1
|
Masia KJ, Mhlongo NN, Pooe OJ, Ibrahim MA, Kappo AP, Simelane MBC. Antiplasmodial potential of compounds isolated from Ziziphus mucronata and their binding to Plasmodium falciparum HGXPRT using biophysical and molecular docking studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:5453-5463. [PMID: 39560751 PMCID: PMC11985687 DOI: 10.1007/s00210-024-03611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/05/2024] [Indexed: 11/20/2024]
Abstract
The increasing resistance of Plasmodium parasites to currently available antiplasmodial therapies poses a significant challenge in treating malaria. Since ancient times, plants have served as a primary source of novel pharmacologically active compounds for drug development. Therefore, this study aimed to explore the antiplasmodial properties of pentacyclic triterpenes isolated from Ziziphus mucronata bark, with an emphasis on their mechanism of action. Dichloromethane and ethyl acetate extracts of the stem bark were subjected to silica gel column chromatography, which led to the isolation of three known triterpenoids: betulinic acid, methyl betulinate, and lupeol. The compounds were then evaluated for antiplasmodial activity against Plasmodium falciparum NF54 strains using the Plasmodium lactate dehydrogenase (pLDH) assay. In silico evaluation of the isolated compounds was conducted through molecular docking and further validated with in vitro experiments against a purified protein target, Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase (PfHGXPRT). Betulinic acid, methyl betulinate, and lupeol exhibited potent antiplasmodial activities with IC50 values of 20, 10.11, and 7.56 µg/mL, respectively. Lupeol exhibited the highest binding energy of - 7.6 kcal/mol. Differential scanning fluorimetry revealed that lupeol decreases the Tm of PfHGXPRT, thus decreasing the protein's thermal stability. At high concentrations, lupeol also increased protein absorbance, indicating the detection of hydrophobic amino acids and protein unfolding. This study proves that Z. mucronata could serve as a reservoir of effective agents for treating malaria, while also scientifically validating its use in traditional medicine. However, further experimental studies are required to substantiate its relevant therapeutic effects.
Collapse
Affiliation(s)
- Kgaugelo J Masia
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, 2006, South Africa
| | - Ndumiso N Mhlongo
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Ofentse J Pooe
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4000, Westville, South Africa
| | - Mohammed A Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, 810107, Nigeria
| | - Abidemi P Kappo
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, 2006, South Africa
| | - Mthokozisi B C Simelane
- Department of Biochemistry, Faculty of Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, 2006, South Africa.
| |
Collapse
|
2
|
Ilbeigi K, Mabille D, Matheeussen A, Hendrickx R, Claes M, Van Reet N, Anthonissen R, Hulpia F, Lin C, Maes L, Regnault C, Whitfield P, Roy R, Ungogo MA, Sterckx YGJ, De Winter H, Mertens B, Bundschuh M, De Koning HP, Van Calenbergh S, Caljon G. Discovery and Development of an Advanced Lead for the Treatment of African Trypanosomiasis. ACS Infect Dis 2025; 11:131-143. [PMID: 39665421 DOI: 10.1021/acsinfecdis.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
African trypanosomiasis is a widespread disease of human and veterinary importance caused by various Trypanosoma spp. with a globally devastating impact and a need for novel treatment options. We here provide a comprehensive preclinical evaluation of nucleoside analogues, 6-thioether-modified tubercidins, with curative activity against African trypanosomiasis. Promising hits were identified following in vitro screening against the most relevant trypanosome species. Selected hit compounds were extensively tested for in vitro metabolic stability, potency in in vivo mouse models for the various species, genotoxicity in an in vitro testing battery, and mode of action studies (i.e., genome-wide RNA interference library screening and metabolomics). Among the nucleoside analogues, analogue 3 was curative in mouse models with no indication of genotoxicity and a low ecotoxicological footprint. Mode-of-action studies revealed that P1-type nucleoside transporters and adenosine kinase are involved in the uptake and activation, respectively. Analogue 3 represents a potent, advanced lead fitting the preferred target product profile for a broad-spectrum trypanocide regardless of the causative species.
