1
|
Zhang D, Zhang J, Bian X, Zhang P, Wu W, Zuo X. Iron Oxide Nanoparticle-Based T 1 Contrast Agents for Magnetic Resonance Imaging: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 15:33. [PMID: 39791792 PMCID: PMC11722098 DOI: 10.3390/nano15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
This review highlights recent progress in utilizing iron oxide nanoparticles (IONPs) as a safer alternative to gadolinium-based contrast agents (GBCAs) for magnetic resonance imaging (MRI). It consolidates findings from multiple studies, discussing current T1 contrast agents (CAs), the synthesis techniques for IONPs, the theoretical principles for designing IONP-based MRI CAs, and the key factors that impact their T1 contrast efficacy, such as nanoparticle size, morphology, surface modifications, valence states, and oxygen vacancies. Furthermore, we summarize current strategies to achieve IONP-based responsive CAs, including self-assembly/disassembly and distance adjustment. This review also evaluates the biocompatibility, organ accumulation, and clearance pathways of IONPs for clinical applications. Finally, the challenges associated with the clinical translation of IONP-based T1 CAs are included.
Collapse
Affiliation(s)
- Dongmei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Jing Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xianglin Bian
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Pei Zhang
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Weihua Wu
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
| | - Xudong Zuo
- School of Mathematics and Physics, Jiangsu University of Technology, Changzhou 213100, China; (D.Z.)
- The Jiangsu Key Laboratory of Clean Energy Storage and Conversion, Jiangsu University of Technology, Changzhou 213100, China
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Li D, Kirberger M, Qiao J, Gui Z, Xue S, Pu F, Jiang J, Xu Y, Tan S, Salarian M, Ibhagui O, Hekmatyar K, Yang JJ. Protein MRI Contrast Agents as an Effective Approach for Precision Molecular Imaging. Invest Radiol 2024; 59:170-186. [PMID: 38180819 DOI: 10.1097/rli.0000000000001057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
ABSTRACT Cancer and other acute and chronic diseases are results of perturbations of common molecular determinants in key biological and signaling processes. Imaging is critical for characterizing dynamic changes in tumors and metastases, the tumor microenvironment, tumor-stroma interactions, and drug targets, at multiscale levels. Magnetic resonance imaging (MRI) has emerged to be a primary imaging modality for both clinical and preclinical applications due to its advantages over other modalities, including sensitivity to soft tissues, nondepth limitations, and the use of nonionizing radiation. However, extending the application of MRI to achieve both qualitative and quantitative precise molecular imaging with the capability to quantify molecular biomarkers for early detection, staging, and monitoring therapeutic treatment requires the capacity to overcome several major challenges including the trade-off between metal-binding affinity and relaxivity, which is an issue frequently associated with small chelator contrast agents. In this review, we will introduce the criteria of ideal contrast agents for precision molecular imaging and discuss the relaxivity of current contrast agents with defined first shell coordination water molecules. We will then report our advances in creating a new class of protein-targeted MRI contrast agents (ProCAs) with contributions to relaxivity largely derived from the secondary sphere and correlation time. We will summarize our rationale, design strategy, and approaches to the development and optimization of our pioneering ProCAs with desired high relaxivity, metal stability, and molecular biomarker-targeting capability, for precision MRI. From first generation (ProCA1) to third generation (ProCA32), we have achieved dual high r1 and r2 values that are 6- to 10-fold higher than clinically approved contrast agents at magnetic fields of 1.5 T, and their relaxivity values at high field are also significantly higher, which enables high resolution during small animal imaging. Further engineering of multiple targeting moieties enables ProCA32 agents that have strong biomarker-binding affinity and specificity for an array of key molecular biomarkers associated with various chronic diseases, while maintaining relaxation and exceptional metal-binding and selectivity, serum stability, and resistance to transmetallation, which are critical in mitigating risks associated with metal toxicity. Our leading product ProCA32.collagen has enabled the first early detection of liver metastasis from multiple cancers at early stages by mapping the tumor environment and early stage of fibrosis from liver and lung in vivo, with strong translational potential to extend to precision MRI for preclinical and clinical applications for precision diagnosis and treatment.
