Neuromed, 86077 Pozzilli (IS), Italy
| | - Roberto Eleopra
- Parkinson and Movement Disorders Unit, Department of Clinical Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| |
Collapse
|
7
|
Sakato Y, Shima A, Terada Y, Takeda K, Sakamaki-Tsukita H, Nishida A, Yoshimura K, Wada I, Furukawa K, Kambe D, Togo H, Mukai Y, Sawamura M, Nakanishi E, Yamakado H, Fushimi Y, Okada T, Takahashi Y, Nakamoto Y, Takahashi R, Hanakawa T, Sawamoto N. Delineating three distinct spatiotemporal patterns of brain atrophy in Parkinson's disease. Brain 2024; 147:3702-3713. [PMID: 39445741 DOI: 10.1093/brain/awae303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 10/25/2024] Open
Abstract
The clinical manifestation of Parkinson's disease exhibits significant heterogeneity in the prevalence of non-motor symptoms and the rate of progression of motor symptoms, suggesting that Parkinson's disease can be classified into distinct subtypes. In this study, we aimed to explore this heterogeneity by identifying a set of subtypes with distinct patterns of spatiotemporal trajectories of neurodegeneration. We applied Subtype and Stage Inference (SuStaIn), an unsupervised machine learning algorithm that combined disease progression modelling with clustering methods, to cortical and subcortical neurodegeneration visible on 3 T structural MRI of a large cross-sectional sample of 504 patients and 279 healthy controls. Serial longitudinal data were available for a subset of 178 patients at the 2-year follow-up and for 140 patients at the 4-year follow-up. In a subset of 210 patients, concomitant Alzheimer's disease pathology was assessed by evaluating amyloid-β concentrations in the CSF or via the amyloid-specific radiotracer 18F-flutemetamol with PET. The SuStaIn analysis revealed three distinct subtypes, each characterized by unique patterns of spatiotemporal evolution of brain atrophy: neocortical, limbic and brainstem. In the neocortical subtype, a reduction in brain volume occurred in the frontal and parietal cortices in the earliest disease stage and progressed across the entire neocortex during the early stage, although with relative sparing of the striatum, pallidum, accumbens area and brainstem. The limbic subtype represented comparative regional vulnerability, which was characterized by early volume loss in the amygdala, accumbens area, striatum and temporal cortex, subsequently spreading to the parietal and frontal cortices across disease stage. The brainstem subtype showed gradual rostral progression from the brainstem extending to the amygdala and hippocampus, followed by the temporal and other cortices. Longitudinal MRI data confirmed that 77.8% of participants at the 2-year follow-up and 84.0% at the 4-year follow-up were assigned to subtypes consistent with estimates from the cross-sectional data. This three-subtype model aligned with empirically proposed subtypes based on age at onset, because the neocortical subtype demonstrated characteristics similar to those found in the old-onset phenotype, including older onset and cognitive decline symptoms (P < 0.05). Moreover, the subtypes correspond to the three categories of the neuropathological consensus criteria for symptomatic patients with Lewy pathology, proposing neocortex-, limbic- and brainstem-predominant patterns as different subgroups of α-synuclein distributions. Among the subtypes, the prevalence of biomarker evidence of amyloid-β pathology was comparable. Upon validation, the subtype model might be applied to individual cases, potentially serving as a biomarker to track disease progression and predict temporal evolution.