Collapse
Affiliation(s)
- Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Mathieu Claes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Nick Van Reet
- Protozoology Research Group, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Roel Anthonissen
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Clement Regnault
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Phillip Whitfield
- Glasgow Polyomics, College of Medical, Veterinary and Life Sciences, Garscube Campus, University of Glasgow, Glasgow G61 1BD, U.K
| | - Rajdeep Roy
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
| | - Marzuq A Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Yann G-J Sterckx
- Laboratory of Medical Biochemistry (LMB), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, 2610 Wilrijk, Belgium
| | - Hans De Winter
- Laboratory of Medicinal Chemistry, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Birgit Mertens
- Sciensano, SD Chemical and Physical Health Risks, 1050 Brussels, Belgium
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), 76829 Landau, Germany
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Harry P De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, U.K
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
3
|
Present C, Girão RD, Lin C, Caljon G, Van Calenbergh S, Moreira O, Ruivo LADS, Batista MM, Azevedo R, Batista DDGJ, Soeiro MDNC. N 6-methyltubercidin gives sterile cure in a cutaneous Leishmania amazonensis mouse model. Parasitology 2024; 151:506-513. [PMID: 38533610 PMCID: PMC11106500 DOI: 10.1017/s0031182024000362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Leishmania is a trypanosomatid parasite that causes skin lesions in its cutaneous form. Current therapies rely on old and expensive drugs, against which the parasites have acquired considerable resistance. Trypanosomatids are unable to synthesize purines relying on salvaging from the host, and nucleoside analogues have emerged as attractive antiparasitic drug candidates. 4-Methyl-7-β-D-ribofuranosyl-7H-pyrrolo[2,3-d]pyrimidine (CL5564), an analogue of tubercidin in which the amine has been replaced by a methyl group, demonstrates activity against Trypanosoma cruzi and Leishmania infantum. Herein, we investigated its in vitro and in vivo activity against L. amazonensis. CL5564 was 6.5-fold (P = 0.0002) more potent than milteforan™ (ML) against intracellular forms in peritoneal mouse macrophages, and highly selective, while combination with ML gave an additive effect. These results stimulated us to study the activity of CL5564 in mouse model of cutaneous Leishmania infection. BALB/c female and male mice infected by L. amazonensis treated with CL5564 (10 mg kg−1, intralesional route for five days) presented a >93% reduction of paw lesion size likely ML given orally at 40 mg kg−1, while the combination (10 + 40 mg kg−1 of CL5564 and ML, respectively) caused >96% reduction. The qPCR confirmed the suppression of parasite load, but only the combination approach reached 66% of parasitological cure. These results support additional studies with nucleoside derivatives.
Collapse
Affiliation(s)
- Cassandra Present
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Roberson Donola Girão
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium
| | - Otacilio Moreira
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Leonardo Alexandre de Souza Ruivo
- Laboratório de Virologia e Parasitologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Marcos Meuser Batista
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Raquel Azevedo
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Denise da Gama Jaen Batista
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| | - Maria de Nazaré Correia Soeiro
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Avenida Brasil 4365, Manguinhos, 21040-360 Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Elati HAA, Goerner AL, Martorelli Di Genova B, Sheiner L, de Koning HP. Pyrimidine salvage in Toxoplasma gondii as a target for new treatment. Front Cell Infect Microbiol 2023; 13:1320160. [PMID: 38162577 PMCID: PMC10755004 DOI: 10.3389/fcimb.2023.1320160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
Toxoplasmosis is a common protozoan infection that can have severe outcomes in the immunocompromised and during pregnancy, but treatment options are limited. Recently, nucleotide metabolism has received much attention as a target for new antiprotozoal agents and here we focus on pyrimidine salvage by Toxoplasma gondii as a drug target. Whereas uptake of [3H]-cytidine and particularly [3H]-thymidine was at most marginal, [3H]-uracil and [3H]-uridine were readily taken up. Kinetic analysis of uridine uptake was consistent with a single transporter with a Km of 3.3 ± 0.8 µM, which was inhibited by uracil with high affinity (Ki = 1.15 ± 0.07 µM) but not by thymidine or 5-methyluridine, showing that the 5-Me group is incompatible with uptake by T. gondii. Conversely, [3H]-uracil transport displayed a Km of 2.05 ± 0.40 µM, not significantly different from the uracil Ki on uridine transport, and was inhibited by uridine with a Ki of 2.44 ± 0.59 µM, also not significantly different from the experimental uridine Km. The reciprocal, complete inhibition, displaying Hill slopes of approximately -1, strongly suggest that uridine and uracil share a single transporter with similarly high affinity for both, and we designate it uridine/uracil transporter 1 (TgUUT1). While TgUUT1 excludes 5-methyl substitutions, the smaller 5F substitution was tolerated, as 5F-uracil inhibited uptake of [3H]-uracil with a Ki of 6.80 ± 2.12 µM (P > 0.05 compared to uracil Km). Indeed, we found that 5F-Uridine, 5F-uracil and 5F,2'-deoxyuridine were all potent antimetabolites against T. gondii with EC50 values well below that of the current first line treatment, sulfadiazine. In vivo evaluation also showed that 5F-uracil and 5F,2'-deoxyuridine were similarly effective as sulfadiazine against acute toxoplasmosis. Our preliminary conclusion is that TgUUT1 mediates potential new anti-toxoplasmosis drugs with activity superior to the current treatment.