Collapse
Affiliation(s)
- Dongjun Li
- From the Center for Diagnostics and Therapeutics, Advanced Translational Imaging Facility, Department of Chemistry, Georgia State University, Atlanta, GA (D.L., M.K., J.Q., Z.G., S.X., P.F., J.J., S.T., M.S., O.I., K.H., J.J.Y.); and InLighta BioSciences, LLC, Marietta, GA (Y.X., J.J.Y)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Nhàn NTT, Yamada T, Yamada KH. Peptide-Based Agents for Cancer Treatment: Current Applications and Future Directions. Int J Mol Sci 2023; 24:12931. [PMID: 37629112 PMCID: PMC10454368 DOI: 10.3390/ijms241612931] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Peptide-based strategies have received an enormous amount of attention because of their specificity and applicability. Their specificity and tumor-targeting ability are applied to diagnosis and treatment for cancer patients. In this review, we will summarize recent advancements and future perspectives on peptide-based strategies for cancer treatment. The literature search was conducted to identify relevant articles for peptide-based strategies for cancer treatment. It was performed using PubMed for articles in English until June 2023. Information on clinical trials was also obtained from ClinicalTrial.gov. Given that peptide-based strategies have several advantages such as targeted delivery to the diseased area, personalized designs, relatively small sizes, and simple production process, bioactive peptides having anti-cancer activities (anti-cancer peptides or ACPs) have been tested in pre-clinical settings and clinical trials. The capability of peptides for tumor targeting is essentially useful for peptide-drug conjugates (PDCs), diagnosis, and image-guided surgery. Immunomodulation with peptide vaccines has been extensively tested in clinical trials. Despite such advantages, FDA-approved peptide agents for solid cancer are still limited. This review will provide a detailed overview of current approaches, design strategies, routes of administration, and new technological advancements. We will highlight the success and limitations of peptide-based therapies for cancer treatment.
Collapse
Affiliation(s)
- Nguyễn Thị Thanh Nhàn
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Richard & Loan Hill Department of Biomedical Engineering, University of Illinois College of Engineering, Chicago, IL 60607, USA
| | - Kaori H. Yamada
- Department of Pharmacology & Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA;
- Department of Ophthalmology & Visual Sciences, University of Illinois College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Kaster M, Levasseur MD, Edwardson TGW, Caldwell MA, Hofmann D, Licciardi G, Parigi G, Luchinat C, Hilvert D, Meade TJ. Engineered Nonviral Protein Cages Modified for MR Imaging. ACS APPLIED BIO MATERIALS 2023; 6:591-602. [PMID: 36626688 PMCID: PMC9945100 DOI: 10.1021/acsabm.2c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2023]
Abstract
Diagnostic medical imaging utilizes magnetic resonance (MR) to provide anatomical, functional, and molecular information in a single scan. Nanoparticles are often labeled with Gd(III) complexes to amplify the MR signal of contrast agents (CAs) with large payloads and high proton relaxation efficiencies (relaxivity, r1). This study examined the MR performance of two structurally unique cages, AaLS-13 and OP, labeled with Gd(III). The cages have characteristics relevant for the development of theranostic platforms, including (i) well-defined structure, symmetry, and size; (ii) the amenability to extensive engineering; (iii) the adjustable loading of therapeutically relevant cargo molecules; (iv) high physical stability; and (v) facile manufacturing by microbial fermentation. The resulting conjugates showed significantly enhanced proton relaxivity (r1 = 11-18 mM-1 s-1 at 1.4 T) compared to the Gd(III) complex alone (r1 = 4 mM-1 s-1). Serum phantom images revealed 107% and 57% contrast enhancements for Gd(III)-labeled AaLS-13 and OP cages, respectively. Moreover, proton nuclear magnetic relaxation dispersion (1H NMRD) profiles showed maximum relaxivity values of 50 mM-1 s-1. Best-fit analyses of the 1H NMRD profiles attributed the high relaxivity of the Gd(III)-labeled cages to the slow molecular tumbling of the conjugates and restricted local motion of the conjugated Gd(III) complex.