Collapse
Affiliation(s)
- Yusuke Sakato
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Atsushi Shima
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yuta Terada
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Kiyoaki Takeda
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Haruhi Sakamaki-Tsukita
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Akira Nishida
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Kenji Yoshimura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Ikko Wada
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Koji Furukawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Daisuke Kambe
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hiroki Togo
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Yohei Mukai
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Masanori Sawamura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Etsuro Nakanishi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Tomohisa Okada
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, 187-8551, Japan
- Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, 606-8501, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, 606-8507, Japan
| |
Collapse
|
8
|
Pang H, Li X, Yu Z, Yu H, Bu S, Wang J, Zhao M, Liu Y, Jiang Y, Fan G. Disentangling gray matter atrophy and its neurotransmitter architecture in drug-naïve Parkinson's disease: an atlas-based correlation analysis. Cereb Cortex 2024; 34:bhae420. [PMID: 39420471 DOI: 10.1093/cercor/bhae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Parkinson's disease is characterized by multiple neurotransmitter systems beyond the traditional dopaminergic pathway, yet their influence on volumetric alterations is not well comprehended. We included 72 de novo, drug-naïve Parkinson's disease patients and 61 healthy controls. Voxel-wise gray matter volume was evaluated between Parkinson's disease and healthy controls, as well as among Parkinson's disease subgroups categorized by clinical manifestations. The Juspace toolbox was utilized to explore the spatial relationship between gray matter atrophy and neurotransmitter distribution. Parkinson's disease patients exhibited widespread GM atrophy in the cerebral and cerebellar regions, with spatial correlations with various neurotransmitter receptors (FDR-P < 0.05). Cognitively impaired Parkinson's disease patients showed gray matter atrophy in the left middle temporal atrophy, which is associated with serotoninergic, dopaminergic, cholinergic, and glutamatergic receptors (FDR-P < 0.05). Postural and gait disorder patients showed atrophy in the right precuneus, which is correlated with serotoninergic, dopaminergic, gamma-aminobutyric acid, and opioid receptors (FDR-P < 0.05). Patients with anxiety showed atrophy in the right superior orbital frontal region; those with depression showed atrophy in the left lingual and right inferior occipital regions. Both conditions were linked to serotoninergic and dopaminergic receptors (FDR-P < 0.05). Parkinson's disease patients exhibited regional gray matter atrophy with a significant distribution of specific neurotransmitters, which might provide insights into the underlying pathophysiology of clinical manifestations and develop targeted intervention strategies.
Collapse
Affiliation(s)
- Huize Pang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Xiaolu Li
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Ziyang Yu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, 38 Zheda Road, Xihu District, Hangzhou, Zhejiang Province, 310027, China
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Shuting Bu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Juzhou Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Mengwan Zhao
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| | - Yueluan Jiang
- MR Research Collaboration, Siemens Healthineers, 7 Wangjing Zhonghuan South Road, Chaoyang District, Beijing, 100102, China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, Liaoning Province, 110001, China
| |
Collapse
|
9
|
Wang S, Chen X, Zhang Y, Gao Y, Gou L, Lei J. Characterization of cortical volume and whole-brain functional connectivity in Parkinson's disease patients: a MRI study combined with physiological aging brain changes. Front Neurosci 2024; 18:1451948. [PMID: 39315074 PMCID: PMC11418396 DOI: 10.3389/fnins.2024.1451948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
This study employed multiple MRI features to comprehensively evaluate the abnormalities in morphology, and functionality associated with Parkinson's disease (PD) and distinguish them from normal physiological changes. For investigation purposes, three groups: 32 patients with PD, 42 age-matched healthy controls (HCg1), and 33 young and middle-aged controls (HCg2) were designed. The aim of the current study was to differentiate pathological cortical changes in PD from age-related physiological cortical volume changes. Integrating these findings with functional MRI changes to characterize the effects of PD on whole-brain networks. Cortical volumes in the bilateral temporal lobe, frontal lobe, and cerebellum were significantly reduced in HCg1 compared to HCg2. Although no significant differences in cortical volume were observed between PD patients and HCg1, the PD group exhibited pronounced abnormalities with significantly lower mean connectivity values compared to HCg1. Conversely, physiological functional changes in HCg1 showed markedly higher mean connectivity values than in HCg2. By integrating morphological and functional assessments, as well as network characterization of physiological aging, this study further delineates the distinct characteristics of pathological changes in PD.
