1
|
Zavadovsky KV, Ryabov VV, Vyshlov EV, Mochula OV, Sirotina M, Kan A, Mukhomedzyanov AV, Derkachev IA, Voronkov NS, Mochula AV, Maksimova AS, Maslov LN. Intra-myocardial hemorrhage and cardiac microvascular injury in ischemia/reperfusion. A systematic review of current evidences. Curr Probl Cardiol 2025; 50:102918. [PMID: 39510400 DOI: 10.1016/j.cpcardiol.2024.102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
The in-hospital mortality rate in acute myocardial infarction (AMI) remains high despite the undoubted achievements in treatment of this disease achieved in the last 40 years. The dangerous complications of AMI remain cardiac microvascular injury (CMI) and intramyocardial hemorrhage (IMH). IMH is a widespread pathology that occurs in 42 - 57% of patients with ST-segment elevation myocardial infarction and percutaneous coronary intervention. IMH is associated with larger infarct size and contractile dysfunction. IMH is accompanied by inflammation. The appearance of IMH is depending on the duration of ischemia and requires reperfusion of the heart. IMH is accompanied by contractile dysfunction and adverse remodeling of the heart. The most likely cause of IMH is CMI. Pretreatment with ATL-146e, melatonin, tanshinone IIA, relaxin, empagliflozin, dapagliflozin, and astragaloside IV can mitigate I/R-induced CMI. CMI is accompanied by an increase in the myocardial and plasma proinflammatory cytokine levels and also the downregulation of tight junction proteins in cardiac vascular endothelial cells. However, there is no convincing evidence that proinflammatory cytokines trigger CMI. An increase in the proinflammatory cytokine levels and CMI could be two independent processes.
Collapse
Affiliation(s)
- Konstantin V Zavadovsky
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Vyacheslav V Ryabov
- Laboratory of Experimental Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Evgeny V Vyshlov
- Laboratory of Experimental Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Olga V Mochula
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Maria Sirotina
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Artur Kan
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Alexander V Mukhomedzyanov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Ivan A Derkachev
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Nikita S Voronkov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia
| | - Andrey V Mochula
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Alexandra S Maksimova
- Department of Nuclear Medicine, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Tomsk 634012, Russia
| | - Leonid N Maslov
- Department of Emergency Cardiology, Tomsk National Research Medical Center, Russian Academy of Science, Cardiology Research Institute, Kyevskskaya 111A, Tomsk 634012, Russia.
| |
Collapse
|
2
|
Gao S, He Q. Opioids and the kidney: two sides of the same coin. Front Pharmacol 2024; 15:1421248. [PMID: 39135801 PMCID: PMC11317763 DOI: 10.3389/fphar.2024.1421248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Renal dysfunction, including acute renal failure (ARF) and chronic kidney disease (CKD), continues to present significant health challenges, with renal ischemia-reperfusion injury (IRI) being a pivotal factor in their development and progression. This condition, notably impacting kidney transplantation outcomes, underscores the urgent need for innovative therapeutic interventions. The role of opioid agonists in this context, however, remains a subject of considerable debate. Current reviews tend to offer limited perspectives, focusing predominantly on either the protective or detrimental effects of opioids in isolation. Our review addresses this gap through a thorough and comprehensive evaluation of the existing literature, providing a balanced examination of the dualistic nature of opioids' influence on renal health. We delve into both the nephroprotective and nephrotoxic aspects of opioids, dissecting the complex interactions and paradoxical effects that embody the "two sides of the same coin" phenomenon. This comprehensive analysis is vital for understanding the intricate roles of opioids in renal pathophysiology, potentially informing the development of novel therapeutic strategies for preventing or treating hypoxic kidney injury.
Collapse
Affiliation(s)
- Shaowei Gao
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | | |
Collapse
|
3
|
Zhang W, Zhang Q, Liu Y, Pei J, Feng N. Novel roles of κ-opioid receptor in myocardial ischemia-reperfusion injury. PeerJ 2024; 12:e17333. [PMID: 38948204 PMCID: PMC11212630 DOI: 10.7717/peerj.17333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/12/2024] [Indexed: 07/02/2024] Open
Abstract
Acute heart attack is the primary cause of cardiovascular-related death worldwide. A common treatment is reperfusion of ischemic tissue, which can cause irreversible damage to the myocardium. The number of mitochondria in cardiomyocytes is large, which generate adenosine triphosphate (ATP) to sustain proper cardiac contractile function, and mitochondrial dysfunction plays a crucial role in cell death during myocardial ischemia-reperfusion, leading to an increasing number of studies investigating the impact of mitochondria on ischemia-reperfusion injury. The disarray of mitochondrial dynamics, excessive Ca2+ accumulation, activation of mitochondrial permeable transition pores, swelling of mitochondria, ultimately the death of cardiomyocyte are the consequences of ischemia-reperfusion injury. κ-opioid receptors can alleviate mitochondrial dysfunction, regulate mitochondrial dynamics, mitigate myocardial ischemia-reperfusion injury, exert protective effects on myocardium. The mechanism of κ-OR activation during myocardial ischemia-reperfusion to regulate mitochondrial dynamics and reduce myocardial ischemia-reperfusion injury will be discussed, so as to provide theoretical basis for the protection of ischemic myocardium.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Physiology and Pathophysiology, Fouth Military Medical University, Xi’an, Shaanxi, China
- School of Life Science, Northwest University, Xi’an, Shaanxi, China
| | - Qi Zhang
- Graduate School, Dalian Medical University, Dalian, Liaoning, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, Fouth Military Medical University, Xi’an, Shaanxi, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, Fouth Military Medical University, Xi’an, Shaanxi, China
| | - Na Feng
- Department of Physiology and Pathophysiology, Fouth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Voronkov NS, Maslov LN, Vyshlov EV, Mukhomedzyanov AV, Ryabov VV, Derkachev IA, Kan A, Gusakova SV, Gombozhapova AE, Panteleev OO. Do platelets protect the heart against ischemia/reperfusion injury or exacerbate cardiac ischemia/reperfusion injury? The role of PDGF, VEGF, and PAF. Life Sci 2024; 347:122617. [PMID: 38608835 DOI: 10.1016/j.lfs.2024.122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Acute myocardial infarction (AMI) is one of the main causes of death. It is quite obvious that there is an urgent need to develop new approaches for treatment of AMI. OBJECTIVE This review analyzes data on the role of platelets in the regulation of cardiac tolerance to ischemia/reperfusion (I/R). METHODS It was performed a search of topical articles using PubMed databases. FINDINGS Platelets activated by a cholesterol-enriched diet, thrombin, and myocardial ischemia exacerbate I/R injury of the heart. The P2Y12 receptor antagonists, remote ischemic postconditioning and conditioning alter the properties of platelets. Platelets acquire the ability to increase cardiac tolerance to I/R. Platelet-derived growth factors (PDGFs) increase tolerance of cardiomyocytes and endothelial cells to I/R. PDGF receptors (PDGFRs) were found in cardiomyocytes and endothelial cells. PDGFs decrease infarct size and partially abrogate adverse postinfarction remodeling. Protein kinase C, phosphoinositide 3-kinase, and Akt involved in the cytoprotective effect of PDGFs. Vascular endothelial growth factor increased cardiac tolerance to I/R and alleviated adverse postinfarction remodeling. The platelet-activating factor (PAF) receptor inhibitors increase cardiac tolerance to I/R in vivo. PAF enhances cardiac tolerance to I/R in vitro. It is possible that PAF receptor inhibitors could protect the heart by blocking PAF receptor localized outside the heart. PAF protects the heart through activation of PAF receptor localized in cardiomyocytes or endothelial cells. Reactive oxygen species and kinases are involved in the cardioprotective effect of PAF. CONCLUSION Platelets play an important role in the regulation of cardiac tolerance to I/R.