Collapse
Affiliation(s)
- Hamza A. A. Elati
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Pharmacology and Toxicology, Pharmacy College, University of Elmergib, Al Khums, Libya
| | - Amber L. Goerner
- Larner College of Medicine at The University of Vermont, Department of Microbiology and Molecular Genetics, Burlington, VT, United States
| | - Bruno Martorelli Di Genova
- Larner College of Medicine at The University of Vermont, Department of Microbiology and Molecular Genetics, Burlington, VT, United States
| | - Lilach Sheiner
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Harry P. de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
5
|
Hilko DH, Fisher GM, Addison RS, Andrews KT, Poulsen SA. Thymidine Kinase-Independent Click Chemistry DNADetect Probes for DNA Proliferation Assessment in Malaria Parasites. ACS Chem Biol 2023; 18:2535-2543. [PMID: 38050717 DOI: 10.1021/acschembio.3c00530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Metabolic chemical probes are small-molecule reagents that utilize naturally occurring biosynthetic enzymes for in situ incorporation into biomolecules of interest. These reagents can be used to label, detect, and track important biological processes within living cells including protein synthesis, protein glycosylation, and nucleic acid proliferation. A limitation of current chemical probes, which have largely focused on mammalian cells, is that they often cannot be applied to other organisms due to metabolic differences. For example, the thymidine derivative 5-ethynyl-2'-deoxyuridine (EdU) is a gold standard metabolic chemical probe for assessing DNA proliferation in mammalian cells; however, it is unsuitable for the study of malaria parasites due to Plasmodium species lacking the thymidine kinase enzyme that is essential for metabolism of EdU. Herein, we report the design and synthesis of new thymidine-based probes that sidestep the requirement for a thymidine kinase enzyme in Plasmodium. Two of these DNADetect probes exhibit robust labeling of replicating asexual intraerythrocytic Plasmodium falciparum parasites, as determined by flow cytometry and fluorescence microscopy using copper-catalyzed azide-alkyne cycloaddition to a fluorescent azide. The DNADetect chemical probes are synthetically accessible and thus can be made widely available to researchers as tools to further understand the biology of different Plasmodium species, including laboratory lines and clinical isolates.
Collapse
Affiliation(s)
- David H Hilko
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Gillian M Fisher
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Russell S Addison
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Katherine T Andrews
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Brisbane, Queensland 4111, Australia
| |
Collapse
|
6
|
Wu Z, Li X, Gu Z, Xia X, Yang J. Pyrimidine metabolism regulator-mediated molecular subtypes display tumor microenvironmental hallmarks and assist precision treatment in bladder cancer. Front Oncol 2023; 13:1102518. [PMID: 37664033 PMCID: PMC10470057 DOI: 10.3389/fonc.2023.1102518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/20/2023] [Indexed: 09/05/2023] Open
Abstract
Background Bladder cancer (BLCA) is a common urinary system malignancy with a significant morbidity and death rate worldwide. Non-muscle invasive BLCA accounts for over 75% of all BLCA cases. The imbalance of tumor metabolic pathways is associated with tumor formation and proliferation. Pyrimidine metabolism (PyM) is a complex enzyme network that incorporates nucleoside salvage, de novo nucleotide synthesis, and catalytic pyrimidine degradation. Metabolic reprogramming is linked to clinical prognosis in several types of cancer. However, the role of pyrimidine metabolism Genes (PyMGs) in the BLCA-fighting process remains poorly understood. Methods Predictive PyMGs were quantified in BLCA samples from the TCGA and GEO datasets. TCGA and GEO provided information on stemness indices (mRNAsi), gene mutations, CNV, TMB, and corresponding clinical features. The prediction model was built using Lasso regression. Co-expression analysis was conducted to investigate the relationship between gene expression and PyM. Results PyMGs were overexpressed in the high-risk sample in the absence of other clinical symptoms, demonstrating their predictive potential for BLCA outcome. Immunological and tumor-related pathways were identified in the high-risk group by GSWA. Immune function and m6a gene expression varied significantly between the risk groups. In BLCA patients, DSG1, C6orf15, SOST, SPRR2A, SERPINB7, MYBPH, and KRT1 may participate in the oncology process. Immunological function and m6a gene expression differed significantly between the two groups. The prognostic model, CNVs, single nucleotide polymorphism (SNP), and drug sensitivity all showed significant gene connections. Conclusions BLCA-associated PyMGs are available to provide guidance in the prognostic and immunological setting and give evidence for the formulation of PyM-related molecularly targeted treatments. PyMGs and their interactions with immune cells in BLCA may serve as therapeutic targets.
