1
|
Qian L, Khalid M, Alqarni MH, Alshmmari SK, Almoyad MAA, Wahab S, Alsayari A, Li SJ. In-silico evaluation of Bismurrayaquinone-A phytochemical as a potential multifunctional inhibitor targeting dihydrofolate reductase: implications for anticancer and antibacterial drug development. J Biomol Struct Dyn 2025; 43:3570-3584. [PMID: 38165437 DOI: 10.1080/07391102.2023.2299306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
Dihydrofolate reductase (DHFR) has gained significant attention in drug development, primarily due to marked distinctions in its active site among different species. DHFR plays a crucial role in both DNA and amino acid metabolism by facilitating the transfer of monocarbon residues through tetrahydrofolate, which is vital for nucleotide and amino acid synthesis. This considers its potential as a promising target for therapeutic interventions. In this study, our focus was on conducting a virtual screening of phytoconstituents from the IMPPAT2.0 database to identify potential inhibitors of DHFR. The initial criterion involved assessing the binding energy of molecules against DHFR and we screened top 20 compounds ranging energy -13.5 to -11.4 (kcal/Mol) while Pemetrexed disodium bound with less energy -10.2 (kcal/Mol), followed by an analysis of their interactions to identify more effective hits. We prioritized IMPHY007679 (Bismurrayaquinone-A), which displayed a high binding affinity and crucial interaction with DHFR. We also evaluated the drug-like properties and biological activity of IMPHY007679. Furthermore, MD simulation was done, RMSD, RMSF, Rg, SASA, PCA and FEL explore the time-evolution impact of IMPHY007679 comparing it with a reference drug, Pemetrexed disodium. Collectively, our findings suggest that IMPHY007679 recommend further investigation in both in vitro and in vivo settings for its potential in developing anticancer and antibacterial therapies. This compound holds promise as a valuable candidate for advancing drug research and treatment strategies.
Collapse
Affiliation(s)
- Lei Qian
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohammed H Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Sultan K Alshmmari
- Drug Reference Laboratory Section, Saudi Food and Drug Authority, Riyadh, Saudi Arabia
| | - Mohammad Ali Abdullah Almoyad
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Khamis Mushyt, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Shao-Ji Li
- School of Engineering, Guangzhou College of Technology and Business, Guangzhou, China
| |
Collapse
|
2
|
Avula SK, Ullah S, Ebrahimi A, Rostami A, Halim SA, Khan A, Anwar MU, Gibbons S, Csuk R, Al-Harrasi A. Dihydrofolate reductase inhibitory potential of 1H-indole-based-meldrum linked 1H-1,2,3-triazoles as new anticancer derivatives: In-vitro and in-silico studies. Eur J Med Chem 2025; 283:117174. [PMID: 39708770 DOI: 10.1016/j.ejmech.2024.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024]
Abstract
In this present work, we describe the syntheses of a new series of 32 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives (2-13, 15a-15f, 16a-16f, 17a-17f and 19a, 19b, 20a), which constitute a new class of 1H-1,2,3-triazoles. Compounds 15a-15f, 16a-16f, 17a-17f have been prepared by employing "click" reactions between substituted 1H-indole-based meldrum alkynes (11, 12 and 13) and substituted aromatic azides (14a-14f) in the presence of copper iodide (CuI) and Hünig's base. Then, the synthesis of compounds 19, 20 through decomposition of meldrum moiety. The resulting compounds have been screened for their dihydrofolate reductase (DHFR) inhibition activity. All the newly synthesized compounds were characterized by 1H NMR, 13C NMR, 19F NMR (spectroscopy when applicable), and HR-ESI-MS spectroscopy techniques. The X-ray crystallography studies have unambiguously confirmed the structure of compounds 6, 11 and 13. Furthermore, their DHFR-inhibitory activity was evaluated in-vitro. The results obtained from the DHFR-inhibitory assay revealed that all the synthesized 1H-indole-based-meldrum linked 1H-1,2,3-triazole derivatives were highly potent inhibitors, with IC50 values in the range 3.48 ± 0.16-30.37 ± 1.20 μM. Ten compounds (15c-15f, 16c-16f, 17e and 17f) among the 32 synthesized 1H-indole-based-meldrum linked 1H-1,2,3-triazole compounds were found to exhibit exceptional inhibitory while the rest of the derivatives showed moderate activities. Additionally, molecular docking analysis of the most active (16f), moderate (15c) and least active (16a) inhibitors reflect excellent binding of 16f with the binding residues of DHFR with higher docking score (-9.13 kcal/mol) than that of 15c and 16a. The docking analysis correlates well with the inhibitory potential of these synthesized molecules. Overall, this study may pave the way to medicinal analogues of 1H-indole-based-meldrum linked 1H-1,2,3-triazoles as potent DHFR inhibition activity.
Collapse
Affiliation(s)
- Satya Kumar Avula
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman.