Collapse
Affiliation(s)
- Shuaiwen Wang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Xiaoli Chen
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yanli Zhang
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Yulin Gao
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Lubin Gou
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| | - Junqiang Lei
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
- Intelligent Imaging Medical Engineering Research Center of Gansu Province, Lanzhou, China
- Accurate Image Collaborative Innovation International Science and Technology Cooperation Base of Gansu Province, Lanzhou, China
- Gansu Province Clinical Research Center for Radiology Imaging, Lanzhou, China
| |
Collapse
|
10
|
Xu Z, Hu T, Xu C, Liang X, Li S, Sun Y, Liu F, Wang J, Tang Y. Disease progression in proposed brain-first and body-first Parkinson's disease subtypes. NPJ Parkinsons Dis 2024; 10:111. [PMID: 38834646 DOI: 10.1038/s41531-024-00730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024] Open
Abstract
A new Parkinson's disease (PD) subtyping model has been recently proposed based on the initial location of α-synuclein inclusions, which divides PD patients into the brain-first subtype and the body-first subtype. Premotor RBD has proven to be a predictive marker of the body-first subtype. We found compared to PD patients without possible RBD (PDpRBD-, representing the brain-first subtype), PD patients with possible premotor RBD (PDpRBD+, representing the body-first subtype) had lower Movement Disorders Society Unified Parkinson's Disease Rating Scale part III (MDS UPDRS-III) score (p = 0.022) at baseline but presented a faster progression rate (p = 0.009) in MDS UPDRS-III score longitudinally. The above finding indicates the body-first subtype exhibited a faster disease progression in motor impairments compared to the brain-first subtype and further validates the proposed subtyping model.
Collapse
Affiliation(s)
- Zhiheng Xu
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tianyu Hu
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenqin Xu
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoniu Liang
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shiyu Li
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yimin Sun
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fengtao Liu
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jian Wang
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yilin Tang
- Department of Neurology and National Research Center for Aging and Medicine and National Center for Neurological Disorders, State Key Laboratory of Medical Neurobiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Sfera A, Imran H, Sfera DO, Anton JJ, Kozlakidis Z, Hazan S. Novel Insights into Psychosis and Antipsychotic Interventions: From Managing Symptoms to Improving Outcomes. Int J Mol Sci 2024; 25:5904. [PMID: 38892092 PMCID: PMC11173215 DOI: 10.3390/ijms25115904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
For the past 70 years, the dopamine hypothesis has been the key working model in schizophrenia. This has contributed to the development of numerous inhibitors of dopaminergic signaling and antipsychotic drugs, which led to rapid symptom resolution but only marginal outcome improvement. Over the past decades, there has been limited research on the quantifiable pathological changes in schizophrenia, including premature cellular/neuronal senescence, brain volume loss, the attenuation of gamma oscillations in electroencephalograms, and the oxidation of lipids in the plasma and mitochondrial membranes. We surmise that the aberrant activation of the aryl hydrocarbon receptor by toxins derived from gut microbes or the environment drives premature cellular and neuronal senescence, a hallmark of schizophrenia. Early brain aging promotes secondary changes, including the impairment and loss of mitochondria, gray matter depletion, decreased gamma oscillations, and a compensatory metabolic shift to lactate and lactylation. The aim of this narrative review is twofold: (1) to summarize what is known about premature cellular/neuronal senescence in schizophrenia or schizophrenia-like disorders, and (2) to discuss novel strategies for improving long-term outcomes in severe mental illness with natural senotherapeutics, membrane lipid replacement, mitochondrial transplantation, microbial phenazines, novel antioxidant phenothiazines, inhibitors of glycogen synthase kinase-3 beta, and aryl hydrocarbon receptor antagonists.
Collapse
Affiliation(s)
- Adonis Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Hassan Imran
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | - Dan O. Sfera
- Patton State Hospital, 3102 Highland Ave., Patton, CA 92369, USA; (H.I.)