Collapse
Affiliation(s)
- Zixuan Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaohuan Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenchang Gu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jing Yang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
7
|
Ungogo MA, Aldfer MM, Natto MJ, Zhuang H, Chisholm R, Walsh K, McGee M, Ilbeigi K, Asseri JI, Burchmore RJS, Caljon G, Van Calenbergh S, De Koning HP. Cloning and Characterization of Trypanosoma congolense and T. vivax Nucleoside Transporters Reveal the Potential of P1-Type Carriers for the Discovery of Broad-Spectrum Nucleoside-Based Therapeutics against Animal African Trypanosomiasis. Int J Mol Sci 2023; 24:ijms24043144. [PMID: 36834557 PMCID: PMC9960827 DOI: 10.3390/ijms24043144] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
African Animal Trypanosomiasis (AAT), caused predominantly by Trypanosoma brucei brucei, T. vivax and T. congolense, is a fatal livestock disease throughout Sub-Saharan Africa. Treatment options are very limited and threatened by resistance. Tubercidin (7-deazaadenosine) analogs have shown activity against individual parasites but viable chemotherapy must be active against all three species. Divergence in sensitivity to nucleoside antimetabolites could be caused by differences in nucleoside transporters. Having previously characterized the T. brucei nucleoside carriers, we here report the functional expression and characterization of the main adenosine transporters of T. vivax (TvxNT3) and T. congolense (TcoAT1/NT10), in a Leishmania mexicana cell line ('SUPKO') lacking adenosine uptake. Both carriers were similar to the T. brucei P1-type transporters and bind adenosine mostly through interactions with N3, N7 and 3'-OH. Expression of TvxNT3 and TcoAT1 sensitized SUPKO cells to various 7-substituted tubercidins and other nucleoside analogs although tubercidin itself is a poor substrate for P1-type transporters. Individual nucleoside EC50s were similar for T. b. brucei, T. congolense, T. evansi and T. equiperdum but correlated less well with T. vivax. However, multiple nucleosides including 7-halogentubercidines displayed pEC50>7 for all species and, based on transporter and anti-parasite SAR analyses, we conclude that nucleoside chemotherapy for AAT is viable.
Collapse
Affiliation(s)
- Marzuq A. Ungogo
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Manal J. Natto
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Hainan Zhuang
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Robyn Chisholm
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Katy Walsh
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - MarieClaire McGee
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Jamal Ibrahim Asseri
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Richard J. S. Burchmore
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, B-9000 Gent, Belgium
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
- Correspondence:
| |
Collapse
|
8
|
Fiuza LFDA, Batista DGJ, Girão RD, Hulpia F, Finamore-Araújo P, Aldfer MM, Elmahallawy EK, De Koning HP, Moreira O, Van Calenbergh S, Soeiro MDNC. Phenotypic Evaluation of Nucleoside Analogues against Trypanosoma cruzi Infection: In Vitro and In Vivo Approaches. Molecules 2022; 27:molecules27228087. [PMID: 36432189 PMCID: PMC9695592 DOI: 10.3390/molecules27228087] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi (T. cruzi), is a serious public health problem. Current treatment is restricted to two drugs, benznidazole and nifurtimox, displaying serious efficacy and safety drawbacks. Nucleoside analogues represent a promising alternative as protozoans do not biosynthesize purines and rely on purine salvage from the hosts. Protozoan transporters often present different substrate specificities from mammalian transporters, justifying the exploration of nucleoside analogues as therapeutic agents. Previous reports identified nucleosides with potent trypanocidal activity; therefore, two 7-derivatized tubercidins (FH11706, FH10714) and a 3′-deoxytubercidin (FH8513) were assayed against T. cruzi. They were highly potent and selective, and the uptake of the tubercidin analogues appeared to be mediated by the nucleoside transporter TcrNT2. At 10 μM, the analogues reduced parasitemia >90% in 2D and 3D cardiac cultures. The washout assays showed that FH10714 sterilized the infected cultures. Given orally, the compounds did not induce noticeable mouse toxicity (50 mg/kg), suppressed the parasitemia of T. cruzi-infected Swiss mice (25 mg/kg, 5 days) and presented DNA amplification below the limit of detection. These findings justify further studies with longer treatment regimens, as well as evaluations in combination with nitro drugs, aiming to identify more effective and safer therapies for Chagas disease.