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Amirhossein Ebrahimi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Ali Rostami
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Muhammad U Anwar
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120, Halle, Saale, Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616, Nizwa, Oman.
| |
Collapse
|
3
|
Kalmer T, Ancajas CMF, Cohen CI, McDaniel JM, Oyedele AS, Thirman HL, Walker AS. Statistical Coupling Analysis Predicts Correlated Motions in Dihydrofolate Reductase. J Phys Chem B 2024; 128:10373-10384. [PMID: 39385339 PMCID: PMC11514014 DOI: 10.1021/acs.jpcb.4c04195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in the study of protein dynamics. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in the dynamics. For example, specific mutations on the Met20 loop in Escherichia coli DHFR (N23PP/S148A) are known to disrupt millisecond-time scale motions as well as reduce catalytic activity. However, how and if networks of dynamically coupled residues influence the evolution of DHFR is still an unanswered question. In this study, we first identify, by statistical coupling analysis and molecular dynamic simulations, a network of coevolving residues that possesses increased correlated motions. We then go on to show that allosteric communication in this network is knocked down in N23PP/S148A mutant E. coli DHFR. We also identify two sites in the human DHFR sector which may accommodate the Met20 loop double proline motif. Finally, we demonstrate a concerted evolutionary change in the human DHFR allosteric networks, which maintains dynamic communication. These findings strongly implicate protein dynamics as a driving force for evolution.
Collapse
Affiliation(s)
- Thomas
L. Kalmer
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | | | - Cameron I. Cohen
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240-7917, United
States
| | - Jade M. McDaniel
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Abiodun S. Oyedele
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| | - Hannah L. Thirman
- Department
of Cell and Developmental Biology, Vanderbilt
University, Nashville, Tennessee 37240-7935, United States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt
Center for Immunobiology, Vanderbilt University
Medical Center, Nashville, Tennessee 37232, United States
- Chemical
& Physical Biology Program, Vanderbilt
University, Nashville, Tennessee 37232-0301, United States
| | - Allison S. Walker
- Department
of Chemistry, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
- Department
of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Evolutionary
Studies Initiative, Vanderbilt University, Nashville, Tennessee 37240-0002, United
States
| |
Collapse
|
4
|
Damena T, Desalegn T, Mathura S, Getahun A, Bizuayehu D, Alem MB, Gadisa S, Zeleke D, Demissie TB. Synthesis, Structural Characterization, and Computational Studies of Novel Co(II) and Zn(II) Fluoroquinoline Complexes for Antibacterial and Antioxidant Activities. ACS OMEGA 2024; 9:36761-36777. [PMID: 39220483 PMCID: PMC11359626 DOI: 10.1021/acsomega.4c05560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Research into heterocyclic ligands has increased in popularity due to their versatile applications in the biomedical field. Quinoline derivatives with their transition metal complexes are popular scaffolding molecules in the ongoing pursuit of newer and more effective bioactive molecules. Subsequently, this work reports on the synthesis and possible biological application of new Zn(II) and Co(II) complexes with a bidentate quinoline derivative ligand (H2 L), [(H2 L):(E)-2-(((6-fluoro-2-((2-hydroxyethyl)amino)quinolin-3-yl)methylene)amino)ethanol]. The ligand and its metal complexes were structurally characterized by spectroscopic methods (1H NMR, 13C NMR, Fourier transform infrared (FTIR), UV-vis, fluorescence, and mass spectroscopy), as well as by thermogravimetric and elemental analysis methods. The spectroscopic findings were further supported by density functional theory (DFT) and time-dependent (TD)-DFT calculations. The biological application was examined by investigating the inhibitory action of the complexes against bacterial strains using diffusion and agar dilution methods, and their profiles against two Gram-positive and Gram-negative bacterial strains were supported by molecular docking analysis. To rationalize the in vitro activity and establish the possible mechanism of action, the interactions and binding affinity of the ligand and complexes were investigated against three different bacterial enzymes (Escherichia coli DNA gyrase (PDB ID 6f86), E. coli dihydrofolate reductase B (PDB ID: 7r6g), and Staphylococcus aureus tyrosyl-tRNA synthetase (PDB ID: 1JIJ)) using AutoDock with the standard protocol. The MIC value of 0.20 μg/mL for zinc complex against E. coli and associated binding affinities -7.2 and -9.9 kcal/mol with DNA gyrase (PDB ID 6f86) and dihydrofolate reductase B (PDB ID: 7r6g), as well as the MIC value of 2.4 μg/mL for cobalt(II) complex against Staphylococcus aureus and the associated binding affinity of -10.5 kcal/mol with tyrosyl-tRNA synthetase (PDB ID: 1JIJ), revealed that the complexes' inhibitory actions were strong and comparable with those of the standard drug in the experiments. In addition, the ability of the new quinoline-based complexes to scavenge 1,1-diphenyl-picrylhydrazyl radicals was investigated; the findings suggested that the complexes exhibit potent antioxidant activities, which may be of therapeutic significance.