Collapse
Affiliation(s)
- Nikita S Voronkov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N Maslov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia.
| | - Evgeniy V Vyshlov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V Mukhomedzyanov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Vyacheslav V Ryabov
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Ivan A Derkachev
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Artur Kan
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Svetlana V Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, 634050 Tomsk, Russia
| | - Alexandra E Gombozhapova
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Oleg O Panteleev
- Department of Emergency Cardiology and Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| |
Collapse
|
5
|
Derkachev IA, Popov SV, Maslov LN, Mukhomedzyanov AV, Naryzhnaya NV, Gorbunov AS, Kan A, Krylatov AV, Podoksenov YK, Stepanov IV, Gusakova SV, Fu F, Pei JM. Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart-The signaling mechanism. Fundam Clin Pharmacol 2024; 38:489-501. [PMID: 38311344 DOI: 10.1111/fcp.12983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/06/2023] [Accepted: 01/08/2024] [Indexed: 02/10/2024]
Abstract
BACKGROUND The high mortality rate of patients with acute myocardial infarction (AMI) remains the most pressing issue of modern cardiology. Over the past 10 years, there has been no significant reduction in mortality among patients with AMI. It is quite obvious that there is an urgent need to develop fundamentally new drugs for the treatment of AMI. Angiotensin 1-7 has some promise in this regard. OBJECTIVE The objective of this article is analysis of published data on the cardioprotective properties of angiotensin 1-7. METHODS PubMed, Scopus, Science Direct, and Google Scholar were used to search articles for this study. RESULTS Angiotensin 1-7 increases cardiac tolerance to ischemia/reperfusion and mitigates adverse remodeling of the heart. Angiotensin 1-7 can prevent not only ischemic but also reperfusion cardiac injury. The activation of the Mas receptor plays a key role in these effects of angiotensin 1-7. Angiotensin 1-7 alleviates Ca2+ overload of cardiomyocytes and reactive oxygen species production in ischemia/reperfusion (I/R) of the myocardium. It is possible that both effects are involved in angiotensin 1-7-triggered cardiac tolerance to I/R. Furthermore, angiotensin 1-7 inhibits apoptosis of cardiomyocytes and stimulates autophagy of cells. There is also indirect evidence suggesting that angiotensin 1-7 inhibits ferroptosis in cardiomyocytes. Moreover, angiotensin 1-7 possesses anti-inflammatory properties, possibly achieved through NF-kB activity inhibition. Phosphoinositide 3-kinase, Akt, and NO synthase are involved in the infarct-reducing effect of angiotensin 1-7. However, the specific end-effector of the cardioprotective impact of angiotensin 1-7 remains unknown. CONCLUSION The molecular nature of the end-effector of the infarct-limiting effect of angiotensin 1-7 has not been elucidated. Perhaps, this end-effector is the sarcolemmal KATP channel or the mitochondrial KATP channel.
Collapse
Affiliation(s)
- Ivan A Derkachev
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Sergey V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | | | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Alexander S Gorbunov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Artur Kan
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Andrey V Krylatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Yuri K Podoksenov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Ivan V Stepanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk NRMC, Tomsk, Russia
| | - Svetlana V Gusakova
- Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
6
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Mukhomedzyanov AV, Popov SV, Gorbunov AS, Naryzhnaya NV, Azev VN, Maslov LN. Activation of Cardiac δ 2-Opioid Receptors Increases Heart Tolerance to Reperfusion. Bull Exp Biol Med 2024; 176:539-542. [PMID: 38717565 DOI: 10.1007/s10517-024-06063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 05/18/2024]
Abstract
Coronary occlusion (45 min) and reperfusion (120 min) in male Wistar rats in vivo, as well as total ischemia (45 min) of an isolated rat heart followed by reperfusion (30 min) were reproduced. The selective δ2-opioid receptor agonist deltorphin II (0.12 mg/kg and 152 nmol/liter) was administered intravenously 5 min before reperfusion in vivo or added to the perfusion solution at the beginning of reperfusion of the isolated heart. The peripheral opioid receptor antagonist naloxone methiodide and δ2-opioid receptor antagonist naltriben were used in doses of 5 and 0.3 mg/kg, respectively. It was found that the infarct-limiting effect of deltorphin II is associated with the activation of δ2-opioid receptors. We have demonstrated that deltorphin II can improve the recovery of the contractility of the isolated heart after total ischemia.
Collapse
Affiliation(s)
- A V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| | - S V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - A S Gorbunov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - V N Azev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
8
|
Mukhomedzyanov AV, Popov SV, Naryzhnaya NV, Azev VN, Maslov LN. The Role of δ 2-Opioid Receptors in the Regulation of Tolerance of Isolated Cardiomyocytes to Hypoxia and Reoxygenation. Bull Exp Biol Med 2024; 176:433-436. [PMID: 38488963 DOI: 10.1007/s10517-024-06041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Indexed: 03/17/2024]
Abstract
Hypoxia (20 min) and reoxygenation (30 min) were simulated on isolated rat cardiomyocytes to evaluate the cytoprotective effect of selective δ2-opioid receptor agonist deltorphin II, opioid receptor antagonist naloxone methiodide, μ-opioid receptor antagonist CTAP, κ-opioid receptor antagonist nor-binaltorphimine, ε1-opioid receptor antagonist BNTX, and δ2-opioid receptors naltriben. Deltorphin II was administered 5 min before reoxygenation, antagonists were administered 10 min before reoxygenation. The cytoprotective effect of deltorphin II was assessed by the number of cardiomyocytes survived after hypoxia/reoxygenation, as well as by the lactate dehydrogenase content in the incubation medium. It has been established that the cytoprotective effect of deltorphin II occurs at a concentration of 64 nmol/liter and is associated with activation of δ2-opioid receptors.
Collapse
Affiliation(s)
- A V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia.
| | - S V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - V N Azev
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| |
Collapse
|
9
|
Sirbu C. The Role of Endogenous Opioids in Cardioprotection. ADVANCES IN NEUROBIOLOGY 2024; 35:381-395. [PMID: 38874733 DOI: 10.1007/978-3-031-45493-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The opioid system involves opioid receptors (OPRs) and endogenous opioid peptides.This chapter will focus on the distribution of OPRs in the cardiovascular system, the expression pattern in the heart, the activation by opioid peptides, and the effects of OPRs activation with potential relevance in cardiovascular performance. In the heart, OPRs are co-expressed with beta adrenergic receptors (β-ARs) in the G-protein-coupled receptor (GPCR) superfamily, functionally cross-talk with β-Ars and modify catecholamine-induced effects. They are involved in cardiac contractility, energy metabolism, myocyte survival or death, vascular resistance. The effects of the opioid system in the regulation of systemic circulation at both the central and peripheral level are presented. The pathways are discussed under physiological (i.e., aging) and pathological conditions (atherosclerosis, heart failure, essential hypertension, ischemic stress). Stimulation of OPRs not only inhibits cardiac excitation-contraction coupling, but also protects the heart against hypoxic and ischemic injury. An enhanced sensitivity to opioids of endocrine organs and neuronal systems is operative in hypertensive patients. The opioid system can be pharmacologically engaged to selectively mimic these responses via cardiac and nervous signaling. The clinical opportunities for the use of cardioprotective effects of opioids require future investigations to provide more specific details of the impact on cardiac performance and electrophysiological properties.