Collapse
Affiliation(s)
- Megan
A. Kaster
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| | - Mikail D. Levasseur
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Thomas G. W. Edwardson
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Michael A. Caldwell
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| | - Daniela Hofmann
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Giulia Licciardi
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence, via Luigi Sacconi 6, Sesto Fiorentino50019Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), via Luigi Sacconi 6, Sesto Fiorentino50019, Italy
| | - Donald Hilvert
- Laboratory
of Organic Chemistry, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, Zürich8093, Switzerland
| | - Thomas J. Meade
- Departments
of Chemistry, Molecular Biosciences, Neurobiology and Radiology, Northwestern University, 2145 N. Sheridan Road, Evanston, Illinois60208, United States
| |
Collapse
|
5
|
Kim H, Jin S, Choi H, Kang M, Park SG, Jun H, Cho H, Kang S. Target-switchable Gd(III)-DOTA/protein cage nanoparticle conjugates with multiple targeting affibody molecules as target selective T 1 contrast agents for high-field MRI. J Control Release 2021; 335:269-280. [PMID: 34044091 DOI: 10.1016/j.jconrel.2021.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
Magnetic resonance imaging (MRI) is a non-invasive in vivo imaging tool, providing high enough spatial resolution to obtain both the anatomical and the physiological information of patients. However, MRI generally suffers from relatively low sensitivity often requiring the aid of contrast agents (CA) to enhance the contrast of vessels and/or the tissues of interest from the background. The targeted delivery of diagnostic probes to the specific lesion is a powerful approach for early diagnosis and signal enhancement leading to the effective treatment of various diseases. Here, we established targeting ligand switchable nanoplatforms using lumazine synthase protein cage nanoparticles derived from Aquifex aeolicus (AaLS) by genetically introducing the SpyTag peptide (ST) to the C-terminus of the AaLS subunits to form an ST-displaying AaLS (AaLS-ST). Conversely, multiple targeting ligands were constructed by genetically fusing SpyCatcher protein (SC) to either HER2 or EGFR targeting affibody molecules (SC-HER2Afb or SC-EGFRAfb). Gd(III)-DOTA complexes were chemically attached to the AaLS-ST and the external surface of the Gd(III)-DOTA conjugated AaLS-ST (Gd(III)-DOTA-AaLS-ST) were successfully decorated with either the HER2Afb or the EGFRAfb. The resulting Gd(III)-DOTA-AaLS/HER2Afb and Gd(III)-DOTA-AaLS/EGFR2Afb exhibited high r1 relaxivity values of 57 and 25 mM-1 s-1 at 1.4 and 7 T, respectively, which were 10-fold or higher than those of the clinically used Dotarem. Their target-selective contrast enhancements were confirmed with in vitro cell-based MRI scans and the in vivo MR imaging of tumor-bearing mouse models at 7 T. A target-switchable AaLS-based nanoplatform that was developed in this study might serve as a promising T1 CA developing platform at a high magnetic field to detect various tumor sites in a target-specific manner in future clinical applications.
Collapse
Affiliation(s)
- Hansol Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seokha Jin
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyukjun Choi
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - MungSoo Kang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seong Guk Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
6
|
Tang S, Deng X, Jiang J, Kirberger M, Yang JJ. Design of Calcium-Binding Proteins to Sense Calcium. Molecules 2020; 25:molecules25092148. [PMID: 32375353 PMCID: PMC7248937 DOI: 10.3390/molecules25092148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023] Open
Abstract
Calcium controls numerous biological processes by interacting with different classes of calcium binding proteins (CaBP’s), with different affinities, metal selectivities, kinetics, and calcium dependent conformational changes. Due to the diverse coordination chemistry of calcium, and complexity associated with protein folding and binding cooperativity, the rational design of CaBP’s was anticipated to present multiple challenges. In this paper we will first discuss applications of statistical analysis of calcium binding sites in proteins and subsequent development of algorithms to predict and identify calcium binding proteins. Next, we report efforts to identify key determinants for calcium binding affinity, cooperativity and calcium dependent conformational changes using grafting and protein design. Finally, we report recent advances in designing protein calcium sensors to capture calcium dynamics in various cellular environments.
Collapse
Affiliation(s)
- Shen Tang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Jie Jiang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Michael Kirberger
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
- Correspondence: ; Tel.: +1-404-413-5520
| |
Collapse
|
7
|
Salarian M, Ibhagui OY, Yang JJ. Molecular imaging of extracellular matrix proteins with targeted probes using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 12:e1622. [PMID: 32126587 DOI: 10.1002/wnan.1622] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/04/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
The extracellular matrix (ECM) consists of proteins and carbohydrates that supports different biological structures and processes such as tissue development, elasticity, and preservation of organ structure. Diseases involving inflammation, fibrosis, tumor invasion, and injury are all attributed to the transition of the ECM from homeostasis to remodeling, which can significantly change the biochemical and biomechanical features of ECM components. While contrast agents have played an indispensable role in facilitating clinical diagnosis of diseases using magnetic resonance imaging (MRI), there is a strong need to develop novel biomarker-targeted imaging probes for in vivo visualization of biological processes and pathological alterations at a cellular and molecular level, for both early diagnosis and monitoring drug treatment. Herein, we will first review the pathological accumulation and characterization of ECM proteins recognized as important molecular features of diseases. Developments in MRI probes targeting ECM proteins such as collagen, fibronectin, and elastin via conjugation of existing contrast agents to targeting moieties and their applications to various diseases, are also reviewed. We have also reviewed our progress in the development of collagen-targeted protein MRI contrast agent with significant improvement in relaxivity and metal binding specificity, and their applications in early detection of fibrosis and metastatic cancer. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Biology-Inspired Nanomaterials > Peptide-Based Structures Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Georgia State University, Atlanta, Georgia
| | | | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, Georgia.,Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
8
|
Tan S, Yang H, Xue S, Qiao J, Salarian M, Hekmatyar K, Meng Y, Mukkavilli R, Pu F, Odubade OY, Harris W, Hai Y, Yushak ML, Morales-Tirado VM, Mittal P, Sun PZ, Lawson D, Grossniklaus HE, Yang JJ. Chemokine receptor 4 targeted protein MRI contrast agent for early detection of liver metastases. SCIENCE ADVANCES 2020; 6:eaav7504. [PMID: 32083172 PMCID: PMC7007242 DOI: 10.1126/sciadv.aav7504] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/22/2019] [Indexed: 05/22/2023]
Abstract
Liver metastases often progress from primary cancers including uveal melanoma (UM), breast, and colon cancer. Molecular biomarker imaging is a new non-invasive approach for detecting early stage tumors. Here, we report the elevated expression of chemokine receptor 4 (CXCR4) in liver metastases in UM patients and metastatic UM mouse models, and development of a CXCR4-targeted MRI contrast agent, ProCA32.CXCR4, for sensitive MRI detection of UM liver metastases. ProCA32.CXCR4 exhibits high relaxivities (r 1 = 30.9 mM-1 s-1, r 2 = 43.2 mM-1 s-1, 1.5 T; r 1 = 23.5 mM-1 s-1, r 2 = 98.6 mM-1 s-1, 7.0 T), strong CXCR4 binding (K d = 1.10 ± 0.18 μM), CXCR4 molecular imaging capability in metastatic and intrahepatic xenotransplantation UM mouse models. ProCA32.CXCR4 enables detecting UM liver metastases as small as 0.1 mm3. Further development of the CXCR4-targeted imaging agent should have strong translation potential for early detection, surveillance, and treatment stratification of liver metastases patients.
Collapse
Affiliation(s)
- Shanshan Tan
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, GA 30322, USA
| | - Shenghui Xue
- InLighta Biosciences LLC, Atlanta, GA 30303, USA
| | - Jingjuan Qiao
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Mani Salarian
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Khan Hekmatyar
- Bioimaging Research Center, University of Georgia, Athens, GA 30602, USA
| | - Yuguang Meng
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Rao Mukkavilli
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Fan Pu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | | | - Wayne Harris
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Yan Hai
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Melinda L. Yushak
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | | | - Pardeep Mittal
- Department of Radiology and Imaging, Augusta University, Augusta, GA 30912, USA
| | - Phillip Z. Sun
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - David Lawson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | | | - Jenny J. Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
- Corresponding author.
| |
Collapse
|
9
|
Chawda N, Basu M, Majumdar D, Poddar R, Mahapatra SK, Banerjee I. Engineering of Gadolinium-Decorated Graphene Oxide Nanosheets for Multimodal Bioimaging and Drug Delivery. ACS OMEGA 2019; 4:12470-12479. [PMID: 31460366 PMCID: PMC6682028 DOI: 10.1021/acsomega.9b00883] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/25/2019] [Indexed: 05/08/2023]
Abstract
Engineering of water-dispersible Gd3+ ions-decorated reduced graphene oxide (Gd-rGO) nanosheets (NSs) has been performed. The multifunctional capability of the sample was studied as a novel contrast agent for swept source optical coherence tomography and magnetic resonance imaging, and also as an efficient drug-delivery nanovehicle. The synthesized samples were fabricated in a chemically stable condition, and efforts have been put toward improving its biocompatibility by functionalizing with carbohydrates molecules. Gd incorporation in rGO matrix enhanced the fluorouracil (5-FU) drug loading capacity by 34%. The release of the drug was ∼92% within 72 h. Gd-rGO nanosheets showed significant contrast in comparison to optically responsive bare GO for swept source optical coherence tomography. The longitudinal relaxivity rate (r 1) of 16.85 mM-1 s-1 for Gd-rGO was recorded, which was 4 times larger than that of the commercially used clinical contrast agent Magnevist (4 mM-1 s-1) at a magnetic field strength of 1.5 T.
Collapse
Affiliation(s)
- Nitya Chawda
- School
of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| | - Mainak Basu
- School
of Basic and Applied Sciences, GD Goenka
University, Gurgaon, Haryana 122103, India
- Department
of Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Dipanwita Majumdar
- Department
of Chemistry, Chandernagore College, Chandannagar, Hooghly WB-712136, India
| | - Raju Poddar
- Department
of Biotechnology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | | | - Indrani Banerjee
- School
of Nano Sciences, Central University of Gujarat, Gandhinagar 382030, India
| |
Collapse
|
10
|
Wang SY, Gao S, Dai JW, Shi YR, Dong X, Weng WZ, Zhou ZH. Carbonate and phosphite encaged in frameworks constructed from square lanthanum aminopolycarboxylates and sodium chloride. Dalton Trans 2019; 48:2959-2966. [PMID: 30741287 DOI: 10.1039/c8dt04940h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel additives of lanthanum aminopolycarboxylates with inorganic anions, Na12n[La(edta)L]4n·8nNaCl·4nH2O (1: L = HPO32-; 2: L = CO32-) and K12n[La(cdta)(CO3)]4n·35nH2O (3) (H4edta = ethylenediaminetetraacetic acid; H4cdta = cyclohexanediaminetetraacetic acid), were obtained in alkaline solution. Structural analyses reveal that 1 and 2 are isomorphous and contain interesting square structures. HPO32- (CO32-) was encaged in the constructed tetranuclear frameworks. Tetranuclear lanthanum ethylenediaminetetraacetate was further encaged in superstructures of sodium chloride. 3 has a similar square structure, in which edta is replaced by cdta. All complexes are fully characterized via elemental, FT-IR, NMR, thermogravimetric and structural analyses. Solution 13C NMR spectra show that 1 and 2 dissociate into mononuclear units in water. Interestingly, 2 possesses 3.7 Å diameter holes inside its crystals, which can adsorb a small amount of O2 or CO2 selectively. The amounts of O2 and CO2 adsorbed increase gradually from 0.32 and 0.38 mg g-1 at 0.4 bar to 15.90 and 10.54 mg g-1 at 29.9 bar, respectively.