Collapse
Affiliation(s)
- Tadewos Damena
- Department
of Chemistry, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Tegene Desalegn
- Department
of Applied Chemistry, Adama Science and
Technology University, P.O. Box 1888 Adama, Ethiopia
| | - Sadhna Mathura
- School
of Chemistry, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Alemayehu Getahun
- Department
of Biology, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Dereje Bizuayehu
- Department
of Chemistry, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Mamaru Bitew Alem
- Department
of Physics, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
- National
Institute for Theoretical and Computational Sciences (NITheCS), Dimbaza 5600, South Africa
| | - Shiferaw Gadisa
- Department
of Physics, Wachemo University, P.O. Box 667 Hossana, Ethiopia
| | - Digafie Zeleke
- Department
of Chemistry, Salale University, P.O. Box 245 Fitche, Ethiopia
| | - Taye B. Demissie
- Department
of Chemistry, University of Botswana, Notwane Rd, P/bag UB, 00704 Gaborone, Botswana
| |
Collapse
|
5
|
Kalmer TL, Ancajas CMF, Cohen CI, McDaniel JM, Oyedele AS, Thirman HL, Walker AS. Statistical Coupling Analysis Predicts Correlated Motions in Dihydrofolate Reductase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599103. [PMID: 38948820 PMCID: PMC11213021 DOI: 10.1101/2024.06.18.599103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The role of dynamics in enzymatic function is a highly debated topic. Dihydrofolate reductase (DHFR), due to its universality and the depth with which it has been studied, is a model system in this debate. Myriad previous works have identified networks of residues in positions near to and remote from the active site that are involved in dynamics and others that are important for catalysis. For example, specific mutations on the Met20 loop in E. coli DHFR (N23PP/S148A) are known to disrupt millisecond-timescale motions and reduce catalytic activity. However, how and if networks of dynamically coupled residues influence the evolution of DHFR is still an unanswered question. In this study, we first identify, by statistical coupling analysis and molecular dynamic simulations, a network of coevolving residues, which possess increased correlated motions. We then go on to show that allosteric communication in this network is selectively knocked down in N23PP/S148A mutant E. coli DHFR. Finally, we identify two sites in the human DHFR sector which may accommodate the Met20 loop double proline mutation while preserving dynamics. These findings strongly implicate protein dynamics as a driving force for evolution.
Collapse
Affiliation(s)
- Thomas L. Kalmer
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
| | | | - Cameron I. Cohen
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Jade M. McDaniel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | | | - Hannah L. Thirman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Chemical & Physical Biology Program, Vanderbilt University, Nashville, TN, USA
| | - Allison S. Walker
- Department of Chemistry, Vanderbilt University Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
6
|
Calabria FF, Guadagnino G, Cimini A, Leporace M. PET/CT Imaging of Infectious Diseases: Overview of Novel Radiopharmaceuticals. Diagnostics (Basel) 2024; 14:1043. [PMID: 38786341 PMCID: PMC11120316 DOI: 10.3390/diagnostics14101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Infectious diseases represent one of the most common causes of hospital admission worldwide. The diagnostic work-up requires a complex clinical approach, including laboratory data, CT and MRI, other imaging tools, and microbiologic cultures. PET/CT with 18F-FDG can support the clinical diagnosis, allowing visualization of increased glucose metabolism in activated macrophages and monocytes; this tracer presents limits in differentiating between aseptic inflammation and infection. Novel PET radiopharmaceuticals have been developed to overcome these limits; 11C/18F-labeled bacterial agents, several 68Ga-labeled molecules, and white blood cells labeled with 18F-FDG are emerging PET tracers under study, showing interesting preliminary results. The best choice among these tracers can be unclear. This overview aims to discuss the most common diagnostic applications of 18F-FDG PET/CT in infectious diseases and, as a counterpoint, to describe and debate the advantages and peculiarities of the latest PET radiopharmaceuticals in the field of infectious diseases, which will probably improve the diagnosis and prognostic stratification of patients with active infectious diseases.
Collapse
Affiliation(s)
- Ferdinando F. Calabria
- Department of Nuclear Medicine and Theragnostics, “Mariano Santo” Hospital, 87100 Cosenza, Italy;
| | - Giuliana Guadagnino
- Department of Infectious and Tropical Diseases, St. Annunziata Hospital, 87100 Cosenza, Italy
| | - Andrea Cimini
- Nuclear Medicine Unit, St Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Mario Leporace
- Department of Nuclear Medicine and Theragnostics, “Mariano Santo” Hospital, 87100 Cosenza, Italy;
| |
Collapse
|
7
|
Orshiso TA, Zereffa EA, Murthy HCA, Demissie TB, Ghotekar S, Pagar K, Pardeshi O. One-Pot Biopreparation of Trimetallic ZnO–MgO–CuO Nanoparticles: Enhanced Cytotoxicity, Antibacterial Activities and Molecular Docking Studies. CHEMISTRY AFRICA 2024; 7:1963-1980. [DOI: 10.1007/s42250-023-00830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/06/2023] [Indexed: 01/04/2025]
Abstract
AbstractNowadays, metal oxide nanoparticles (MO NPs) are powerful tools for biological applications due to their distinctive features. Moreover, the biological efficacy of multimetallic NPs is more fascinating because of their structural modifications and synergistic effects. This study utilized the one-pot green route to fabricate trimetallic ZnO-MgO-CuO (ZMC) NPs employing a greener reducing agent from Artemisiaabyssinica leaf extract (AALE). The crystal structure, size, compositions, shapes, and external topology of ZMC NPs were characterized by Fourier transform infrared (FTIR), UV–Visible (UV–vis), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and transmission electron microscopy combined with selected area electron diffraction (TEM/HRTEM-SAED). The outcomes suggested that the bio-prepared ZMC NPs are highly crystalline and have hexagonal structures lattice with monoclinic symmetry and spherical morphology with average crystalline and particle sizes of 14.67 and 15.13 nm, respectively. Using MTT assay, the bio-prepared ZMC NPs demonstrated high inhibition percentage (94.37 ± 0.14 at 250 mg/mL) with an IC50 value of 24.83 mg/mL for MCF-7 cell lines. The in-vitro antibacterial potential of ZMC NPs has been evaluated against four bacterial (Gram-positive and Gram-negative) strains and has demonstrated the highest inhibition zone (35 ± 0.03 mm) against the S. aureus strain and the lowest inhibition zone (31 ± 0.11) against the E. coli strain. Moreover, ZMC NPs have also shown strong molecular binding interactions with amino acids of estrogen receptor (ERα), S. aureus, and E. coli with binding energies of − 9.85, − 12.31, and − 6.04 kcal/mole, respectively.