Collapse
Affiliation(s)
- Ludmila F. de A. Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Denise G. J. Batista
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Roberson D. Girão
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Paula Finamore-Araújo
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 20000-000, Brazil
| | - Mustafa M. Aldfer
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
| | - Ehab Kotb Elmahallawy
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Harry P. De Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow 62694, UK
| | - Otacílio Moreira
- Laboratório de Virologia Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro 20000-000, Brazil
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Maria de Nazaré C. Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, 4365 Manguinhos, Rio de Janeiro 21040-360, Brazil
- Correspondence: ; Tel.: +55-21-2562-1368
| |
Collapse
|
9
|
The Trypanosoma cruzi TcrNT2 Nucleoside Transporter Is a Conduit for the Uptake of 5-F-2'-Deoxyuridine and Tubercidin Analogues. Molecules 2022; 27:molecules27228045. [PMID: 36432150 PMCID: PMC9693223 DOI: 10.3390/molecules27228045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Among the scarce validated drug targets against Chagas disease (CD), caused by Trypanosoma cruzi, the parasite's nucleoside salvage system has recently attracted considerable attention. Although the trypanocidal activity of tubercidin (7-deazapurine) has long been known, the identification of a class of 7-substituted tubercidin analogs with potent in vitro and in vivo activity and much-enhanced selectivity has made nucleoside analogs among the most promising lead compounds against CD. Here, we investigate the recently identified TcrNT2 nucleoside transporter and its potential role in antimetabolite chemotherapy. TcrNT2, expressed in a Leishmania mexicana cell line lacking the NT1 nucleoside transporter locus, displayed very high selectivity and affinity for thymidine with a Km of 0.26 ± 0.05 µM. The selectivity was explained by interactions of 2-oxo, 4-oxo, 5-Me, 3'-hydroxy and 5'-hydroxy with the transporter binding pocket, whereas a hydroxy group at the 2' position was deleterious to binding. This made 5-halogenated 2'-deoxyuridine analogues good substrates but 5-F-2'-deoxyuridine displayed disappointing activity against T. cruzi trypomastigotes. By comparing the EC50 values of tubercidin and its 7-substituted analogues against L. mexicana Cas9, Cas9ΔNT1 and Cas9ΔNT1+TcrNT2 it was shown that TcrNT2 can take up tubercidin and, at a minimum, a subset of the analogs.
Collapse
|
10
|
Vyas VK, Shukla T, Tulsian K, Sharma M, Patel S. Integrated structure-guided computational design of novel substituted quinolizin-4-ones as Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) inhibitors. Comput Biol Chem 2022; 101:107787. [DOI: 10.1016/j.compbiolchem.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|
11
|
Campagnaro GD. Purine Transporters as Efficient Carriers for Anti-kinetoplastid Molecules: 3'-Deoxytubercidin versus Trypanosomes. ACS Infect Dis 2022; 8:1727-1730. [PMID: 35925865 DOI: 10.1021/acsinfecdis.2c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
After a growing interest in the function of purine transporters in protozoa during the 1990s and early 2000s, the area experienced a lull phase. Recently, however, the potential of tubercidin derivatives, particularly 3'-deoxytubercidin, to cure Trypanosoma brucei infection seems to have started a new wave of interest in the subject, with a large number of newly designed compounds and extensive in vitro testing against T. brucei, Trypanosoma cruzi, and Leishmania spp. Understanding the biochemical properties of purine transporters and using them as drug carriers seem to be emerging once again as a valuable tactic in the fight against neglected diseases.
Collapse
Affiliation(s)
- Gustavo Daniel Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900 São Paulo, Brazil
| |
Collapse
|
12
|
Nucleoside Transport and Nucleobase Uptake Null Mutants in Leishmania mexicana for the Routine Expression and Characterization of Purine and Pyrimidine Transporters. Int J Mol Sci 2022; 23:ijms23158139. [PMID: 35897714 PMCID: PMC9331716 DOI: 10.3390/ijms23158139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 12/02/2022] Open
Abstract
The study of transporters is highly challenging, as they cannot be isolated or studied in suspension, requiring a cellular or vesicular system, and, when mediated by more than one carrier, difficult to interpret. Nucleoside analogues are important drug candidates, and all protozoan pathogens express multiple equilibrative nucleoside transporter (ENT) genes. We have therefore developed a system for the routine expression of nucleoside transporters, using CRISPR/cas9 to delete both copies of all three nucleoside transporters from Leishmania mexicana (ΔNT1.1/1.2/2 (SUPKO)). SUPKO grew at the same rate as the parental strain and displayed no apparent deficiencies, owing to the cells’ ability to synthesize pyrimidines, and the expression of the LmexNT3 purine nucleobase transporter. Nucleoside transport was barely measurable in SUPKO, but reintroduction of L. mexicana NT1.1, NT1.2, and NT2 restored uptake. Thus, SUPKO provides an ideal null background for the expression and characterization of single ENT transporter genes in isolation. Similarly, an LmexNT3-KO strain provides a null background for transport of purine nucleobases and was used for the functional characterization of T. cruzi NB2, which was determined to be adenine-specific. A 5-fluorouracil-resistant strain (Lmex5FURes) displayed null transport for uracil and 5FU, and was used to express the Aspergillus nidulans uracil transporter FurD.