Collapse
Affiliation(s)
- Cristina Sirbu
- Department of Cardiac Surgery and Transplantation, University Hospital Nancy-Brabois, Nancy, France
| |
Collapse
|
10
|
Ayieng'a EO, Afify EA, Abuiessa SA, Elblehi SS, El-Gowilly SM, El-Mas MM. Morphine aggravates inflammatory, behavioral, and hippocampal structural deficits in septic rats. Sci Rep 2023; 13:21460. [PMID: 38052832 PMCID: PMC10697987 DOI: 10.1038/s41598-023-46427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Although pain and sepsis are comorbidities of intensive care units, reported data on whether pain control by opioid analgesics could alter inflammatory and end-organ damage caused by sepsis remain inconclusive. Here, we tested the hypothesis that morphine, the gold standard narcotic analgesic, modifies behavioral and hippocampal structural defects induced by sepsis in male rats. Sepsis was induced with cecal ligation and puncture (CLP) and behavioral studies were undertaken 24 h later in septic and/or morphine-treated animals. The induction of sepsis or exposure to morphine (7 mg/kg) elicited similar: (i) falls in systolic blood pressure, (ii) alterations in spatial memory and learning tested by the Morris water maze, and (iii) depression of exploratory behavior measured by the new object recognition test. These hemodynamic and cognitive defects were significantly exaggerated in septic rats treated with morphine compared with individual interventions. Similar patterns of amplified inflammatory (IL-1β) and histopathological signs of hippocampal damage were noted in morphine-treated septic rats. Additionally, the presence of intact opioid receptors is mandatory for the induction of behavioral and hemodynamic effects of morphine because no such effects were observed when the receptors were blocked by naloxone. That said, our findings suggest that morphine provokes sepsis manifestations of inflammation and interrelated hemodynamic, behavioral, and hippocampal deficits.
Collapse
Affiliation(s)
- Evans O Ayieng'a
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt.
| | - Salwa A Abuiessa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Samar S Elblehi
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Sahar M El-Gowilly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
| | - Mahmoud M El-Mas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, 1-El-Khartoum Square-Azarita, Alexandria, 21521, Egypt
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Kuwait, Kuwait
| |
Collapse
|
11
|
Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, Boshchenko AA, Prasad NR, Ma H, Zhang Y, Sufianova GZ, Fu F, Pei JM. K ATP channels are regulators of programmed cell death and targets for the creation of novel drugs against ischemia/reperfusion cardiac injury. Fundam Clin Pharmacol 2023; 37:1020-1049. [PMID: 37218378 DOI: 10.1111/fcp.12924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/29/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND The use of percutaneous coronary intervention (PCI) in patients with ST-segment elevation myocardial infarction (STEMI) is associated with a mortality rate of 5%-7%. It is clear that there is an urgent need to develop new drugs that can effectively prevent cardiac reperfusion injury. ATP-sensitive K+ (KATP ) channel openers (KCOs) can be classified as such drugs. RESULTS KCOs prevent irreversible ischemia and reperfusion injury of the heart. KATP channel opening promotes inhibition of apoptosis, necroptosis, pyroptosis, and stimulation of autophagy. KCOs prevent the development of cardiac adverse remodeling and improve cardiac contractility in reperfusion. KCOs exhibit antiarrhythmic properties and prevent the appearance of the no-reflow phenomenon in animals with coronary artery occlusion and reperfusion. Diabetes mellitus and a cholesterol-enriched diet abolish the cardioprotective effect of KCOs. Nicorandil, a KCO, attenuates major adverse cardiovascular event and the no-reflow phenomenon, reduces infarct size, and decreases the incidence of ventricular arrhythmias in patients with acute myocardial infarction. CONCLUSION The cardioprotective effect of KCOs is mediated by the opening of mitochondrial KATP (mitoKATP ) and sarcolemmal KATP (sarcKATP ) channels, triggered free radicals' production, and kinase activation.
Collapse
Affiliation(s)
- Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Sergey V Popov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alexandr V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Ivan A Derkachev
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Alla A Boshchenko
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, India
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, China
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| | - Jian-Ming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, School of Basic Medicine, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
12
|
Yi S, Cao H, Zheng W, Wang Y, Li P, Wang S, Zhou Z. Targeting the opioid remifentanil: Protective effects and molecular mechanisms against organ ischemia-reperfusion injury. Biomed Pharmacother 2023; 167:115472. [PMID: 37716122 DOI: 10.1016/j.biopha.2023.115472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/18/2023] Open
Abstract
Opioids are widely used in clinical practice by activating opioid receptors (OPRs), but their clinical application is limited by a series of side effects. Researchers have been making tremendous efforts to promote the development and application of opioids. Fortunately, recent studies have identified the additional effects of opioids in addition to anesthesia and analgesia, particularly in terms of organ protection against ischemia-reperfusion (I/R) injury, with unique advantages. I/R injury in vital organs not only leads to cell dysfunction and structural damage but also induces acute and chronic organ failure, even death. Early prevention and appropriate therapeutic targets for I/R injury are crucial for organ protection. Opioids have shown cardioprotective effects for over 20 years, especially remifentanil, a derivative of fentanyl, which is a new ultra-short-acting opioid analgesic widely used in clinical anesthesia induction and maintenance. In this review, we provide current knowledge about the physiological effects related to OPR-mediated organ protection, focusing on the protective effect and mechanism of remifentanil on I/R injury in the heart and other vital organs. Herein, we also explored the potential application of remifentanil in clinical I/R injury. These findings provide a theoretical basis for the use of remifentanil to inhibit or alleviate organ I/R injury during the perioperative period and provide insights for opioid-induced human organ protection and drug development.
Collapse
Affiliation(s)
- Shuyuan Yi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China; Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China; School of Anesthesiology, Weifang Medical University, Weifang 261053, China
| | - Hong Cao
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Weilei Zheng
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Shoushi Wang
- Department of Anaesthesiology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao 266042, China.
| | - Zhixia Zhou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
13
|
Naryzhnaya NV, Mukhomedzyanov AV, Sirotina M, Maslov LN, Kurbatov BK, Gorbunov AS, Kilin M, Kan A, Krylatov AV, Podoksenov YK, Logvinov SV. δ-Opioid Receptor as a Molecular Target for Increasing Cardiac Resistance to Reperfusion in Drug Development. Biomedicines 2023; 11:1887. [PMID: 37509526 PMCID: PMC10377504 DOI: 10.3390/biomedicines11071887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
An analysis of published data and the results of our own studies reveal that the activation of a peripheral δ2-opioid receptor (δ2-OR) increases the cardiac tolerance to reperfusion. It has been found that this δ2-OR is localized in cardiomyocytes. Endogenous opioids are not involved in the regulation of cardiac resistance to reperfusion. The infarct-limiting effect of the δ2-OR agonist deltorphin II depends on the activation of several protein kinases, including PKCδ, ERK1/2, PI3K, and PKG. Hypothetical end-effectors of the cardioprotective effect of deltorphin II are the sarcolemmal KATP channels and the MPT pore.
Collapse
Affiliation(s)
- Natalia V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Alexander V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Maria Sirotina
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Boris K Kurbatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Alexander S Gorbunov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Mikhail Kilin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Artur Kan
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Andrey V Krylatov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Yuri K Podoksenov
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk 634021, Russia
| | - Sergey V Logvinov
- Department of Histology, Embryology and Cytology, Siberian State Medical University, Tomsk 634050, Russia
| |
Collapse
|
14
|
Mehta A, Patel BM. Long-acting opioids and cardiovascular diseases: Help or hindrance! Vascul Pharmacol 2023; 149:107144. [PMID: 36740214 DOI: 10.1016/j.vph.2023.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Opioids are widely being used for chronic pain management, cough and diarrhea suppressants, anesthetic agents, and opioid de-addiction therapy. Opioid receptors, present in the central nervous system and peripheral tissues, are documented to regulate several cardiac functions through different signaling pathways. Long-acting opioids (LAO) have been successfully evaluated for their beneficial effects in various cardiovascular diseases viz. myocardial infarction, ischemic reperfusion injuries, atherosclerosis etc. However, on the other hand, several research studies pointed towards the harmful effects of LAOs which are mainly associated with QTc prolongation, torsade de pointes, ventricular arrhythmias, and cardiac arrest. This review shall familiarize readers with the benefits as well as the harmful effects of long-acting opioids in cardiovascular diseases. We have also provided an overview of cardiac opioid receptors, endogenous cardiac opioid peptides, and regulation of cardiovascular functions by central and cardiac opioid receptors.