Graphical Abstract
Collapse
|
8
|
Huang Z, Gou X, Hang X, Shi T, Yang J, Liu Y, He X, Li J, Quan K, Bi H, Luo Y. Design, Synthesis, and Biological Evaluation of 5-(5-Iodo-2-isopropyl-4-methoxyphenoxy)pyrimidine-2,4-diamine (AF-353) Derivatives as Novel DHFR Inhibitors against Staphylococcus aureus. J Med Chem 2024; 67:4757-4781. [PMID: 38466654 DOI: 10.1021/acs.jmedchem.3c02355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The high lethality of Staphylococcus aureus infections and the emergence of antibiotic resistance make the development of new antibiotics urgent. Our previous work identified a hit compound h1 (AF-353) as a novel Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor. Herein, we analyzed the antimicrobial profile of h1 and performed a comprehensive structure-activity relationship (SAR) assay based on h1. The representative compound j9 exhibited potent antibacterial activity against S. aureus without cross-resistance to other antimicrobial classes. Multiple genetic and biochemical approaches showed that j9 directly binds to SaDHFR, resulting in strong inhibition of its enzymatic activity (IC50 = 0.97 nM). Additionally, j9 had an acceptable in vivo safety profile and oral bioavailability (F = 40.7%) and also showed favorable efficacy in a mouse model of methicillin-resistant S. aureus (MRSA) skin infection. Collectively, these findings identified j9 as a novel SaDHFR inhibitor with the potential to combat drug-resistant S. aureus infections.
Collapse
Affiliation(s)
- Zongkai Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xupeng Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xudong Hang
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Ting Shi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Jiaxing Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlian He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Keao Quan
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Hongkai Bi
- Department of Pathogen Biology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing 211166, China
| | - Youfu Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Zhu Z, Chen C, Zhang J, Lai F, Feng J, Wu G, Xia J, Zhang W, Han Z, Zhang C, Yang Q, Wang Y, Liu B, Li T, Wu S. Exploration and Biological Evaluation of 1,3-Diamino-7 H-pyrrol[3,2- f]quinazoline Derivatives as Dihydrofolate Reductase Inhibitors. J Med Chem 2023; 66:13946-13967. [PMID: 37698518 DOI: 10.1021/acs.jmedchem.3c00891] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Dihydrofolate reductase (DHFR), a core enzyme of folate metabolism, plays a crucial role in the biosynthesis of purines and thymidylate for cell proliferation and growth in both prokaryotic and eukaryotic cells. However, the development of new DHFR inhibitors is challenging due to the limited number of scaffolds available for drug development. Hence, we designed and synthesized a new class of DHFR inhibitors with a 1,3-diamino-7H-pyrrol[3,2-f]quinazoline derivative (PQD) structure bearing condensed rings. Compound 6r exhibited therapeutic effects on mouse models of systemic infection and thigh infection caused by methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300. Moreover, methyl-modified PQD compound 8a showed a strong efficacy in a murine model of breast cancer, which was better than the effects of taxol. The findings showcased in this study highlight the promising capabilities of novel DHFR inhibitors in addressing bacterial infections as well as breast cancer.
Collapse
Affiliation(s)
- Zihao Zhu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Cantong Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jie Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guangxu Wu
- Department of Pharmacy, The People Hospital of Liupanshui City, Guizhou, Liupanshui 553000, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wenxuan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zunsheng Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qingyun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yuchen Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tianlei Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Song Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of New Drug Research and Development, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
10
|
Unveiling the Efficacy of Sesquiterpenes from Marine Sponge Dactylospongia elegans in Inhibiting Dihydrofolate Reductase Using Docking and Molecular Dynamic Studies. Molecules 2023; 28:molecules28031292. [PMID: 36770958 PMCID: PMC9921107 DOI: 10.3390/molecules28031292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Dihydrofolate reductase (DHFR) is a crucial enzyme that maintains the levels of 5,6,7,8-tetrahydrofolate (THF) required for the biological synthesis of the building blocks of DNA, RNA, and proteins. Over-activation of DHFR results in the progression of multiple pathological conditions such as cancer, bacterial infection, and inflammation. Therefore, DHFR inhibition plays a major role in treating these illnesses. Sesquiterpenes of various types are prime metabolites derived from the marine sponge Dactylospongia elegans and have demonstrated antitumor, anti-inflammation, and antibacterial capacities. Here, we investigated the in silico potential inhibitory effects of 87 D. elegans metabolites on DHFR and predicted their ADMET properties. Compounds were prepared computationally for molecular docking into the selected crystal structure of DHFR (PDB: 1KMV). The docking scores of metabolites 34, 28, and 44 were the highest among this series (gscore values of -12.431, -11.502, and -10.62 kcal/mol, respectively), even above the co-crystallized inhibitor SRI-9662 score (-10.432 kcal/mol). The binding affinity and protein stability of these top three scored compounds were further estimated using molecular dynamic simulation. Compounds 34, 28, and 44 revealed high binding affinity to the enzyme and could be possible leads for DHFR inhibitors; however, further in vitro and in vivo investigations are required to validate their potential.