Collapse
|
13
|
Exploration of 6-methyl-7-(Hetero)Aryl-7-Deazapurine ribonucleosides as antileishmanial agents. Eur J Med Chem 2022; 237:114367. [DOI: 10.1016/j.ejmech.2022.114367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
|
14
|
Differences in Transporters Rather than Drug Targets Are the Principal Determinants of the Different Innate Sensitivities of Trypanosoma congolense and Trypanozoon Subgenus Trypanosomes to Diamidines and Melaminophenyl Arsenicals. Int J Mol Sci 2022; 23:ijms23052844. [PMID: 35269985 PMCID: PMC8911344 DOI: 10.3390/ijms23052844] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
The animal trypanosomiases are infections in a wide range of (domesticated) animals with any species of African trypanosome, such as Trypanosoma brucei, T. evansi, T. congolense, T. equiperdum and T. vivax. Symptoms differ between host and infective species and stage of infection and are treated with a small set of decades-old trypanocides. A complication is that not all trypanosome species are equally sensitive to all drugs and the reasons are at best partially understood. Here, we investigate whether drug transporters, mostly identified in T. b. brucei, determine the different drug sensitivities. We report that homologues of the aminopurine transporter TbAT1 and the aquaporin TbAQP2 are absent in T. congolense, while their introduction greatly sensitises this species to diamidine (pentamidine, diminazene) and melaminophenyl (melarsomine) drugs. Accumulation of these drugs in the transgenic lines was much more rapid. T. congolense is also inherently less sensitive to suramin than T. brucei, despite accumulating it faster. Expression of a proposed suramin transporter, located in T. brucei lysosomes, in T. congolense, did not alter its suramin sensitivity. We conclude that for several of the most important classes of trypanocides the presence of specific transporters, rather than drug targets, is the determining factor of drug efficacy.
Collapse
|
15
|
Campagnaro GD, Elati HAA, Balaska S, Martin Abril ME, Natto MJ, Hulpia F, Lee K, Sheiner L, Van Calenbergh S, de Koning HP. A Toxoplasma gondii Oxopurine Transporter Binds Nucleobases and Nucleosides Using Different Binding Modes. Int J Mol Sci 2022; 23:ijms23020710. [PMID: 35054895 PMCID: PMC8776092 DOI: 10.3390/ijms23020710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is unable to synthesize purines de novo, instead salvages them from its environment, inside the host cell, for which they need high affinity carriers. Here, we report the expression of a T. gondii Equilibrative Nucleoside Transporter, Tg244440, in a Trypanosoma brucei strain from which nucleobase transporters have been deleted. Tg244440 transported hypoxanthine and guanine with similar affinity (Km ~1 µM), while inosine and guanosine displayed Ki values of 4.05 and 3.30 µM, respectively. Low affinity was observed for adenosine, adenine, and pyrimidines, classifying Tg244440 as a high affinity oxopurine transporter. Purine analogues were used to probe the substrate-transporter binding interactions, culminating in quantitative models showing different binding modes for oxopurine bases, oxopurine nucleosides, and adenosine. Hypoxanthine and guanine interacted through protonated N1 and N9, and through unprotonated N3 and N7 of the purine ring, whereas inosine and guanosine mostly employed the ribose hydroxy groups for binding, in addition to N1H of the nucleobase. Conversely, the ribose moiety of adenosine barely made any contribution to binding. Tg244440 is the first gene identified to encode a high affinity oxopurine transporter in T. gondii and, to the best of our knowledge, the first purine transporter to employ different binding modes for nucleosides and nucleobases.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Hamza A. A. Elati
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Sofia Balaska
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Maria Esther Martin Abril
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Kelly Lee
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
| | - Lilach Sheiner
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
- Wellcome Centre for Integrative Parasitology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry, Campus Heymans, Ghent University, Ottergemsesteenweg 460, B-9000 Gent, Belgium; (F.H.); (S.V.C.)
| | - Harry P. de Koning
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK; (G.D.C.); (H.A.A.E.); (S.B.); (M.E.M.A.); (M.J.N.); (K.L.); (L.S.)
- Correspondence: ; Tel.: +44-141-3303753
| |
Collapse
|
16
|
Natto MJ, Miyamoto Y, Munday JC, AlSiari TA, Al-Salabi MI, Quashie NB, Eze AA, Eckmann L, De Koning HP. Comprehensive characterization of purine and pyrimidine transport activities in Trichomonas vaginalis and functional cloning of a trichomonad nucleoside transporter. Mol Microbiol 2021; 116:1489-1511. [PMID: 34738285 PMCID: PMC8688338 DOI: 10.1111/mmi.14840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/30/2021] [Accepted: 10/30/2021] [Indexed: 11/30/2022]
Abstract
Trichomoniasis is a common and widespread sexually-transmitted infection, caused by the protozoan parasite Trichomonas vaginalis. T. vaginalis lacks the biosynthetic pathways for purines and pyrimidines, making nucleoside metabolism a drug target. Here we report the first comprehensive investigation into purine and pyrimidine uptake by T. vaginalis. Multiple carriers were identified and characterized with regard to substrate selectivity and affinity. For nucleobases, a high-affinity adenine transporter, a possible guanine transporter and a low affinity uracil transporter were found. Nucleoside transporters included two high affinity adenosine/guanosine/uridine/cytidine transporters distinguished by different affinities to inosine, a lower affinity adenosine transporter, and a thymidine transporter. Nine Equilibrative Nucleoside Transporter (ENT) genes were identified in the T. vaginalis genome. All were expressed equally in metronidazole-resistant and -sensitive strains. Only TvagENT2 was significantly upregulated in the presence of extracellular purines; expression was not affected by co-culture with human cervical epithelial cells. All TvagENTs were cloned and separately expressed in Trypanosoma brucei. We identified the main broad specificity nucleoside carrier, with high affinity for uridine and cytidine as well as purine nucleosides including inosine, as TvagENT3. The in-depth characterization of purine and pyrimidine transporters provides a critical foundation for the development of new anti-trichomonal nucleoside analogues.