Collapse
Affiliation(s)
- Si-Yuan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | | | | | | | | | | | | |
Collapse
|
11
|
Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem Rev 2019; 119:957-1057. [PMID: 30350585 PMCID: PMC6516866 DOI: 10.1021/acs.chemrev.8b00363] [Citation(s) in RCA: 940] [Impact Index Per Article: 156.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tens of millions of contrast-enhanced magnetic resonance imaging (MRI) exams are performed annually around the world. The contrast agents, which improve diagnostic accuracy, are almost exclusively small, hydrophilic gadolinium(III) based chelates. In recent years concerns have arisen surrounding the long-term safety of these compounds, and this has spurred research into alternatives. There has also been a push to develop new molecularly targeted contrast agents or agents that can sense pathological changes in the local environment. This comprehensive review describes the state of the art of clinically approved contrast agents, their mechanism of action, and factors influencing their safety. From there we describe different mechanisms of generating MR image contrast such as relaxation, chemical exchange saturation transfer, and direct detection and the types of molecules that are effective for these purposes. Next we describe efforts to make safer contrast agents either by increasing relaxivity, increasing resistance to metal ion release, or by moving to gadolinium(III)-free alternatives. Finally we survey approaches to make contrast agents more specific for pathology either by direct biochemical targeting or by the design of responsive or activatable contrast agents.
Collapse
Affiliation(s)
- Jessica Wahsner
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eric M. Gale
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Aurora Rodríguez-Rodríguez
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging and the Institute for Innovation in Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
12
|
Abstract
Early diagnosis, noninvasive detection, and staging of various diseases, remain one of the major clinical barriers to effective medical treatment and prevention of disease progression toward major clinical consequences. Molecular imaging technologies play an indispensable role in the clinical field in overcoming these major barriers. The increasing application of imaging techniques and agents in early detection of different diseases such as cancer has resulted in improved treatment response and clinical patient management. In this chapter we will first introduce criteria for the design and engineering of calcium-binding protein (CaBP) parvalbumin as a protein Gd-MRI contrast agent (ProCA) with unprecedented metal selectivity for Gd3+ over physiological metal ions. We will then discuss the further development of targeted MRI contrast agent for molecular imaging of PSMA biomarker for early detection of prostate cancer.
Collapse
Affiliation(s)
- Mani Salarian
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Shenghui Xue
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
- Inlighta Biosciences, Atlanta, GA, USA
| | - Oluwatosin Y Ibhagui
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA
| | - Jenny J Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
13
|
The design and NMR structure determination of yttrium-oligopeptide tags for recombinant proteins and antibodies. ACTA CHIMICA SLOVACA 2018. [DOI: 10.2478/acs-2018-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
A strategy for the design of new yttrium(III) tags consisting of sequences of naturally occurring amino acids is described. These tags are 4–6 amino acids in length and consist of aspartic and glutamic acids. The use of natural amino acids would allow these oligopeptides to be incorporated into recombinant proteins at the DNA level, enabling the protein to be Y(III)-labelled after protein isolation. This allows a radionuclide or heavy atom to be associated with the protein without the necessity of further synthetic modification. Suitable peptides able to chelate Y(III) in stable complexes were designed based on quantum-chemical calculations. The stability of complexes formed by these peptides was tested by isothermal titration calorimetry, giving dissociation constants in the micromolar range. The likely structure of the most tightly bound complex was inferred from a combination of NMR experiments and quantum-chemical calculations. This structure will serve as the basis for future optimizations.