Collapse
|
11
|
Fighting Antibiotic Resistance: New Pyrimidine-Clubbed Benzimidazole Derivatives as Potential DHFR Inhibitors. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020501. [PMID: 36677558 PMCID: PMC9865878 DOI: 10.3390/molecules28020501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023]
Abstract
The present work describes the design and development of seventeen pyrimidine-clubbed benzimidazole derivatives as potential dihydrofolate reductase (DHFR) inhibitors. These compounds were filtered by using ADMET, drug-likeness characteristics calculations, and molecular docking experiments. Compounds 27, 29, 30, 33, 37, 38, and 41 were chosen for the synthesis based on the results of the in silico screening. Each of the synthesized compounds was tested for its in vitro antibacterial and antifungal activities using a variety of strains. All the compounds showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus pyogenes) as well as Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Most of the compounds either had a higher potency than chloramphenicol or an equivalent potency to ciprofloxacin. Compounds 29 and 33 were effective against all the bacterial and fungal strains. Finally, the 1,2,3,4-tetrahydropyrimidine-2-thiol derivatives with a 6-chloro-2-(chloromethyl)-1H-benzo[d]imidazole moiety are potent enough to be considered a promising lead for the discovery of an effective antibacterial agent.
Collapse
|
12
|
Bhagat K, Kumar N, Kaur Gulati H, Sharma A, Kaur A, Singh JV, Singh H, Bedi PMS. Dihydrofolate reductase inhibitors: patent landscape and phases of clinical development (2001-2021). Expert Opin Ther Pat 2022; 32:1079-1095. [PMID: 36189616 DOI: 10.1080/13543776.2022.2130752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Dihydrofolate reductase (DHFR) plays an important role in the biosynthesis of amino acid and folic acid. It participates by reducing dihydrofolate to tetrahydrofolate, in the presence of nicotinamide dinucleotide phosphate cofactor, and has been verified by various clinical studies to use DHFR as a target for the treatment of cancer and various bacterial infections. AREA COVERED In this review, we have disclosed patents of synthetics and natural DHFR inhibitors with diaminopyrimidine and quinazoline nucleus from 2001. Additionally, this review highlights the clinical progression of numerous DHFR inhibitors received from the last five years. EXPERT OPINION From 2001 to 2021, numerous active chemical scaffolds have been introduced and are exposed as lead candidates that have entered clinical trials as potent DHFR inhibitors. Moreover, researchers have paid considerable attention to the development of a new class of DHFR inhibitors with higher selectivity and potency. This development includes synthesis of synthetic as well as natural compounds that are potent DHFR inhibitors. On the basis of literature review, we can anticipate that there are a huge number of novel active molecules available for the future that could possess superior abilities to target this enzyme with a profound pharmacological profile.
Collapse
Affiliation(s)
- Kavita Bhagat
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.,Department of Pharmaceutical Sciences, Khalsa College of Pharmacy, Amritsar, India
| | - Nitish Kumar
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | | - Aanchal Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Amandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Jatinder Vir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harbinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | | |
Collapse
|
13
|
Mármol I, Quero J, Azcárate P, Atrián-Blasco E, Ramos C, Santos J, Gimeno MC, Rodríguez-Yoldi MJ, Cerrada E. Biological Activity of NHC-Gold-Alkynyl Complexes Derived from 3-Hydroxyflavones. Pharmaceutics 2022; 14:pharmaceutics14102064. [PMID: 36297498 PMCID: PMC9612383 DOI: 10.3390/pharmaceutics14102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
In this paper we describe the synthesis of new N-heterocyclic carbene (NHC) gold(I) derivatives with flavone-derived ligands with a propargyl ether group. The compounds were screened for their antimicrobial and anticancer activities, showing greater activity against bacteria than against colon cancer cells (Caco-2). Complexes [Au(L2b)(IMe)] (1b) and [Au(L2b)(IPr)] (2b) were found to be active against both Gram-positive and Gram-negative strains. The mechanism of action of 1b was evaluated by measurement of thioredoxin reductase (TrxR) and dihydrofolate reductase (DHFR) activity, besides scanning electron microscopy (SEM). Inhibition of the enzyme thioredoxin reductase is not observed in either Escherichia Coli or Caco-2 cells; however, DHFR activity is compromised after incubation of E. coli cells with complex 1b. Moreover, loss of structural integrity and change in bacterial shape is observed in the images obtained from scanning electron microscopy (SEM) after treatment E. coli cells with complex 1b.
Collapse
Affiliation(s)
- Inés Mármol
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Javier Quero
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
| | - Paula Azcárate
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Elena Atrián-Blasco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Carla Ramos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Avenida do Atlântico No. 644, 4900-348 Viana do Castelo, Portugal
| | - Joana Santos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Avenida do Atlântico No. 644, 4900-348 Viana do Castelo, Portugal
| | - María Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Jesús Rodríguez-Yoldi
- Departamento de Farmacología y Fisiología, Medicina Legal y Forense, Unidad de Fisiología, Universidad de Zaragoza, CIBERobn, IIS Aragón, IA2, 50013 Zaragoza, Spain
- Correspondence: (M.J.R.-Y.); (E.C.)
| | - Elena Cerrada
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Correspondence: (M.J.R.-Y.); (E.C.)