Collapse
Affiliation(s)
- Ankita Mehta
- Labcorp Central Laboratory Services Limited Partnership, Bangalore, India
| | | |
Collapse
|
15
|
Popov SV, Mukhomedzyanov AV, Maslov LN, Naryzhnaya NV, Kurbatov BK, Prasad NR, Singh N, Fu F, Azev VN. The Infarct-Reducing Effect of the δ 2 Opioid Receptor Agonist Deltorphin II: The Molecular Mechanism. MEMBRANES 2023; 13:63. [PMID: 36676870 PMCID: PMC9862914 DOI: 10.3390/membranes13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The search for novel drugs for the treatment of acute myocardial infarction and reperfusion injury of the heart is an urgent aim of modern pharmacology. Opioid peptides could be such potential drugs in this area. However, the molecular mechanism of the infarct-limiting effect of opioids in reperfusion remains unexplored. The objective of this research was to study the signaling mechanisms of the cardioprotective effect of deltorphin II in reperfusion. Rats were subjected to coronary artery occlusion (45 min) and reperfusion (2 h). The ratio of infarct size/area at risk was determined. This study indicated that the cardioprotective effect of deltorphin II in reperfusion is mediated via the activation of peripheral δ2 opioid receptor (OR), which is most likely localized in cardiomyocytes. We studied the role of guanylyl cyclase, protein kinase Cδ (PKCδ), phosphatidylinositol-3-kinase (PI3-kinase), extracellular signal-regulated kinase-1/2 (ERK1/2-kinase), ATP-sensitive K+-channels (KATP channels), mitochondrial permeability transition pore (MPTP), NO synthase (NOS), protein kinase A (PKA), Janus 2 kinase, AMP-activated protein kinase (AMPK), the large conductance calcium-activated potassium channel (BKCa-channel), reactive oxygen species (ROS) in the cardioprotective effect of deltorphin II. The infarct-reducing effect of deltorphin II appeared to be mediated via the activation of PKCδ, PI3-kinase, ERK1/2-kinase, sarcolemmal KATP channel opening, and MPTP closing.
Collapse
Affiliation(s)
- Sergey V. Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexandr V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Boris K. Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, 634012 Tomsk, Russia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram 608002, India
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India
| | - Feng Fu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an 710032, China
| | - Viacheslav N. Azev
- The Branch of the Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Pushchino, Russia
| |
Collapse
|
16
|
Basalay MV, Yellon DM, Davidson SM. Opioids in Acute Coronary Syndromes: Friend or Foe? Cardiovasc Drugs Ther 2022; 36:1001-1003. [PMID: 35793001 DOI: 10.1007/s10557-022-07364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
Affiliation(s)
- Maryna V Basalay
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, WC1E 6HX, UK.
| |
Collapse
|
17
|
δ 2-Opioid Receptors as a Target in Designing New Cardioprotective Drugs: the Role of Protein Kinase C, AMPK, and Sarcolemmal K ATP Channels. Bull Exp Biol Med 2022; 173:33-36. [PMID: 35622247 DOI: 10.1007/s10517-022-05487-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 10/18/2022]
Abstract
In rats anesthetized with α-chloralose, coronary artery occlusion (45 min) and reperfusion (120 min) were modeled. The selective δ2-opioid receptor agonist deltorphin II was administered 5 min before reperfusion. Protein kinase C inhibitor chelerythrine, AMP-activated protein kinase inhibitor compound C, and ATP-sensitive K+ channel blockers glibenclamide, 5-hydroxydecanoate, and HMR 1098 were administered 10 min before reperfusion. It was found that the infarct-limiting effect of deltorphin II is associated with activation of protein kinase C and opening of sarcolemmal ATP-sensitive K+ channel.
Collapse
|
18
|
Naryzhnaya NV, Maslov LN, Derkachev IA, Ma H, Zhang Y, Prasad NR, Singh N, Fu F, Pei JM, Sarybaev A, Sydykov A. The effect of adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res 2022:1-25. [PMID: 37183617 PMCID: PMC10387748 DOI: 10.7555/jbr.36.20220125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The acute myocardial infarction (AMI) and sudden cardiac death (SCD), both associated with acute cardiac ischemia, are one of the leading causes of adult death in economically developed countries. The development of new approaches for the treatment and prevention of AMI and SCD remains the highest priority for medicine. A study on the cardiovascular effects of chronic hypoxia (CH) may contribute to the development of these methods. Chronic hypoxia exerts both positive and adverse effects. The positive effects are the infarct-reducing, vasoprotective, and antiarrhythmic effects, which can lead to the improvement of cardiac contractility in reperfusion. The adverse effects are pulmonary hypertension and right ventricular hypertrophy. This review presents a comprehensive overview of how CH enhances cardiac tolerance to ischemia/reperfusion. It is an in-depth analysis of the published data on the underlying mechanisms, which can lead to future development of the cardioprotective effect of CH. A better understanding of the CH-activated protective signaling pathways may contribute to new therapeutic approaches in an increase of cardiac tolerance to ischemia/reperfusion.
Collapse
|
19
|
Popov SV, Mukhomedzyanov AV, Tsibulnikov SY, Khaliuli I, Oeltgen PR, Prasad NR, Maslov LN. Activation of Peripheral Opioid Kappa1 Receptor Prevents Cardiac Reperfusion Injury. Physiol Res 2021; 70:523-531. [PMID: 34062075 PMCID: PMC8820547 DOI: 10.33549/physiolres.934646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
The role of opioid kappa1 and kappa2 receptors in reperfusion cardiac injury was studied. Male Wistar rats were subjected to a 45-min coronary artery occlusion followed by a 120-min reperfusion. Opioid kappa receptor agonists were administered intravenously 5 min before the onset of reperfusion, while opioid receptor antagonists were given 10 min before reperfusion. The average value of the infarct size/area at risk (IS/AAR) ratio was 43 - 48% in untreated rats. Administration of the opioid kappa1 receptor agonist (-)-U-50,488 (1 mg/kg) limited the IS/AAR ratio by 42%. Administration of the opioid kappa receptor agonist ICI 199,441 (0.1 mg/kg) limited the IS/AAR ratio by 41%. The non-selective opioid kappa receptor agonist (+)-U-50,488 (1 mg/kg) with low affinity for opioid kappa receptor, the peripherally acting opioid kappa2 receptor agonist ICI 204,448 (4 mg/kg) and the selective opioid ?2 receptor agonist GR89696 (0.1 mg/kg) had no effect on the IS/AAR ratio. Pretreatment with naltrexone, the peripherally acting opioid receptor antagonist naloxone methiodide, or the selective opioid kappa2 receptor antagonist nor-binaltorphimine completely abolished the infarct-reducing effect of (-)-U-50,488 and ICI 199,441. Pretreatment with the selective opioid ? receptor antagonist TIPP[psi] and the selective opioid µ receptor antagonist CTAP did not alter the infarct reducing effect of (-)-U-50,488 and ICI 199,441. Our study is the first to demonstrate the following: (a) the activation of opioid kappa2 receptor has no effect on cardiac tolerance to reperfusion; (b) peripheral opioid kappa1 receptor stimulation prevents reperfusion cardiac injury; (c) ICI 199,441 administration resulted in an infarct-reducing effect at reperfusion; (e) bradycardia induced by opioid kappa receptor antagonists is not dependent on the occupancy of opioid kappa receptor.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/administration & dosage
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/toxicity
- Administration, Intravenous
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/toxicity
- Animals
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/physiopathology
- Disease Models, Animal
- Heart Rate/drug effects
- Male
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardial Infarction/prevention & control
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Narcotic Antagonists/administration & dosage
- Piperazines/administration & dosage
- Pyrrolidines/administration & dosage
- Pyrrolidines/toxicity
- Rats, Wistar
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/metabolism
- Signal Transduction
- Rats
Collapse
Affiliation(s)
- S V Popov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, the Russian Academy of Sciences, Tomsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
20
|
Khaliulin I, Ascione R, Maslov LN, Amal H, Suleiman MS. Preconditioning or Postconditioning with 8-Br-cAMP-AM Protects the Heart against Regional Ischemia and Reperfusion: A Role for Mitochondrial Permeability Transition. Cells 2021; 10:1223. [PMID: 34067674 PMCID: PMC8155893 DOI: 10.3390/cells10051223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 01/15/2023] Open
Abstract
The cAMP analogue 8-Br-cAMP-AM (8-Br) confers marked protection against global ischaemia/reperfusion of isolated perfused heart. We tested the hypothesis that 8-Br is also protective under clinically relevant conditions (regional ischaemia) when applied either before ischemia or at the beginning of reperfusion, and this effect is associated with the mitochondrial permeability transition pore (MPTP). 8-Br (10 μM) was administered to Langendorff-perfused rat hearts for 5 min either before or at the end of 30 min regional ischaemia. Ca2+-induced mitochondria swelling (a measure of MPTP opening) and binding of hexokinase II (HKII) to mitochondria were assessed following the drug treatment at preischaemia. Haemodynamic function and ventricular arrhythmias were monitored during ischaemia and 2 h reperfusion. Infarct size was evaluated at the end of reperfusion. 8-Br administered before ischaemia attenuated ventricular arrhythmias, improved haemodynamic function, and reduced infarct size during ischaemia/reperfusion. Application of 8-Br at the end of ischaemia protected the heart during reperfusion. 8-Br promoted binding of HKII to the mitochondria and reduced Ca2+-induced mitochondria swelling. Thus, 8-Br protects the heart when administered before regional ischaemia or at the beginning of reperfusion. This effect is associated with inhibition of MPTP via binding of HKII to mitochondria, which may underlie the protective mechanism.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Raimondo Ascione
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| | - Leonid N. Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, The Russian Academy of Sciences, 111 a, Kievskaya Street, 634012 Tomsk, Russia;
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Pharmacy Building, Ein Karem, Jerusalem 91120, Israel;
| | - M. Saadeh Suleiman
- Bristol Medical School (THS), Faculty of Health Sciences, University of Bristol, Bristol Royal Infirmary, Upper Maudlin Street, Bristol BS2 8HW, UK; (R.A.); (M.S.S.)