- University of California Riverside, Riverside 900 University Ave., Riverside, CA 92521, USA
- Loma Linda University, 11139 Anderson St., Loma Linda, CA 92350, USA
| | | | - Zisis Kozlakidis
- International Agency for Research on Cancer, 69372 Lyon, France;
| | | |
Collapse
|
12
|
Kula J, Kuter KZ. MUFA synthesis and stearoyl-CoA desaturase as a new pharmacological target for modulation of lipid and alpha-synuclein interaction against Parkinson's disease synucleinopathy. Neuropharmacology 2024; 249:109865. [PMID: 38342377 DOI: 10.1016/j.neuropharm.2024.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Protein pathology spreading within the nervous system, accompanies neurodegeneration and a spectrum of motor and cognitive dysfunctions. Currently available therapies against Parkinson's disease and other synucleinopathies are mostly symptomatic and fail to slow the disease progression in the long term. Modification of α-synuclein (αS) aggregation and toxicity of its pathogenic forms is one of the main goals in neuroprotective approach. Since the discovery of lipid component of Lewy bodies, fatty acids became a crucial, yet little explored target for research. MUFAs (monounsaturated fatty acids) are substrates for lipids, such as phospholipids, triglycerides and cholesteryl esters. They regulate membrane fluidity, take part in signal transduction, cellular differentiation and other fundamental processes. αS and MUFA interactions are essential for Lewy body pathology. αS increases levels of MUFAs, mainly oleic acid, which in turn can enhance αS toxicity and aggregation. Thus, reduction of MUFAs synthesis by inhibition of stearoyl-CoA desaturase (SCD) activity could be the new way to prevent aggravation of αS pathology. Due to the limited distribution in peripheral tissues, SCD5 is a potential target in novel therapies and therefore could be an important starting point in search for disease-modifying neuroprotective therapy. Here we summarize facts about physiology and pathology of αS, explain recently discovered lipid-αS interactions, review SCD function and involved mechanisms, present available SCD inhibitors and discuss their pharmacological potential in disease management. Modulation of MUFA synthesis, decreasing αS and lipid toxicity is clearly essential, but unexplored avenue in pharmacotherapy of Parkinson's disease and synucleinopathies.
Collapse
Affiliation(s)
- Joanna Kula
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland.
| | - Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland.
| |
Collapse
|
13
|
Hähnel T, Raschka T, Sapienza S, Klucken J, Glaab E, Corvol JC, Falkenburger BH, Fröhlich H. Progression subtypes in Parkinson's disease identified by a data-driven multi cohort analysis. NPJ Parkinsons Dis 2024; 10:95. [PMID: 38698004 PMCID: PMC11066039 DOI: 10.1038/s41531-024-00712-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
The progression of Parkinson's disease (PD) is heterogeneous across patients, affecting counseling and inflating the number of patients needed to test potential neuroprotective treatments. Moreover, disease subtypes might require different therapies. This work uses a data-driven approach to investigate how observed heterogeneity in PD can be explained by the existence of distinct PD progression subtypes. To derive stable PD progression subtypes in an unbiased manner, we analyzed multimodal longitudinal data from three large PD cohorts and performed extensive cross-cohort validation. A latent time joint mixed-effects model (LTJMM) was used to align patients on a common disease timescale. Progression subtypes were identified by variational deep embedding with recurrence (VaDER). In each cohort, we identified a fast-progressing and a slow-progressing subtype, reflected by different patterns of motor and non-motor symptoms progression, survival rates, treatment response, features extracted from DaTSCAN imaging and digital gait assessments, education, and Alzheimer's disease pathology. Progression subtypes could be predicted with ROC-AUC up to 0.79 for individual patients when a one-year observation period was used for model training. Simulations demonstrated that enriching clinical trials with fast-progressing patients based on these predictions can reduce the required cohort size by 43%. Our results show that heterogeneity in PD can be explained by two distinct subtypes of PD progression that are stable across cohorts. These subtypes align with the brain-first vs. body-first concept, which potentially provides a biological explanation for subtype differences. Our predictive models will enable clinical trials with significantly lower sample sizes by enriching fast-progressing patients.
Collapse
Affiliation(s)
- Tom Hähnel
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany.