Collapse
|
14
|
Abstract
Molecular magnetic resonance imaging (MRI) provides information non-invasively at cellular and molecular levels, for both early diagnosis and monitoring therapeutic follow-up. This imaging technique requires the development of a new class of contrast agents, which signal changes (typically becomes enhanced) when in presence of the cellular or molecular process to be evaluated. Even if molecular MRI has had a prominent role in the advances in medicine over the past two decades, the large majority of the developed probes to date are still in preclinical level, or eventually in phase I or II clinical trials. The development of novel imaging probes is an emergent active research domain. This review focuses on gadolinium-based specific-targeted contrast agents, providing rational design considerations and examples of the strategies recently reported in the literature.
Collapse
|
15
|
Taylor SK, Tran TH, Liu MZ, Harris PE, Sun Y, Jambawalikar SR, Tong L, Stojanovic MN. Insulin Hexamer-Caged Gadolinium Ion as MRI Contrast-o-phore. Chemistry 2018; 24:10646-10652. [PMID: 29873848 DOI: 10.1002/chem.201801388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Indexed: 12/30/2022]
Abstract
High-relaxivity protein-complexes of GdIII are being pursued as MRI contrast agents in hope that they can be used at much lower doses that would minimize toxic-side effects of GdIII release from traditional contrast agents. We construct here a new type of protein-based MRI contrast agent, a proteinaceous cage based on a stable insulin hexamer in which GdIII is captured inside a water filled cavity. The macromolecular structure and the large number of "free" GdIII coordination sites available for water binding lead to exceptionally high relaxivities per one GdIII ion. The GdIII slowly diffuses out of this cage, but this diffusion can be prevented by addition of ligands that bind to the hexamer. The ligands that trigger structural changes in the hexamer, SCN- , Cl- and phenols, modulate relaxivities through an outside-in signaling that is allosterically transduced through the protein cage. Contrast-o-phores based on protein-caged metal ions have potential to become clinical contrast agents with environmentally-sensitive properties.
Collapse
Affiliation(s)
- Steven K Taylor
- Department of Medicine, Columbia University, 630 W. 168th St., Box 84, New York, NY, 10032, USA
| | - Timothy H Tran
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Michael Z Liu
- Department of Radiology, Columbia University, 177 Ft Washington Ave, New York, NY, 10032, USA
| | - Paul E Harris
- Department of Medicine, Columbia University, 630 W. 168th St., Box 84, New York, NY, 10032, USA
| | - Yanping Sun
- Irving Comprehensive Cancer Center, Columbia University, 622 W. 168th St., New York, NY, 10032, USA
| | - Sachin R Jambawalikar
- Department of Radiology, Columbia University, 177 Ft Washington Ave, New York, NY, 10032, USA
| | - Liang Tong
- Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Milan N Stojanovic
- Departments of Medicine, Biomedical Engineering and Systems Biology, Columbia University, 630 W. 168th St., Box 84, New York, NY, 10032, USA
| |
Collapse
|
16
|
Li H, Harriss BI, Phinikaridou A, Lacerda S, Ramniceanu G, Doan BT, Ho KL, Chan CF, Lo WS, Botnar RM, Lan R, Richard C, Law GL, Long NJ, Wong KL. Gadolinium and Platinum in Tandem: Real-time Multi-Modal Monitoring of Drug Delivery by MRI and Fluorescence Imaging. Nanotheranostics 2017; 1:186-195. [PMID: 29071187 PMCID: PMC5646715 DOI: 10.7150/ntno.18619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/11/2017] [Indexed: 12/25/2022] Open
Abstract
A novel dual-imaging cisplatin-carrying molecular cargo capable of performing simultaneous optical and MR imaging is reported herein. This long-lasting MRI contrast agent (r1 relaxivity of 23.4 mM-1s-1 at 3T, 25 oC) is a photo-activated cisplatin prodrug (PtGdL) which enables real-time monitoring of anti-cancer efficacy. PtGdL is a model for monitoring the drug delivery and anti-cancer efficacy by MRI with a much longer retention time (24 hours) in several organs such as renal cortex and spleen than GdDOTA and its motif control GdL. Upon complete release of cisplatin, all PtGdL is converted to GdL enabling subsequent MRI analyses of therapy efficacy within its reasonably short clearance time of 4 hours. There is also responsive fluorescence enhancement for monitoring by photon-excitation.