| |
Collapse
|
14
|
Synthesis, antimicrobial and α-glucosidase inhibition of new benzimidazole-1,2,3-triazole-indoline derivatives: a combined experimental and computational venture. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02436-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
15
|
The Crystal Structure of 3-Amino-1-(4-Chlorophenyl)-9-Methoxy-1H-Benzo[f]Chromene-2-Carbonitrile: Antimicrobial Activity and Docking Studies. CRYSTALS 2022. [DOI: 10.3390/cryst12070982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compound 3-amino-1-(4-chlorophenyl)-9-methoxy-1H-benzo[f]chromene-2-carbonitrile (4), was synthesized via the reaction of 7-methoxynaphthalen-2-ol (1), 4-chlorobenzaldehyde (2), and malononitrile (3) in an ethanolic piperidine solution under microwave irradiation. The synthesized pyran derivative 4 was asserted through spectral data and X-ray diffraction. The molecular structure of compound 4 was established unambiguously through the single crystal X-ray measurements and crystallized in the Triclinic, P-1, a = 8.7171 (4) Å, b = 10.9509 (5) Å, c = 19.5853 (9) Å, α = 78.249 (2)°, β = 89.000 (2)°, γ = 70.054 (2)°, V = 1717.88 (14) Å3, Z = 4. The target molecule has been screened for antibacterial and antifungal functionality. Compound 4 exhibited favorable antimicrobial activities that resembled the reference antimicrobial agents with an IZ range of 16–26 mm. In addition, MIC, MBC, and MFC were assessed and screened for molecule 4, revealing bactericidal and fungicidal effects. Lastly, a molecular docking analysis was addressed and conducted for this desired molecule.
Collapse
|
16
|
Aggarwal S, Bhadana K, Singh B, Rawat M, Mohammad T, Al-Keridis LA, Alshammari N, Hassan MI, Das SN. Cinnamomum zeylanicum Extract and its Bioactive Component Cinnamaldehyde Show Anti-Tumor Effects via Inhibition of Multiple Cellular Pathways. Front Pharmacol 2022; 13:918479. [PMID: 35774603 PMCID: PMC9237655 DOI: 10.3389/fphar.2022.918479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Cinnamomum zeylanicum is a tropical plant with traditional medicinal significance that possesses antimicrobial, antifungal, anti-parasitic, and anti-tumor properties. Here, we have elucidated the anti-tumor effects of Cinnamomum zeylanicum extract (CZE) and its bioactive compound cinnamaldehyde (CIN) on oral cancer and elucidated underlying molecular mechanisms. Anti-tumor activities of CZE and CIN were demonstrated by various in vitro experiments on oral cancer cells (SCC-4, SCC-9, SCC-25). The cell proliferation, growth, cell cycle arrest, apoptosis, and autophagy were analyzed by MTT, clonogenic assay, propidium iodide, annexin-V-PI, DAPI, and acridine orange staining, respectively. The binding affinity of CIN towards dihydrofolate reductase and p38-MAP kinase alpha was analyzed by molecular docking. Western blot assay was performed to assess the alteration in the expression of various proteins. CZE and CIN treatment significantly inhibited the growth and proliferation of oral cancer cells in a dose-dependent manner. These treatments further induced apoptosis, cell cycle arrest, and autophagy. CZE and CIN inhibited the invasion and cytoplasmic translocation of NF-κB in these cell lines. CIN showed a high affinity to MAP kinase P38 alpha and dihydrofolate reductase with binding affinities of −6.8 and −5.9 kcal/mol, respectively. The cancer cells showed a decreased expression of various PI3k-AKT-mTOR pathways related to VEGF, COX-2, Bcl-2, NF-κB, and proteins post-treatment.
Collapse
Affiliation(s)
- Sadhna Aggarwal
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Kanchan Bhadana
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Baldeep Singh
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Meenakshi Rawat
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Taj Mohammad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Lamya Ahmed Al-Keridis
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nawaf Alshammari
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- *Correspondence: Md. Imtaiyaz Hassan, ; Satya N. Das,
| | - Satya N. Das
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
- *Correspondence: Md. Imtaiyaz Hassan, ; Satya N. Das,
| |
Collapse
|
17
|
Potential bacterial biofilm, MRSA, and DHFR inhibitors based on new morpholine-linked chromene-thiazole hybrids: One-pot synthesis and in silico study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Chawla P, Teli G, Gill RK, Narang RK. An Insight into Synthetic Strategies and Recent Developments of Dihydrofolate Reductase Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202102555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Pooja Chawla
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
- Pooja Chawla Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga 142001 Punjab India
| | - Ghanshyam Teli
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Rupinder Kaur Gill
- Department of Pharmaceutical Chemistry ISF College of Pharmacy Moga Punjab India
| | - Raj Kumar Narang
- Department of Pharmaceutics ISF College of Pharmacy Moga Punjab India
| |
Collapse
|
19
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
20
|
A combined structure-based pharmacophore modeling and 3D-QSAR study on a series of N-heterocyclic scaffolds to screen novel antagonists as human DHFR inhibitors. Struct Chem 2021. [DOI: 10.1007/s11224-020-01705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Azzam R, Elsayed RE, Elgemeie GH. Design and Synthesis of a New Class of Pyridine-Based N-Sulfonamides Exhibiting Antiviral, Antimicrobial, and Enzyme Inhibition Characteristics. ACS OMEGA 2020; 5:26182-26194. [PMID: 33073144 PMCID: PMC7557949 DOI: 10.1021/acsomega.0c03773] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/11/2020] [Indexed: 05/04/2023]
Abstract
A new strategy for designing and assembling a novel class of functionalized pyridine-based benzothiazole and benzimidazole incorporating sulfonamide moieties was developed. The synthesis was carried out by reacting N-cyanoacetoarylsulfonylhydrazide with various electrophiles such as 2-(benzo[d]thiazol-2-yl)-3,3-bis(alkylthio)acrylonitriles and 2-(benzo[d]imidazol-2-yl)-3,3-bis(methylthio)-acrylonitriles, as well as 2-ethoxyl acrylonitrile derivatives. The synthesized compounds were tested for their antiviral and antimicrobial potency. Two of the synthesized compounds, 15c and 15d, showed more than 50% viral reduction against HSV-1 and CBV4, with significant IC50 and CC50 values. The two potent compounds 15c and 15d have also shown inhibitory activity against Hsp90α protein with IC50 values of 10.24 and 4.48 μg/mL, respectively. A combination of 15c and 15d with acyclovir has led to IC50 values that are lower than that of acyclovir alone. Molecular modeling studies were used to identify the interactions between the 15c and 15d compounds and the active site of Hsp90α enzyme. The antimicrobial investigation of the new compounds has also shown that 8b and 15d exhibited a higher inhibition zone (IZ) than sulfadiazine and gentamicin against Klebsiella pneumonia, whereas 9a showed higher IZ than ampicillin against Staphylococcus aureus. According to the enzyme assay study on dihydrofolate reductase, 9a was shown to be the most potent compound among all examined compounds.