- Department of Neurology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany.
| | - Tamara Raschka
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, University of Bonn, Bonn, Germany
| | - Stefano Sapienza
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Jochen Klucken
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Strassen, Luxembourg
- Centre Hospitalier de Luxembourg (CHL), Strassen, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jean-Christophe Corvol
- Sorbonne Université, Paris Brain Institute - ICM, Inserm, CNRS, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Paris, France
| | - Björn H Falkenburger
- Department of Neurology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Center for IT, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Horsager J, Borghammer P. Brain-first vs. body-first Parkinson's disease: An update on recent evidence. Parkinsonism Relat Disord 2024; 122:106101. [PMID: 38519273 DOI: 10.1016/j.parkreldis.2024.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
We recently proposed a new disease model of Parkinson's disease - the a-Synuclein Origin site and Connectome model. The model posits that the initial pathology starts either in the olfactory bulb or amygdala leading to a brain-first subtype, or in the enteric nervous system leading to a body-first subtype. These subtypes should be distinguishable early in the disease course on a range of imaging, clinical, and neuropathological markers. Here, we review recent original human studies, which tested the predictions of the model. Molecular imaging studies were generally in agreement with the model, whereas structural imaging studies, such as MRI volumetry, showed conflicting findings. Most large-scale clinical studies were supportive, reporting clustering of relevant markers of the body-first subtype, including REM-sleep behavior disorder, constipation, autonomic dysfunction, neuropsychiatric symptoms, and cognitive impairment. Finally, studies of a-synuclein deposition in antemortem and postmortem tissues revealed distribution of pathology, which generally supports the model.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark.
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
15
|
Lövdal SS, Carli G, Orso B, Biehl M, Arnaldi D, Mattioli P, Janzen A, Sittig E, Morbelli S, Booij J, Oertel WH, Leenders KL, Meles SK. Investigating the aspect of asymmetry in brain-first versus body-first Parkinson's disease. NPJ Parkinsons Dis 2024; 10:74. [PMID: 38555343 PMCID: PMC10981719 DOI: 10.1038/s41531-024-00685-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. Recent literature has proposed two subgroups of PD. The "body-first subtype" is associated with a prodrome of isolated REM-sleep Behavior Disorder (iRBD) and a relatively symmetric brain degeneration. The "brain-first subtype" is suggested to have a more asymmetric degeneration and a prodromal stage without RBD. This study aims to investigate the proposed difference in symmetry of the degeneration pattern in the presumed body and brain-first PD subtypes. We analyzed 123I-FP-CIT (DAT SPECT) and 18F-FDG PET brain imaging in three groups of patients (iRBD, n = 20, de novo PD with prodromal RBD, n = 22, and de novo PD without RBD, n = 16) and evaluated dopaminergic and glucose metabolic symmetry. The RBD status of all patients was confirmed with video-polysomnography. The PD groups did not differ from each other with regard to the relative or absolute asymmetry of DAT uptake in the putamen (p = 1.0 and p = 0.4, respectively). The patient groups also did not differ from each other with regard to the symmetry of expression of the PD-related metabolic pattern (PDRP) in each hemisphere. The PD groups had no difference in symmetry considering mean FDG uptake in left and right regions of interest and generally had the same degree of symmetry as controls, while the iRBD patients had nine regions with abnormal left-right differences (p < 0.001). Our findings do not support the asymmetry aspect of the "body-first" versus "brain-first" hypothesis.
Collapse
Affiliation(s)
- S S Lövdal
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands.