Collapse
Affiliation(s)
- Hongguang Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Bethany I Harriss
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Alkystis Phinikaridou
- King's College London, Division of Imaging Sciences, Lambeth Wing, St Thomas' Hospital London SE1 7EH
| | - Sara Lacerda
- King's College London, Division of Imaging Sciences, Lambeth Wing, St Thomas' Hospital London SE1 7EH
| | - Gregory Ramniceanu
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS); CNRS UMR 8258; Inserm U 1022; Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France.,Chimie-ParisTech, PSL, 75005 Paris, France
| | - Bich-Thuy Doan
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS); CNRS UMR 8258; Inserm U 1022; Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France.,Chimie-ParisTech, PSL, 75005 Paris, France
| | - Ka-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Chi-Fai Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR.,Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Wai-Sum Lo
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - René M Botnar
- King's College London, Division of Imaging Sciences, Lambeth Wing, St Thomas' Hospital London SE1 7EH
| | - Rongfeng Lan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Cyrille Richard
- Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS); CNRS UMR 8258; Inserm U 1022; Université Paris Descartes, Sorbonne Paris Cité, Faculté des Sciences Pharmaceutiques et Biologiques, 75006 Paris, France.,Chimie-ParisTech, PSL, 75005 Paris, France
| | - Ga-Lai Law
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR
| | - Nicholas J Long
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR
| |
Collapse
|
17
|
Zhang S, Zheng Y, Fu DY, Li W, Wu Y, Li B, Wu L. Biocompatible supramolecular dendrimers bearing a gadolinium-substituted polyanionic core for MRI contrast agents. J Mater Chem B 2017; 5:4035-4043. [DOI: 10.1039/c6tb03263j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two hybrid supramolecular complexes comprising magnetic core and dendritic periphery were prepared, which exhibited uniform size, definite molecular weight and chemical composition, and were applicable as enhanced contrast agents.
Collapse
Affiliation(s)
- Simin Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Yanmei Zheng
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Ding-Yi Fu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun
- China
| |
Collapse
|
18
|
Pu F, Salarian M, Xue S, Qiao J, Feng J, Tan S, Patel A, Li X, Mamouni K, Hekmatyar K, Zou J, Wu D, Yang JJ. Prostate-specific membrane antigen targeted protein contrast agents for molecular imaging of prostate cancer by MRI. NANOSCALE 2016; 8:12668-82. [PMID: 26961235 PMCID: PMC5528195 DOI: 10.1039/c5nr09071g] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is one of the most specific cell surface markers for prostate cancer diagnosis and targeted treatment. However, achieving molecular imaging using non-invasive MRI with high resolution has yet to be achieved due to the lack of contrast agents with significantly improved relaxivity for sensitivity, targeting capabilities and metal selectivity. We have previously reported our creation of a novel class of protein Gd(3+) contrast agents, ProCA32, which displayed significantly improved relaxivity while exhibiting strong Gd(3+) binding selectivity over physiological metal ions. In this study, we report our effort in further developing biomarker-targeted protein MRI contrast agents for molecular imaging of PSMA. Among three PSMA targeted contrast agents engineered with addition of different molecular recognition sequences, ProCA32.PSMA exhibits a binding affinity of 1.1 ± 0.1 μM for PSMA while the metal binding affinity is maintained at 0.9 ± 0.1 × 10(-22) M. In addition, ProCA32.PSMA exhibits r1 of 27.6 mM(-1) s(-1) and r2 of 37.9 mM(-1) s(-1) per Gd (55.2 and 75.8 mM(-1) s(-1) per molecule r1 and r2, respectively) at 1.4 T. At 7 T, ProCA32.PSMA also has r2 of 94.0 mM(-1) s(-1) per Gd (188.0 mM(-1) s(-1) per molecule) and r1 of 18.6 mM(-1) s(-1) per Gd (37.2 mM(-1) s(-1) per molecule). This contrast capability enables the first MRI enhancement dependent on PSMA expression levels in tumor bearing mice using both T1 and T2-weighted MRI at 7 T. Further development of these PSMA-targeted contrast agents are expected to be used for the precision imaging of prostate cancer at an early stage and to monitor disease progression and staging, as well as determine the effect of therapeutic treatment by non-invasive evaluation of the PSMA level using MRI.
Collapse
Affiliation(s)
- Fan Pu
- Departments of Chemistry, Center for Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Fan Pu
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA.,Inlighta Biosciences LLC, Marietta, GA 30068, USA
| | - Shenghui Xue
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
20
|
Pu F, Chen N, Xue S. Calcium intake, calcium homeostasis and health. FOOD SCIENCE AND HUMAN WELLNESS 2016. [DOI: 10.1016/j.fshw.2016.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Dong J, Liu M, Zhang K, Cao Y, Jiang B, Zu G, Pei R. Biocleavable Oligolysine-Grafted Poly(disulfide amine)s as Magnetic Resonance Imaging Probes. Bioconjug Chem 2015; 27:151-8. [DOI: 10.1021/acs.bioconjchem.5b00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jingjin Dong
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Nano
Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Min Liu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Kunchi Zhang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yi Cao
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Bin Jiang
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guangyue Zu
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Renjun Pei
- Key
Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
22
|
Pu F, Qiao J, Xue S, Yang H, Patel A, Wei L, Hekmatyar K, Salarian M, Grossniklaus HE, Liu ZR, Yang JJ. GRPR-targeted Protein Contrast Agents for Molecular Imaging of Receptor Expression in Cancers by MRI. Sci Rep 2015; 5:16214. [PMID: 26577829 PMCID: PMC4649707 DOI: 10.1038/srep16214] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Gastrin-releasing peptide receptor (GRPR) is differentially expressed on the surfaces of various diseased cells, including prostate and lung cancer. However, monitoring temporal and spatial expression of GRPR in vivo by clinical MRI is severely hampered by the lack of contrast agents with high relaxivity, targeting capability and tumor penetration. Here, we report the development of a GRPR-targeted MRI contrast agent by grafting the GRPR targeting moiety into a scaffold protein with a designed Gd3+ binding site (ProCA1.GRPR). In addition to its strong binding affinity for GRPR (Kd = 2.7 nM), ProCA1.GRPR has high relaxivity (r1 = 42.0 mM−1s−1 at 1.5 T and 25 °C) and strong Gd3+ selectivity over physiological metal ions. ProCA1.GRPR enables in vivo detection of GRPR expression and spatial distribution in both PC3 and H441 tumors in mice using MRI. ProCA1.GRPR is expected to have important preclinical and clinical implications for the early detection of cancer and for monitoring treatment effects.