| |
Collapse
|
21
|
Abdollahi-Karizno M, Partovi N, Noferesti V, Ravanbakhsh N, Kazemi T, Khosravi-Bizhaem S. One-year survival cohort of patients with reduced ejection fraction heart failure in Iranian population: A single center study. ARYA ATHEROSCLEROSIS 2021; 17:1-10. [PMID: 35685822 PMCID: PMC9133707 DOI: 10.22122/arya.v17i0.2149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/18/2021] [Indexed: 12/05/2022]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are one of the main concerns of health care systems. The aim of this study was to investigate the most important prognostic factors of heart failure (HF) and their survival outcomes in patients in Birjand, East of Iran. METHODS A total of 194 systolic HF patients hospitalized in Birjand Valiasr hospital were followed up for 12 months in 2016, and those with reduced left ventricle ejection fraction (LVEF < 50%) were included in this study. Kaplan-Meier and Cox proportional hazard analysis were used to determine the association of each factor with events. RESULTS The mean age of patients was 68.23 ± 13.40 (27-95) years, and 57.2% (111 out of 194) were women. Mean survival time was 294.7 ± 9.924 days. Pervious history of myocardial infarction (MI) [2.141 (1.101-4.161)] increased the risk of cardiovascular hospitalization. Elevated blood levels of potassium [2.264 (1.438-3.564)] was found to be a risk factor for all-cause and cardiovascular mortality. Moreover, there was a reverse relationship between body height [0.942 (0.888-0.999)] and cardiovascular death. Patients with opium addiction [4.049 (1.310-12.516)] are at a higher risk of cardiovascular mortality. Lower levels of LDL-C [0.977 (0.960-0.996)] and living in rural areas [3.052 (1.039-8.964)] increased all-cause mortality levels. Lack of pervious history of chronic obstructive pulmonary disease (COPD) decreased cardiovascular hospitalization [0.265 (0.062-1.122)]. CONCLUSION In our study, serum potassium, LDL-C, and uric acid levels in patients with HF were identified as prognostic factors. The height of patients, which can be an indicator of the functional state of their respiratory system, and the history of COPD were also recognized as prognostic factors. Opium use and rural living were identified as social factors influencing patients' prognosis.
Collapse
Affiliation(s)
- Mahdi Abdollahi-Karizno
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Neda Partovi
- Assistant Professor, Cardiovascular Diseases Research Center AND Department of Cardiology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Vahid Noferesti
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Naeem Ravanbakhsh
- General Practitioners, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Toba Kazemi
- Professor, Razi Clinical Research Development Unit (RCRDU) AND Department of Cardiology, Cardiovascular Diseases Research Center, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeede Khosravi-Bizhaem
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
22
|
Kolpakov AR, Knyazev RA. Endogenous Cardiotonics: Search And Problems. Cardiovasc Hematol Disord Drug Targets 2021; 21:95-103. [PMID: 33874876 DOI: 10.2174/1871529x21666210419121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/04/2021] [Accepted: 02/15/2021] [Indexed: 11/22/2022]
Abstract
Medicinal preparations currently used for the treatment of patients with chronic cardiac failure involve those that reduce the heart load (vasodilators, diuretics, beta-blockers, and angiotensin-converting enzyme (ACE) inhibitors). Cardiotonic drugs with the cAMP-dependent mechanism are unsuitable for long-term administration due to the intensification of metabolic processes and an increase in the oxygen demand of the myocardium and all tissues of the body. For many years, digoxin has remained the only preparation enhancing the efficiency of myocardial performance. The detection of digoxin and ouabain in intact animals has initiated a search for other compounds with cardiotonic activity. The review summarizes current data on the effect exerted on the heart performance by endogenous compounds, from simple, such as NO and CO, to steroids, fatty acids, polypeptides, and proteins. Controversial questions and problems with the introduction of scientific achievements into clinical practice are discussed. The results obtained by the authors and their colleagues after many years of studies on the cardiotropic properties of serum lipoproteins are also reported. The experimentally established cardiotonic activity of apoprotein A-1, which is accompanied by a decrease in the relative consumption of oxygen, maybe of great interest.
Collapse
Affiliation(s)
- Arkady R Kolpakov
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| | - Roman A Knyazev
- Institute of Biochemistry of Federal Research Center for Fundamental and Translational Medicine, Novosibirsk. Russian Federation
| |
Collapse
|
23
|
Grill S, Yahiaoui-Doktor M, Basrai M, Struck J, Schulte J, Berling-Ernst A, Engel C, Ullrich M, Lammert J, Bischoff SC, Schmidt T, Niederberger U, Chronas D, Rhiem K, Schmutzler R, Halle M, Kiechle M. Precursor fractions of neurotensin and enkephalin might point to molecular mechanisms of cancer risk modulation during a lifestyle-intervention in germline BRCA1/2 gene mutation carriers. Breast Cancer Res Treat 2021; 186:741-752. [PMID: 33543354 PMCID: PMC8019429 DOI: 10.1007/s10549-020-06070-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Germline BRCA1/2 mutation carriers (gBMC) face increased cancer risks that are modulated via non-genetic lifestyle factors whose underlying molecular mechanisms are unknown. The peptides Neurotensin (NT) and Enkephalin (ENK)-involved in tumorigenesis and obesity-related diseases-are of interest. We wanted to know whether these biomarkers differ between gBMC and women from the general population and what effect a 1-year lifestyle-intervention has in gBMC. METHODS The stable precursor fragments pro-NT and pro-ENK were measured at study entry (SE), after 3 and 12 months for 68 women from LIBRE-1 (a controlled lifestyle-intervention feasibility trial for gBMC involving structured endurance training and the Mediterranean Diet). The SE values were compared with a cohort of the general population including female subjects with and without previous cancer disease, non-suggestive for hereditary breast and ovarian cancer (OMA-reference). For LIBRE-1, we analysed the association between the intervention-related change in the two biomarkers and certain lifestyle factors. RESULTS At SE, gBMC had a higher median pro-NT than OMA-reference (in the subgroups with previous cancer 117 vs. 91 pmol/L, p = 0.002). Non-diseased gBMC had lower median pro-ENK levels when compared to the non-diseased reference group. VO2peak and pro-NT 1-year change in LIBRE-1 were inversely correlated (r = - 0.435; CI - 0.653 to - 0.151; p = 0.004). Pro-ENK correlated positively with VO2peak at SE (r = 0.323; CI 0.061-0.544; p = 0.017). Regression analyses showed an inverse association of 1-year changes for pro-NT and Omega-6/Omega-3 (Estimate: - 37.9, p = 0.097/0.080) in multivariate analysis. CONCLUSION Our results give first indications for lifestyle-related modification particularly of pro-NT in gBMC.