Collapse
Affiliation(s)
- Manal J. Natto
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Yukiko Miyamoto
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Jane C. Munday
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tahani A. AlSiari
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mohammed I. Al-Salabi
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neils B. Quashie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, University of Ghana
| | - Anthonius A. Eze
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Current affiliation: Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Lars Eckmann
- Department of Medicine, University of California, San Diego, La Jolla, California 92093, United States
| | - Harry P. De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Nguyen VH, Tichý M, Rožánková S, Pohl R, Downey AM, Doleželová E, Tloušťová E, Slapničková M, Zíková A, Hocek M. Synthesis and anti-trypanosomal activity of 3'-fluororibonucleosides derived from 7-deazapurine nucleosides. Bioorg Med Chem Lett 2021; 40:127957. [PMID: 33741462 DOI: 10.1016/j.bmcl.2021.127957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Trypanosoma brucei parasites cause Human African Trypanosomiasis and the current drugs for its treatment are often inefficient and toxic. This urges the need to development of new antitrypanosomal agents. We report the synthesis and biological profiling of 3'-deoxy-3'-fluororibonucleosides derived from 7-deazaadenine nucleosides bearing diverse substituents at position 7. They were synthesized through glycosylation of 6-chloro-7-bromo- or -7-iodo-7-deazapurine with protected 3'-fluororibose followed by cross-coupling reactions at position 7 and/or deprotection. Most of the title nucleosides displayed micromolar or submicromolar activity against Trypanosoma brucei brucei. The most active were the 7-bromo- and 7-iododerivatives which exerted double-digit nanomolar activity against T. b. brucei and T. b. gambiense and no cytotoxicity and thus represent promising candidates for further development.
Collapse
Affiliation(s)
- Van Hai Nguyen
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Samanta Rožánková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - A Michael Downey
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Martina Slapničková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic.
| |
Collapse
|
18
|
Lin C, Ferreira de Almeida Fiuza L, Cardoso Santos C, Ferreira Nunes D, Cruz Moreira O, Bouton J, Karalic I, Maes L, Caljon G, Hulpia F, de Nazaré C Soeiro M, Van Calenbergh S. 6-Methyl-7-Aryl-7-Deazapurine Nucleosides as Anti-Trypanosoma cruzi Agents: Structure-Activity Relationship and in vivo Efficacy. ChemMedChem 2021; 16:2231-2253. [PMID: 33856742 DOI: 10.1002/cmdc.202100144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 01/04/2023]
Abstract
Chagas disease is a tropical infectious disease resulting in progressive organ-damage and currently lacks efficient treatment and vaccine options. The causative pathogen, Trypanosoma cruzi, requires uptake and processing of preformed purines from the host because it cannot synthesize these de novo, instigating the evaluation of modified purine nucleosides as potential trypanocides. By modifying the pyrimidine part of a previously identified 7-aryl-7-deazapurine nucleoside, we found that substitution of a 6-methyl for a 6-amino group allows retaining T. cruzi amastigote growth inhibitory activity but confers improved selectivity towards mammalian cells. By keeping the 6-methyl group unaltered, and introducing different 7-aryl groups, we identified several analogues with sub-micromolar antitrypanosomal activity. The 7-(4-chlorophenyl) analogue 14, which was stable in microsomes, was evaluated in an acute mouse model. Oral administration of 25 mg/kg b.i.d. suppressed peak parasitemia and protected mice from infection-related mortality, gave similar reductions as the reference drug of blood parasite loads determined by qPCR, but as benznidazole failed to induce sterile cure in the short time period of drug exposure (5 days).