Collapse
Affiliation(s)
- Fan Pu
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jingjuan Qiao
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Shenghui Xue
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Hua Yang
- Department of Ophthalmology, Emory University, Atlanta, GA, 30322
| | - Anvi Patel
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Lixia Wei
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Khan Hekmatyar
- Bio-imaging Research Center, University of Georgia, Athens, GA, 30602
| | - Mani Salarian
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | | | - Zhi-Ren Liu
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| | - Jenny J Yang
- Departments of Chemistry and Biology, Center for Diagnostics &Therapeutics, Georgia State University, Atlanta, GA 30303
| |
Collapse
|
23
|
Song Y, Kang YJ, Jung H, Kim H, Kang S, Cho H. Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI. Sci Rep 2015; 5:15656. [PMID: 26493381 PMCID: PMC4616051 DOI: 10.1038/srep15656] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022] Open
Abstract
With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r1 relaxivity at low fields, but tend to lose this merit when used as T1 contrast agents (r1/r2 = 0.5 ~ 1), with their r1 decreasing and r2 increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r1 relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r1/r2 ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength.
Collapse
Affiliation(s)
- YoungKyu Song
- Department of Biomedical Engineering, School of Life Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Young Ji Kang
- Department of Biological Sciences, School of Life Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hoesu Jung
- Department of Biomedical Engineering, School of Life Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hansol Kim
- Department of Biological Sciences, School of Life Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sebyung Kang
- Department of Biological Sciences, School of Life Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, School of Life Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
24
|
Wu Y, Briley K, Tao X. Nanoparticle-based imaging of inflammatory bowel disease. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:300-15. [PMID: 26371464 DOI: 10.1002/wnan.1357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 05/11/2015] [Accepted: 05/23/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Yingwei Wu
- Department of Radiology; Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine; Shanghai China
- Department of Radiology; Shanghai East Hospital, Tongji University, School of Medicine; Shanghai China
| | - Karen Briley
- Department of Radiology, Wright Center of Innovation and Biomedical Imaging; The Ohio State University; Columbus OH USA
| | - Xiaofeng Tao
- Department of Radiology; Shanghai Ninth People's Hospital, Shanghai Jiaotong University, School of Medicine; Shanghai China
| |
Collapse
|
25
|
Protein MRI contrast agent with unprecedented metal selectivity and sensitivity for liver cancer imaging. Proc Natl Acad Sci U S A 2015; 112:6607-12. [PMID: 25971726 DOI: 10.1073/pnas.1423021112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
With available MRI techniques, primary and metastatic liver cancers that are associated with high mortality rates and poor treatment responses are only diagnosed at late stages, due to the lack of highly sensitive contrast agents without Gd(3+) toxicity. We have developed a protein contrast agent (ProCA32) that exhibits high stability for Gd(3+) and a 10(11)-fold greater selectivity for Gd(3+) over Zn(2+) compared with existing contrast agents. ProCA32, modified from parvalbumin, possesses high relaxivities (r1/r2: 66.8 mmol(-1)⋅s(-1)/89.2 mmol(-1)⋅s(-1) per particle). Using T1- and T2-weighted, as well as T2/T1 ratio imaging, we have achieved, for the first time (to our knowledge), robust MRI detection of early liver metastases as small as ∼0.24 mm in diameter, much smaller than the current detection limit of 10-20 mm. Furthermore, ProCA32 exhibits appropriate in vivo preference for liver sinusoidal spaces and pharmacokinetics for high-quality imaging. ProCA32 will be invaluable for noninvasive early detection of primary and metastatic liver cancers as well as for monitoring treatment and guiding therapeutic interventions, including drug delivery.
Collapse
|