Collapse
Affiliation(s)
- Sabine Grill
- Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts Der Isar, Technical University Munich (TUM), Munich, Germany.
| | - Maryam Yahiaoui-Doktor
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Maryam Basrai
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | | | | | - Anika Berling-Ernst
- Department of Prevention, Rehabilitation and Sports Medicine, Faculty of Medicine, University Hospital Rechts Der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Christoph Engel
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
| | - Mirjam Ullrich
- Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts Der Isar, Technical University Munich (TUM), Munich, Germany
| | - Jacqueline Lammert
- Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts Der Isar, Technical University Munich (TUM), Munich, Germany
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Thorsten Schmidt
- Comprehensive Cancer Center, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Uwe Niederberger
- Institute for Medical Psychology and Medical Sociology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Dimitrios Chronas
- Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts Der Isar, Technical University Munich (TUM), Munich, Germany
| | - Kerstin Rhiem
- Center for Hereditary Breast and Ovarian Cancer, University Hospital Cologne, Cologne, Germany
| | - Rita Schmutzler
- Center for Hereditary Breast and Ovarian Cancer, University Hospital Cologne, Cologne, Germany
| | - Martin Halle
- Department of Prevention, Rehabilitation and Sports Medicine, Faculty of Medicine, University Hospital Rechts Der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Center for Hereditary Breast and Ovarian Cancer, Klinikum Rechts Der Isar, Technical University Munich (TUM), Munich, Germany
| |
Collapse
|
24
|
Mukhomedzyanov AV, Tsibulnikov SY, Maslov LN. Comparative Analysis of Infarct Size Limiting Activity of κ-Opioid Receptor Agonists in In Vivo Reperfused Heart. Bull Exp Biol Med 2021; 170:594-597. [PMID: 33792817 DOI: 10.1007/s10517-021-05113-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Indexed: 10/21/2022]
Abstract
A 45-min coronary artery occlusion followed by a 120-min reperfusion was performed in rats anesthetized with α-chloralose. The selective κ1-opioid receptor (OR) agonist U-50,488 was administered intravenously in doses of 0.1 or 1 mg/kg. The selective κ2-OR agonist GR-89696 was injected in a dose of 0.1 mg/kg. The selective κ1-OR agonists ICI-199,441 and ICI-204,448 were employed in the doses of 0.1 and 4 mg/kg, respectively. These drugs were injected 5 min prior to reperfusion. U-50,488 exerted the cardioprotective effect in a dose of 1 mg/kg, but it produced no effect on infarct size in a dose of 0.1 mg/kg. ICI-199,441 reduced the reperfusion injury to the heart. The infarct size limiting effects of U-50,488 and ICI-199,441 were prevented by preliminary injection of naltrexone or nor-binaltorphimine. It is concluded that infarct size limiting effects of U-50,488 and ICI-199,441 were mediated via activation of κ1-OR.
Collapse
Affiliation(s)
- A V Mukhomedzyanov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia.
| | - S Yu Tsibulnikov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
25
|
Prokudina ES, Kurbatov BK, Zavadovsky KV, Vrublevsky AV, Naryzhnaya NV, Lishmanov YB, Maslov LN, Oeltgen PR. Takotsubo Syndrome: Clinical Manifestations, Etiology and Pathogenesis. Curr Cardiol Rev 2021; 17:188-203. [PMID: 31995013 PMCID: PMC8226199 DOI: 10.2174/1573403x16666200129114330] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
The purpose of the review is the analysis of clinical and experimental data on the etiology and pathogenesis of takotsubo syndrome (TS). TS is characterized by contractile dysfunction, which usually affects the apical region of the heart without obstruction of coronary artery, moderate increase in myocardial necrosis markers, prolonged QTc interval (in 50% of patients), sometimes elevation of ST segment (in 19% of patients), increase N-Terminal Pro-B-Type Natriuretic Peptide level, microvascular dysfunction, sometimes spasm of the epicardial coronary arteries (in 10% of patients), myocardial edema, and life-threatening ventricular arrhythmias (in 11% of patients). Stress cardiomyopathy is a rare disease, it is observed in 0.6 - 2.5% of patients with acute coronary syndrome. The occurrence of takotsubo syndrome is 9 times higher in women, who are aged 60-70 years old, than in men. The hospital mortality among patients with TS corresponds to 3.5% - 12%. Physical or emotional stress do not precede disease in all patients with TS. Most of patients with TS have neurological or mental illnesses. The level of catecholamines is increased in patients with TS, therefore, the occurrence of TS is associated with excessive activation of the adrenergic system. The negative inotropic effect of catecholamines is associated with the activation of β2 adrenergic receptors. An important role of the adrenergic system in the pathogenesis of TS is confirmed by studies which were performed using 125I-metaiodobenzylguanidine (125I -MIBG). TS causes edema and inflammation of the myocardium. The inflammatory response in TS is systemic. TS causes impaired coronary microcirculation and reduces coronary reserve. There is a reason to believe that an increase in blood viscosity may play an important role in the pathogenesis of microcirculatory dysfunction in patients with TS. Epicardial coronary artery spasm is not obligatory for the occurrence of TS. Cortisol, endothelin-1 and microRNAs are challengers for the role of TS triggers. A decrease in estrogen levels is a factor contributing to the onset of TS. The central nervous system appears to play an important role in the pathogenesis of TS.
Collapse
Affiliation(s)
- Ekaterina S Prokudina
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Boris K Kurbatov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Konstantin V Zavadovsky
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Alexander V Vrublevsky
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Natalia V Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Yuri B Lishmanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Leonid N Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center of the RAS, Tomsk, Russian Federation
| | - Peter R Oeltgen
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY 40506, United States
| |
Collapse
|
26
|
Krüll J, Fehler SK, Hofmann L, Nebel N, Maschauer S, Prante O, Gmeiner P, Lanig H, Hübner H, Heinrich MR. Synthesis, Radiosynthesis and Biological Evaluation of Buprenorphine-Derived Phenylazocarboxamides as Novel μ-Opioid Receptor Ligands. ChemMedChem 2020; 15:1175-1186. [PMID: 32378310 PMCID: PMC7383964 DOI: 10.1002/cmdc.202000180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 12/12/2022]
Abstract
Targeted structural modifications have led to a novel type of buprenorphine-derived opioid receptor ligand displaying an improved selectivity profile for the μ-OR subtype. On this basis, it is shown that phenylazocarboxamides may serve as useful bioisosteric replacements for the widely occurring cinnamide units, without loss of OR binding affinity or subtype selectivity. This study further includes functional experiments pointing to weak partial agonist properties of the novel μ-OR ligands, as well as docking and metabolism experiments. Finally, the unique bifunctional character of phenylazocarboxylates, herein serving as precursors for the azocarboxamide subunit, was exploited to demonstrate the accessibility of an 18 F-fluorinated analogue.