Collapse
Affiliation(s)
- Cai Lin
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Ludmila Ferreira de Almeida Fiuza
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Camila Cardoso Santos
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Daniela Ferreira Nunes
- Plataforma de PCR em Tempo Real RPT09A-Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Otacílio Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A-Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Jakob Bouton
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Izet Karalic
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Fabian Hulpia
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium.,Janssen Pharmaceutica NV, Turnhoutseweg 30, 2340, Beerse, Belgium
| | - Maria de Nazaré C Soeiro
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (FIOCRUZ), Fundação Oswaldo Cruz, Rio de Janeiro, Avenida Brasil 4365, Manguinhos, 21040-360, Rio de Janeiro, Brazil
| | - Serge Van Calenbergh
- Laboratory for Medicinal Chemistry (Campus Heymans), Ghent University, Ottergemsesteenweg 460, 9000, Gent, Belgium
| |
Collapse
|
19
|
Perlíková P, Krajczyk A, Doleželová E, Slapničková M, Milisavljevic N, Slavětínská LP, Tloušt’ová E, Gurská S, Džubák P, Hajdúch M, Zíková A, Hocek M. Synthesis and Antitrypanosomal Activity of 6-Substituted 7-Methyl-7-deazapurine Nucleosides. ACS Infect Dis 2021; 7:917-926. [PMID: 33769794 DOI: 10.1021/acsinfecdis.1c00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human African Trypanosomiasis caused by Trypanosoma brucei species is one of the most damaging neglected tropical diseases. While the number of newly diagnosed cases per year is record low, there is still high interest in the development of new antitrypanosomal agents in case of resistance to currently used drugs and their combinations, and to replace drugs with serious side effects. We report a series of 7-methyl-7-deazapurine (5-methyl-pyrrolo[2,3-d]pyrimidine) ribonucleosides bearing alkyl, methylsulfanyl, methylamino, or diverse alkoxy groups at position 6 that was prepared through glycosylation of 6-chloro-7-methyl-7-deazapurine followed by nucleophilic substitutions or cross-coupling reactions at position 6 and deprotection. Most of the title nucleosides displayed significant activity against Trypanosoma brucei brucei and T. b. gambiense at submicromolar or nanomolar concentrations and low cytotoxicity and thus represent promising candidates for further development.
Collapse
Affiliation(s)
- Pavla Perlíková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Anna Krajczyk
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Martina Slapničková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Nemanja Milisavljevic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Eva Tloušt’ová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
| | - Soňa Gurská
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, CZ-779 00 Olomouc, Czech Republic
| | - Petr Džubák
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, CZ-779 00 Olomouc, Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 5, CZ-779 00 Olomouc, Czech Republic
| | - Alena Zíková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12843 Prague 2, Czech Republic
| |
Collapse
|
20
|
Nvau JB, Alenezi S, Ungogo MA, Alfayez IAM, Natto MJ, Gray AI, Ferro VA, Watson DG, de Koning HP, Igoli JO. Antiparasitic and Cytotoxic Activity of Bokkosin, A Novel Diterpene-Substituted Chromanyl Benzoquinone From Calliandra portoricensis. Front Chem 2020; 8:574103. [PMID: 33282826 PMCID: PMC7705231 DOI: 10.3389/fchem.2020.574103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/29/2020] [Indexed: 12/22/2022] Open
Abstract
Calliandra portoricensis is a medicinal plant growing freely in Nigeria. It is used traditionally to treat tuberculosis, as an anthelmintic and an abortifacient. Phytochemical fractionation and screening of its root extracts has yielded a novel (5-hydroxy-7-methoxy-4-oxo-1-chromanyl)-4-methoxy-p-benzoquinone (breverin)-substituted cassane diterpene, which was designated bokkosin. It was obtained from column chromatography of the ethyl acetate extract of the roots. The compound was characterized using IR, NMR (1D and 2D) and mass spectral data. Promising antiparasitic activity was observed against the kinetoplastid parasite Trypanosoma brucei brucei, as well as moderate activity against Trypanosoma congolense and Leishmania mexicana and low toxicity in mammalian cells, with the best in vitro EC50 values against T. b. brucei (0.69 μg/mL against a standard laboratory strain, and its multi-drug resistant clone (0.33 μg/mL). The effect on T. b. brucei in culture was rapid and dose-dependent, leading to apparently irreversible growth arrest and cell death after an exposure of just 2 h at 2 × or 4 × EC50. The identification of bokkosin constitutes the first isolation of this class of compound from any natural source and establishes the compound as a potential trypanocide that, considering its novelty, should now be tested for activity against other microorganisms as well.
Collapse
Affiliation(s)
- John B. Nvau
- Department of Chemistry, Plateau State University, Bokkos, Nigeria
| | - Samya Alenezi
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Marzuq A. Ungogo
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Ibrahim A. M. Alfayez
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Manal J. Natto
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Alexander I. Gray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Dave G. Watson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Harry P. de Koning
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - John O. Igoli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
- Department of Chemistry, Phytochemistry Research Group, University of Agriculture, Makurdi, Nigeria
| |
Collapse
|