Collapse
|
22
|
Muddala NP, White JC, Nammalwar B, Pratt I, Thomas LM, Bunce RA, Berlin KD, Bourne CR. Inhibitor design to target a unique feature in the folate pocket of Staphylococcus aureus dihydrofolate reductase. Eur J Med Chem 2020; 200:112412. [PMID: 32502861 DOI: 10.1016/j.ejmech.2020.112412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
Staphylococcus aureus (Sa) is a serious concern due to increasing resistance to antibiotics. The bacterial dihydrofolate reductase enzyme is effectively inhibited by trimethoprim, a compound with antibacterial activity. Previously, we reported a trimethoprim derivative containing an acryloyl linker and a dihydophthalazine moiety demonstrating increased potency against S. aureus. We have expanded this series and assessed in vitro enzyme inhibition (Ki) and whole cell growth inhibition properties (MIC). Modifications were focused at a chiral carbon within the phthalazine heterocycle, as well as simultaneous modification at positions on the dihydrophthalazine. MIC values increased from 0.0626-0.5 μg/mL into the 0.5-1 μg/mL range when the edge positions were modified with either methyl or methoxy groups. Changes at the chiral carbon affected Ki measurements but with little impact on MIC values. Our structural data revealed accommodation of predominantly the S-enantiomer of the inhibitors within the folate-binding pocket. Longer modifications at the chiral carbon, such as p-methylbenzyl, protrude from the pocket into solvent and result in poorer Ki values, as do modifications with greater torsional freedom, such as 1-ethylpropyl. The most efficacious Ki was 0.7 ± 0.3 nM, obtained with a cyclopropyl derivative containing dimethoxy modifications at the dihydrophthalazine edge. The co-crystal structure revealed an alternative placement of the phthalazine moiety into a shallow surface at the edge of the site that can accommodate either enantiomer of the inhibitor. The current design, therefore, highlights how to engineer specific placement of the inhibitor within this alternative pocket, which in turn maximizes the enzyme inhibitory properties of racemic mixtures.
Collapse
Affiliation(s)
- N Prasad Muddala
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences I, Stillwater, OK, 74078, USA
| | - John C White
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Baskar Nammalwar
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences I, Stillwater, OK, 74078, USA
| | - Ian Pratt
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Leonard M Thomas
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | - Richard A Bunce
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences I, Stillwater, OK, 74078, USA
| | - K Darrell Berlin
- Department of Chemistry, Oklahoma State University, 107 Physical Sciences I, Stillwater, OK, 74078, USA
| | - Christina R Bourne
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA.
| |
Collapse
|
23
|
Searching for mechanisms of action of antimicrobials. Arch Microbiol 2020; 202:2347-2354. [DOI: 10.1007/s00203-020-01959-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 01/21/2023]
|
24
|
He J, Qiao W, An Q, Yang T, Luo Y. Dihydrofolate reductase inhibitors for use as antimicrobial agents. Eur J Med Chem 2020; 195:112268. [PMID: 32298876 DOI: 10.1016/j.ejmech.2020.112268] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 02/05/2023]
Abstract
Drug-resistant bacteria pose an increasingly serious threat to mankind all over the world. However, the currently available clinical treatments do not meet the urgent demand.Therefore, it is desirable to find new targets and inhibitors to overcome the problems of antibiotic resistance. Dihydrofolate reductase (DHFR) is an important enzyme required to maintain bacterial growth, and hence inhibitors of DHFR have been proven as effective agents for treating bacterial infections. This review provides insights into the recent discovery of antimicrobial agents targeting DHFR. In particular, three pathogens, Escherichia coli (E. coli), Mycobacterium tuberculosis(Mtb) and Staphylococcus aureus(S. aureus), and research strategies are emphasized. DHFR inhibitors are expected to be good alternatives to fight bacterial infections.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, Western China Hospital of Sichuan University
| | - Qi An
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Tao Yang
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
25
|
Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J Antibiot (Tokyo) 2019; 73:5-27. [PMID: 31578455 PMCID: PMC7102388 DOI: 10.1038/s41429-019-0240-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
The development of new mechanisms of resistance among pathogens, the occurrence and transmission of genes responsible for antibiotic insensitivity, as well as cancer diseases have been a serious clinical problem around the world for over 50 years. Therefore, intense searching of new leading structures and active substances, which may be used as new drugs, especially against strain resistant to all available therapeutics, is very important. Dihydrofolate reductase (DHFR) has attracted a lot of attention as a molecular target for bacterial resistance over several decades, resulting in a number of useful agents. Trimethoprim (TMP), (2,4-diamino-5-(3′,4′,5′-trimethoxybenzyl)pyrimidine) is the well-known dihydrofolate reductase inhibitor and one of the standard antibiotics used in urinary tract infections (UTIs). This review highlights advances in design, synthesis, and biological evaluations in structural modifications of TMP as DHFR inhibitors. In addition, this report presents the differences in the active site of human and pathogen DHFR. Moreover, an excellent review of DHFR inhibition and their relevance to antimicrobial and parasitic chemotherapy was presented.