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, Netherlands.
| | - G Carli
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - B Orso
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - M Biehl
- Bernoulli Institute for Mathematics, Computer Science and Artificial Intelligence, University of Groningen, Groningen, Netherlands
- SMQB, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - D Arnaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - P Mattioli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- Neurophysiopathology Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - A Janzen
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - E Sittig
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - S Morbelli
- Department of Health Sciences, University of Genoa, Genoa, Italy
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico S. Martino, Genoa, Italy
| | - J Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - W H Oertel
- Department of Neurology, Philipps-University Marburg, Marburg, Germany
| | - K L Leenders
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, Netherlands
| | - S K Meles
- Department of Neurology, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
16
|
Pan G, Jiang Y, Zhang W, Zhang X, Wang L, Cheng W. Identification of Parkinson's disease subtypes with distinct brain atrophy progression and its association with clinical progression. PSYCHORADIOLOGY 2024; 4:kkae002. [PMID: 38666137 PMCID: PMC10953620 DOI: 10.1093/psyrad/kkae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/27/2024] [Accepted: 02/23/2024] [Indexed: 04/28/2024]
Abstract
Background Parkinson's disease (PD) patients suffer from progressive gray matter volume (GMV) loss, but whether distinct patterns of atrophy progression exist within PD are still unclear. Objective This study aims to identify PD subtypes with different rates of GMV loss and assess their association with clinical progression. Methods This study included 107 PD patients (mean age: 60.06 ± 9.98 years, 70.09% male) with baseline and ≥ 3-year follow-up structural MRI scans. A linear mixed-effects model was employed to assess the rates of regional GMV loss. Hierarchical cluster analysis was conducted to explore potential subtypes based on individual rates of GMV loss. Clinical score changes were then compared across these subtypes. Results Two PD subtypes were identified based on brain atrophy rates. Subtype 1 (n = 63) showed moderate atrophy, notably in the prefrontal and lateral temporal lobes, while Subtype 2 (n = 44) had faster atrophy across the brain, particularly in the lateral temporal region. Furthermore, subtype 2 exhibited faster deterioration in non-motor (MDS-UPDRS-Part Ⅰ, β = 1.26 ± 0.18, P = 0.016) and motor (MDS-UPDRS-Part Ⅱ, β = 1.34 ± 0.20, P = 0.017) symptoms, autonomic dysfunction (SCOPA-AUT, β = 1.15 ± 0.22, P = 0.043), memory (HVLT-Retention, β = -0.02 ± 0.01, P = 0.016) and depression (GDS, β = 0.26 ± 0.083, P = 0.019) compared to subtype 1. Conclusion The study has identified two PD subtypes with distinct patterns of atrophy progression and clinical progression, which may have implications for developing personalized treatment strategies.
Collapse
Affiliation(s)
- Guoqing Pan
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua 321004, China
| | - Yuchao Jiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Xuejuan Zhang
- School of Mathematical Sciences, Zhejiang Normal University, Jinhua 321004, China
- Fudan ISTBI—ZJNU Algorithm Centre for Brain-inspired Intelligence, Zhejiang Normal University, Jinhua 321004, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
- Zhangjiang Fudan International Innovation Center, Shanghai 201210, China
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai 200032, China
| |
Collapse
|
17
|
Donzuso G, Cicero CE, Giuliano L, Squillaci R, Luca A, Palmucci S, Basile A, Lanza G, Ferri R, Zappia M, Nicoletti A. Neuroanatomical findings in isolated REM sleep behavior disorder and early Parkinson's disease: a Voxel-based morphometry study. Brain Imaging Behav 2024; 18:83-91. [PMID: 37897654 PMCID: PMC10844466 DOI: 10.1007/s11682-023-00815-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Isolated rapid eye movement (REM) sleep behavior disorder (iRBD) is a parasomnia characterized by loss of physiological atonia of skeletal muscles with abnormal behaviors arising during REM sleep. RBD is often the early manifestation of neurodegenerative diseases, particularly alpha-synucleinopathies, such as Parkinson's disease (PD). Both structural and functional neuroimaging studies suggest that iRBD might share, or even precede, some of the features commonly found in PD, although without a definitive conclusion. Aim of the study is to evaluate the presence of structural abnormalities involving cortical and subcortical areas in PD patients with RBD and iRBD. Patients with video-polysomnographic (VPSG)-confirmed iRBD, and patients with a diagnosis of PD were recruited. In all PD patients, the presence of probable RBD was assessed during the follow-up visits (PD/pRBD). A group of healthy controls (HC) subjects was also recruited. Each subject underwent a structural brain MRI using a 3-D T1-weighted spoiled gradient echo sequence. Twenty-three patients with iRBD, 24 PD/pRBD, and 26 HC were enrolled. Voxel-based morphometry-AnCOVA analysis revealed clusters of grey matter changes in iRBD and PD/pRBD compared to HC in several regions, involving mainly the frontal and temporal regions. The involvement of cortical brain structures associated to the control of sleep cycle and REM stage both in PD/pRBD and iRBD might suggest the presence of a common structural platform linking iRBD and PD, although this pattern may not underlie exclusively RBD-related features. Further longitudinal studies are needed to clarify the patterns of changes occurring at different time points of RBD-related neurodegeneration.