Collapse
Affiliation(s)
- Jasmin Krüll
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Stefanie K. Fehler
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Laura Hofmann
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Natascha Nebel
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Simone Maschauer
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Olaf Prante
- Department of Nuclear MedicineMolecular Imaging and RadiochemistryFriedrich-Alexander-Universität Erlangen-NürnbergSchwabachanlage 1291054ErlangenGermany
| | - Peter Gmeiner
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Harald Lanig
- Central Institute for Scientific Computing (ZISC)Friedrich-Alexander-Universität Erlangen-NürnbergMartensstr. 5a91058ErlangenGermany
| | - Harald Hübner
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| | - Markus R. Heinrich
- Department of Chemistry and PharmacyPharmaceutical ChemistryFriedrich-Alexander-Universität Erlangen-NürnbergNikolaus-Fiebiger-Str. 1091058ErlangenGermany
| |
Collapse
|
27
|
Prokudina ES, Naryzhnaya NV, Nesterov EA, Tsibulnikov SY, Maslov LN. Continuous Normobaric Hypoxia Improved Cardiac Bioenergetics after Ischemia/Reperfusion: Role of Opioid Receptors. Bull Exp Biol Med 2020; 169:13-17. [PMID: 32474669 DOI: 10.1007/s10517-020-04814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 11/27/2022]
Abstract
We analyzed the role of opioid receptors in the conditioning effect of continuous normobaric hypoxia on bioenergetics of the heart subjected to ischemia/reperfusion injury. Male Wistar rats were adapted to a 21-day continuous normobaric hypoxia (12% pO2). Then, the hearts were isolated and subjected to 45-min total ischemia followed by 30-min reperfusion. Damage to the myocardium was assessed by activity of creatine phosphokinase in the perfusate. Experiments on isolated mitochondria showed that ischemia/reperfusion injury decreased the respiration rate in state 3 (V3), the ratio of added ADP and oxygen consumption in respiration state 3 (ADP/O ratio), the mitochondrial potential across the inner membrane (Δψ), and Ca2+ binding capacity of mitochondria. In addition, ischemia/reperfusion injury decreased myocardial ATP. Preventive continuous normobaric hypoxia pronouncedly moderated these adverse effects of reperfusion. It was found that its protective effects were related to activation of cardiac μ- and δ2-opioid receptors.
Collapse
Affiliation(s)
- E S Prokudina
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - N V Naryzhnaya
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - E A Nesterov
- National Research Tomsk Polytechnic University, Tomsk, Russia
| | - S Yu Tsibulnikov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia
| | - L N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center, Tomsk, Russia.
| |
Collapse
|
28
|
Liu X, Rabin PL, Yuan Y, Kumar A, Vasallo P, Wong J, Mitscher GA, Everett TH, Chen PS. Effects of anesthetic and sedative agents on sympathetic nerve activity. Heart Rhythm 2019; 16:1875-1882. [PMID: 31252086 PMCID: PMC6885547 DOI: 10.1016/j.hrthm.2019.06.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The effects of sedative and anesthetic agents on sympathetic nerve activity (SNA) are poorly understood. OBJECTIVE The purpose of this study was to determine the effects of commonly used sedative and anesthetic agents on SNA in ambulatory dogs and humans. METHODS We implanted radiotransmitters in 6 dogs to record stellate ganglion nerve activity (SGNA), subcutaneous nerve activity (ScNA), and blood pressure (BP). After recovery, we injected dexmedetomidine (3 μg/kg), morphine (0.1 mg/kg), hydromorphone (0.05 mg/kg), and midazolam (0.1 mg/kg) on different days. We also studied 12 human patients (10 male; age 68.0 ± 9.1 years old) undergoing cardioversion for atrial fibrillation with propofol (0.77 ± 0.18 mg/kg) or methohexital (0.65 mg/kg) anesthesia. Skin sympathetic nerve activity (SKNA) and electrocardiogram were recorded during the study. RESULTS SGNA and ScNA were significantly suppressed immediately after administration of dexmedetomidine (P = .000 and P = .000, respectively), morphine (P = .011 and P = .014, respectively), and hydromorphone (P = .000 and P = .012, respectively), along with decreased BP and heart rate (HR) (P <.001 for each). Midazolam had no significant effect on SGNA and ScNA (P = .248 and P = .149, respectively) but increased HR (P = .015) and decreased BP (P = .004) in ambulatory dogs. In patients undergoing cardioversion, bolus propofol administration significantly suppressed SKNA (from 1.11 ± 0.25 μV to 0.77 ± 0.15 μV; P = .001), and the effects lasted for at least 10 minutes after the final cardioversion shock. Methohexital decreased chest SKNA from 1.59 ± 0.45 μV to 1.22 ± 0.58 μV (P = .000) and arm SKNA from 0.76 ± 0.43 μV to 0.55 ± 0.07 μV (P = .001). The effects lasted for at least 10 minutes after the cardioversion shock. CONCLUSION Propofol, methohexital, dexmedetomidine, morphine, and hydromorphone suppressed, but midazolam had no significant effects on, SNA.
Collapse
Affiliation(s)
- Xiao Liu
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Anesthesiology, Xiangya Hospital, Central South University, Chang Sha, China
| | - Perry L Rabin
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yuan Yuan
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Awaneesh Kumar
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peter Vasallo
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Johnson Wong
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gloria A Mitscher
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas H Everett
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
29
|
Prokudina E, Naryzhnaya N, Mukhomedzyanov A, Gorbunov A, Zhang Y, Jaggi A, Tsibulnikov S, Nesterov E, Lishmanov Y, Suleiman M, Oeltgen P, Maslov L. Effect of Chronic Continuous Normobaric Hypoxia on Functional State of Cardiac Mitochondria and Tolerance of Isolated Rat Heart to Ischemia and Reperfusion: Role of µ and δ2 Opioid Receptors. Physiol Res 2019; 68:909-920. [DOI: 10.33549/physiolres.933945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic continuous normobaric hypoxia (CNH) increases cardiac tolerance to ischemia/reperfusion injury in vivo and this effect is mediated via µ and δ2 opioid receptors (ORs) activation. CNH has also been shown to be cardioprotective in isolated rat heart. In this study, we hypothesize that this cardioprotective effect of CNH is mediated by activation of µ and δ2 ORs and preservation of mitochondrial function. Hearts from rats adapted to CNH (12 % oxygen) for 3 weeks were extracted, perfused in the Langendorff mode and subjected to 45 min of global ischemia and 30 min of reperfusion. Intervention groups were pretreated for 10 min with antagonists for different OR types: naloxone (300 nmol/l), the selective δ OR antagonist TIPP(ψ) (30 nmol/l), the selective δ1 OR antagonist BNTX (1 nmol/l), the selective δ2 OR antagonist naltriben (1 nmol/l), the selective peptide μ OR antagonist CTAP (100 nmol/l) and the selective κ OR antagonist nor-binaltorphimine (3 nmol/l). Creatine kinase activity in coronary effluent and cardiac contractile function were monitored to assess cardiac injury and functional impairment. Additionally, cardiac tissue was collected to measure ATP and to isolate mitochondria to measure respiration rate and calcium retention capacity. Adaptation to CNH decreased myocardial creatine kinase release during reperfusion and improved the postischemic recovery of contractile function. Additionally, CNH improved mitochondrial state 3 and uncoupled respiration rates, ADP/O, mitochondrial transmembrane potential and calcium retention capacity and myocardial ATP level during reperfusion compared to the normoxic group. These protective effects were completely abolished by naloxone, TIPP(ψ), naltriben, CTAP but not BNTX or nor-binaltorphimine. These results suggest that cardioprotection associated with adaptation to CNH is mediated by µ and δ2 opioid receptors activation and preservation of mitochondrial function.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - L.N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
30
|
Exercise-induced cardiac opioid system activation attenuates apoptosis pathway in obese rats. Life Sci 2019; 231:116542. [PMID: 31176781 DOI: 10.1016/j.lfs.2019.06.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022]
Abstract
AIM To compare the effect of 150 min vs. 300 min of weekly moderate intensity exercise training on the activation of the opioid system and apoptosis in the hearts of a diet-induced obesity model. METHODS Male Wistar rats were fed with either control (CON) or high fat (HF) diet for 32 weeks. At the 20th week, HF group was subdivided into sedentary, low (LEV, 150 min·week-1) or high (HEV, 300 min·week-1) exercise volume. After 12 weeks of exercise, body mass gain, adiposity index, systolic blood pressure, cardiac morphometry, apoptosis biomarkers and opioid system expression were evaluated. RESULTS Sedentary animals fed with HF presented pathological cardiac hypertrophy and higher body mass gain, systolic blood pressure and adiposity index than control group. Both exercise volumes induced physiological cardiac hypertrophy, restored systolic blood pressure and improved adiposity index, but only 300 min·week-1 reduced body mass gain. HF group exhibited lower proenkephalin, PI3K, ERK and GSK-3β expression, and greater activated caspase-3 expression than control group. Compared to HF, no changes in the cardiac opioid system were observed in the 150 min·week-1 of exercise training, while 300 min·week-1 showed greater proenkephalin, DOR, KOR, MOR, Akt, ERK and GSK-3β expression, and lower activated caspase-3 expression. CONCLUSION 300 min·week-1 of exercise training triggered opioid system activation and provided greater cardioprotection against obesity than 150 min·week-1. Our findings provide translational aspect with clinical relevance about the critical dose of exercise training necessary to reduce cardiovascular risk factors caused by obesity.