Collapse
|
26
|
Tang Y, Li D. Developing a High-Throughput Assay for the Integral Membrane Glycerol 3-Phosphate Acyltransferase. Assay Drug Dev Technol 2019; 17:267-274. [PMID: 31403336 DOI: 10.1089/adt.2019.935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Phospholipid biosynthesis begins with the acylation of glycerol 3-phosphate (G3P). In most Gram-positive bacteria including many pathogens, a membrane protein called PlsY is the only acyltransferase that catalyzes this essential step, making it a potential target for the development of antibiotics. A convenient enzymatic assay should facilitate such drug discovery activities. Previously, we developed a continuous assay by monitoring phosphate, one of the enzymatic product, using a fluorescently labeled phosphate binding protein in a bilayer environment called lipid cubic phase (LCP). However, some intrinsic characteristics of LCP, such as high viscosity, make the assay incompatible with common high-throughput liquid-handling platforms. Here, we adapted the assay by hosting PlsY in detergent micelles, enabling us to conduct the assay using standard multi-channel pipets in a high-throughput manner. With optimal enzyme loading, the reaction velocity was linear up to 30 min. PlsY showed Michaelis-Menten kinetics behavior in micelles with a Vmax of 57.5 μmol min-1 mg-1, and Km of 1.14 mM G3P and 6.2 μM acyl phosphate. The inhibitory product lysophosphatidic acid inhibited PlsY with the IC50 of 19 μM. The results principally demonstrated the feasibility of using the assay for high-throughput screening, and the protocol provided an encouraging starting point for further optimization and validation of the assay for automated platforms.
Collapse
Affiliation(s)
- Yannan Tang
- Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dianfan Li
- Center for Excellence in Molecular Cell Science, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
27
|
Wang M, Hu T, Xie KY. Dihydrofolate reductase as a predictor for poor response to platinum-based chemotherapy in epithelial ovarian cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1723-1730. [PMID: 31933990 PMCID: PMC6947109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Platinum-based chemotherapy is the first line chemotherapy regimen for ovarian cancer patients. However, chemotherapy resistance is observed in a large proportion of patients. It is urgently needed to investigate prognostic biomarkers for chemo-sensitivity in ovarian cancer. METHODS Dihydrofolate reductase (DHFR) expression was measured by immunohistochemical staining in 108 specimens, as well as DHFR mRNA variants with qRT-PCR assays. The correlation between DHFR expression and platinum-based chemotherapy response was analyzed. The prognostic significance of DHFR expression was evaluated in ovarian cancer. RESULTS Positive DHFR expression was observed in 48 specimens, which was correlated to chemotherapy resistance in ovarian cancer patients. Elevated DHFR2 mRNA expression, rather than DHFR1, was observed in chemotherapy resistant tumors. Positive DHFR expression was correlated with higher histologic grade in ovarian cancer (P = 0.014). Kaplan-Meier analysis indicated that DHFR positive expression predicted poor disease-free survival (DFS) (P = 0.040), but not overall survival (OS) of ovarian cancer patients (P = 0.706). The prognostic value was further supported by TCGA data analysis. Cox regression analysis indicated that positive DHFR expression was an independent detrimental factor for disease progression for ovarian cancer patients (P = 0.016). CONCLUSION DHFR level measurement was a valuable prognostic biomarker for chemo-sensitivity of ovarian cancer. Molecular analysis for DHFR variants will provide important evidence for chemotherapy regimen options.
Collapse
Affiliation(s)
- Min Wang
- Department of Obstetrics and Gynecology, Second People’s Hospital of ChengduChengdu 610047, Sichuan, China
| | - Ting Hu
- Department of Obstetrics and Gynecology, Second People’s Hospital of ChengduChengdu 610047, Sichuan, China
| | - Ke-Yu Xie
- Department of Anesthesia, Second People’s Hospital of ChengduChengdu 610047, Sichuan, China
| |
Collapse
|
28
|
DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules 2019; 24:molecules24061140. [PMID: 30909399 PMCID: PMC6471984 DOI: 10.3390/molecules24061140] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/18/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022] Open
Abstract
Dihydrofolate reductase inhibitors are an important class of drugs, as evidenced by their use as antibacterial, antimalarial, antifungal, and anticancer agents. Progress in understanding the biochemical basis of mechanisms responsible for enzyme selectivity and antiproliferative effects has renewed the interest in antifolates for cancer chemotherapy and prompted the medicinal chemistry community to develop novel and selective human DHFR inhibitors, thus leading to a new generation of DHFR inhibitors. This work summarizes the mechanism of action, chemical, and anticancer profile of the DHFR inhibitors discovered in the last six years. New strategies in DHFR drug discovery are also provided, in order to thoroughly delineate the current landscape for medicinal chemists interested in furthering this study in the anticancer field.
Collapse
|