Collapse
Affiliation(s)
- Giulia Donzuso
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Calogero E Cicero
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Loretta Giuliano
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Raffaele Squillaci
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Stefano Palmucci
- Radiodiagnostic and Radiotherapy Unit, University Hospital "Policlinico-San Marco", Via Santa Sofia 78, 95123, Catania, Italy
| | - Antonello Basile
- Radiodiagnostic and Radiotherapy Unit, University Hospital "Policlinico-San Marco", Via Santa Sofia 78, 95123, Catania, Italy
| | - Giuseppe Lanza
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123, Catania, Italy
| | - Raffaele Ferri
- Sleep Research Center, Department of Neurology IC, Oasi Research Institute - IRCCS, Troina, Italy
| | - Mario Zappia
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| |
Collapse
|
18
|
Theis H, Pavese N, Rektorová I, van Eimeren T. Imaging Biomarkers in Prodromal and Earliest Phases of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S353-S365. [PMID: 38339941 PMCID: PMC11492013 DOI: 10.3233/jpd-230385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 02/12/2024]
Abstract
Assessing imaging biomarker in the prodromal and early phases of Parkinson's disease (PD) is of great importance to ensure an early and safe diagnosis. In the last decades, imaging modalities advanced and are now able to assess many different aspects of neurodegeneration in PD. MRI sequences can measure iron content or neuromelanin. Apart from SPECT imaging with Ioflupane, more specific PET tracers to assess degeneration of the dopaminergic system are available. Furthermore, metabolic PET patterns can be used to anticipate a phenoconversion from prodromal PD to manifest PD. In this regard, it is worth mentioning that PET imaging of inflammation will gain significance. Molecular imaging of neurotransmitters like serotonin, noradrenaline and acetylcholine shed more light on non-motor symptoms. Outside of the brain, molecular imaging of the heart and gut is used to measure PD-related degeneration of the autonomous nervous system. Moreover, optical coherence tomography can noninvasively detect degeneration of retinal fibers as a potential biomarker in PD. In this review, we describe these state-of-the-art imaging modalities in early and prodromal PD and point out in how far these techniques can and will be used in the future to pave the way towards a biomarker-based staging of PD.