Collapse
|
31
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
32
|
Naryzhnaya N, Khaliulin I, Lishmanov Y, Suleiman M, Tsibulnikov S, Kolar F, Maslov L. Participation of opioid receptors in the cytoprotective effect of chronic normobaric hypoxia. Physiol Res 2019; 68:245-253. [DOI: 10.33549/physiolres.933938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We studied the role of the delta, micro, and kappa opioid receptor (OR) subtypes in the cardioprotective effect of chronic continuous normobaric hypoxia (CNH) in the model of acuteanoxia-reoxygenation of isolated cardiomyocytes. Adaptation of rats to CNH was performed by their exposure to atmosphere containing 12% of O(2) for 21 days. Anoxia-reoxygenation of cardiomyocytes isolated from normoxiccontrol rats caused the death of 51 % of cells and lactate dehydrogenase (LDH) release. Adaptation of rats to CNH resulted in the anoxia/reoxygenation-induced cardiomyocyte death of only 38 %, and reduced the LDH release by 25 %. Pre-incubation of the cells with either the non-selective OR (opioid receptor) blocker naloxone (300 nM/l), the delta OR antagonist TIPP(psi) (30 nM/l), the selective delta(2) OR antagonist naltriben (1 nM/l) or the micro OR antagonist CTAP (100 nM/l) for 25 minutes before anoxia abolished the reduction of cell death and LDH release afforded by CNH. The antagonist of delta(1) OR BNTX (1 nM/l) or the kappa OR antagonist nor-binaltorphimine (3 nM/l) did not influence the cytoprotective effects of CNH. Taken together, the cytoprotective effect of CNH is associated with the activation of the delta(2) and micro OR localized on cardiomyocytes.
Collapse
Affiliation(s)
- N.V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Centre, Russian Academy of Sciences, Tomsk, Russia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Marck PV, Pierre SV. Na/K-ATPase Signaling and Cardiac Pre/Postconditioning with Cardiotonic Steroids. Int J Mol Sci 2018; 19:ijms19082336. [PMID: 30096873 PMCID: PMC6121447 DOI: 10.3390/ijms19082336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/13/2022] Open
Abstract
The first reports of cardiac Na/K-ATPase signaling, published 20 years ago, have opened several major fields of investigations into the cardioprotective action of low/subinotropic concentrations of cardiotonic steroids (CTS). This review focuses on the protective cardiac Na/K-ATPase-mediated signaling triggered by low concentrations of ouabain and other CTS, in the context of the enduring debate over the use of CTS in the ischemic heart. Indeed, as basic and clinical research continues to support effectiveness and feasibility of conditioning interventions against ischemia/reperfusion injury in acute myocardial infarction (AMI), the mechanistic information available to date suggests that unique features of CTS-based conditioning could be highly suitable, alone /or as a combinatory approach.
Collapse
Affiliation(s)
- Pauline V Marck
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| | - Sandrine V Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, West Virginia, WV 25701, USA.
| |
Collapse
|
34
|
Tsibul’nikov SY, Mukhomedzyanov AV, Maslov LN, Ovchinnikov MV, Sidorova MV, Kudryavtseva EV, Bushov YV, Lishmanov YB, Khaliulin I. Synthesis and Infarction-Limiting Properties of Peptide Agonists of Opioid Receptors. Pharm Chem J 2018. [DOI: 10.1007/s11094-018-1808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Zhang L, Guo H, Yuan F, Hong ZC, Tian YM, Zhang XJ, Zhang Y. Limb remote ischemia per-conditioning protects the heart against ischemia–reperfusion injury through the opioid system in rats. Can J Physiol Pharmacol 2018; 96:68-75. [PMID: 28763627 DOI: 10.1139/cjpp-2016-0585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Remote ischemia per-conditioning (RPerC) has been demonstrated to have cardiac protection, but the underlying mechanism remains unclear. This study aimed to investigate the mechanism underlying cardiac protection of RPerC. Adult male Sprague–Dawley rats were used in this study. Cardiac ischemia/reperfusion (I/R) was induced by 30 min of occlusion and 3 h of reperfusion of the left anterior descending coronary artery. RPerC were performed by 5 min of occlusion of the right femoral artery followed by 5 min of reperfusion for three times during cardiac ischemia. The hemodynamics, left ventricular function, arrhythmia, and infarct area were measured. Protein expression levels of endothelial nitric oxide synthase (eNOS), inducible NOS (iNOS), protein kinase C-ε (PKCε), and PKCδ in the myocardium were assayed. During I/R, systolic artery pressure and left ventricular function were decreased, infarct area was increased, and arrhythmia score was increased (P < 0.05). However, changes of the above parameters were significantly attenuated in RPerC-treated rats compared with control rats (P < 0.05). The cardiac protective effects of RPerC were prevented by naloxone or glibenclamide. Also, RPerC increased the protein expression levels of eNOS, iNOS, PKCε, and PKCδ in the myocardium compared with control rats. These effects were blocked by naloxone, an opioid receptor antagonist, and glibenclamide, an ATP-sensitive K+ channel blocker (KATP). In summary, this study suggests that RPerC protects the heart against I/R injury through activation of opioid receptors and the NO–PKC–KATP channel signaling pathways.
Collapse
Affiliation(s)
- Li Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
- Orthopedic Department of Third Hospital, Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Hui Guo
- Department of Gynaecology and Obstetrics, Fourth Hospital, Hebei Medical University, Shijiazhuang 050000, P.R. China
| | - Fang Yuan
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, P.R. China
| | - Zeng-chao Hong
- Operation room of Third Hospital, Hebei Medical University, Shijiazhuang, 050000, P.R. China
| | - Yan-ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
| | - Xiang-jian Zhang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, P.R. China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang, 050017, P.R. China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, P.R. China
| |
Collapse
|
36
|
Gorbunov AS, Vaizova OE, Belousov MV, Pozdnyakova SV, Nesterov EA, Madonov PG. Role of Endogenous Agonists of Opioid Receptors in the Regulation of Heart Resistance to Postischemic Reperfusion Injury. Bull Exp Biol Med 2017; 164:18-20. [DOI: 10.1007/s10517-017-3916-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Indexed: 02/07/2023]
|