Collapse
Affiliation(s)
- Hendrik Theis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Nicola Pavese
- Aarhus University, Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus N, Denmark
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, United Kingdom
| | - Irena Rektorová
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, International Clinical Research Center, ICRC, Brno, Czech Republic
- Masaryk University, Faculty of Medicine and St. Anne’s University Hospital, First Department of Neurology, Brno, Czech Republic
- Masaryk University, Applied Neuroscience Research Group, Central European Institute of Technology – CEITEC, Brno, Czech Republic
| | - Thilo van Eimeren
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, Multimodal Neuroimaging Group, Cologne, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| |
Collapse
|
19
|
Zhou C, Wang L, Cheng W, Lv J, Guan X, Guo T, Wu J, Zhang W, Gao T, Liu X, Bai X, Wu H, Cao Z, Gu L, Chen J, Wen J, Huang P, Xu X, Zhang B, Feng J, Zhang M. Two distinct trajectories of clinical and neurodegeneration events in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:111. [PMID: 37443179 PMCID: PMC10344958 DOI: 10.1038/s41531-023-00556-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Increasing evidence suggests that Parkinson's disease (PD) exhibits disparate spatial and temporal patterns of progression. Here we used a machine-learning technique-Subtype and Stage Inference (SuStaIn) - to uncover PD subtypes with distinct trajectories of clinical and neurodegeneration events. We enrolled 228 PD patients and 119 healthy controls with comprehensive assessments of olfactory, autonomic, cognitive, sleep, and emotional function. The integrity of substantia nigra (SN), locus coeruleus (LC), amygdala, hippocampus, entorhinal cortex, and basal forebrain were assessed using diffusion and neuromelanin-sensitive MRI. SuStaIn model with above clinical and neuroimaging variables as input was conducted to identify PD subtypes. An independent dataset consisting of 153 PD patients and 67 healthy controls was utilized to validate our findings. We identified two distinct PD subtypes: subtype 1 with rapid eye movement sleep behavior disorder (RBD), autonomic dysfunction, and degeneration of the SN and LC as early manifestations, and cognitive impairment and limbic degeneration as advanced manifestations, while subtype 2 with hyposmia, cognitive impairment, and limbic degeneration as early manifestations, followed later by RBD and degeneration of the LC in advanced disease. Similar subtypes were shown in the validation dataset. Moreover, we found that subtype 1 had weaker levodopa response, more GBA mutations, and poorer prognosis than subtype 2. These findings provide new insights into the underlying disease biology and might be useful for personalized treatment for patients based on their subtype.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Linbo Wang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Wei Cheng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - JinChao Lv
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433, Shanghai, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Shanghai, China
| | - Ting Gao
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xueqin Bai
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Haoting Wu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Luyan Gu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, 200433, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, United Kingdom.
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, 310000, Hangzhou, China.
| |
Collapse
|
20
|
Li H, Jia X, Chen M, Jia X, Yang Q. Sex Differences in Brain Structure in de novo Parkinson's Disease: A Cross-Sectional and Longitudinal Neuroimaging Study. JOURNAL OF PARKINSON'S DISEASE 2023; 13:785-795. [PMID: 37248914 PMCID: PMC10473079 DOI: 10.3233/jpd-225125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Parkinson's disease (PD) varies in occurrence, presentation, and severity between males and females. However, the sex effects on the patterns of brain structure, cross-sectionally and longitudinally, are still unclear. OBJECTIVE We aimed to compare sex differences in brain features cross-sectionally and longitudinally using grey matter volume (GMV) and cortical thickness in a large sample of newly diagnosed drug-naive PD patients. METHODS Cognitive assessments and structural MR images of 262 PD patients (171 males) and 113 healthy controls (68 males) were selected from the Parkinson's Progression Markers Initiative. Of these, 97 PD patients (66 males) completed 12- and 24-month follow-up examinations. After regressing out the expected effects of age and sex, brain maps of GMV and cortical thickness were compared using two-sample t tests cross-sectionally and were compared using repeated measurement analyses of variance longitudinally. RESULTS At baseline, male PD patients exhibited a greater extent of brain atrophy and cortical thickness reduction than females, which mainly occurred in the cerebellum, frontal lobe, parietal lobe, and temporal lobe. At follow-up, female and male PD patients showed similar dynamics of disease progression, as both groups declined over time while the females maintained the advantage. The cortical thickness of the right precentral gyrus at baseline was negatively associated with the longitudinal changes of motor function in male PD patients. CONCLUSION The current findings might demonstrate sex effect in neuroanatomy during the course of PD, provide new insights into the neurodegenerative process, and facilitate the development of more effective sex-specific therapeutic strategies.
Collapse
Affiliation(s)
- Hui Li
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xuejia Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiuqin Jia
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Key Lab of Medical Engineering for Cardiovascular Disease, Ministry of Education, Beijing, China
- Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, Beijing, China
| |
Collapse
|
21
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|