1
|
Miao Y, Wang K, Liu X, Wang X, Hu Y, Yuan Z, Deng D. Multifunctional biomimetic liposomal nucleic acid scavengers inhibit the growth and metastasis of breast cancer. Biomater Sci 2025; 13:2475-2488. [PMID: 40152107 DOI: 10.1039/d4bm01721h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Chemotherapy and surgery, though effective in cancer treatment, trigger the release of nucleic acid-containing pro-inflammatory compounds from damaged tumor cells, known as nucleic acid-associated damage-associated molecular patterns (NA-DAMPs). This inflammation promotes tumor metastasis, and currently, no effective treatment exists for this treatment-induced inflammation and subsequent tumor metastasis. To address this challenge, we developed a biomimetic liposome complex (Lipo-Rh2) incorporating a hybrid structure of liposomes and dendritic polymers, mimicking cell membrane morphology. Lipo-Rh2 leverages the multivalent surface properties of dendritic polymers to clear cell-free nucleic acids while serving as both a structural stabilizer and targeting ligand via embedded ginsenoside Rh2. Experimental data show that Lipo-Rh2 effectively reduces free nucleic acids in mouse serum through charge interactions, downregulates Toll-like receptor expression, decreases inflammatory cytokine secretion, and inhibits both primary tumor growth and metastasis. Compared to the current nucleic acid scavenger PAMAM-G3, Lipo-Rh2 demonstrates stronger antitumor effects, lower toxicity, and enhanced targeting capabilities. This biomimetic liposome-based nucleic acid scavenger represents a novel approach to nucleic acid clearance, expanding the framework for designing effective therapeutic agents.
Collapse
Affiliation(s)
- Yuhang Miao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Kaizhen Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Xin Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yanwei Hu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Zhenwei Yuan
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dawei Deng
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
2
|
Zhuang X, Ma T, Liu R, Fang X, Huang L. Composite nanoparticle-based vesicles achieve enhanced delivery effects of the natural plant extract of the root, stem, and fruit. Front Chem 2025; 13:1552298. [PMID: 40165780 PMCID: PMC11955615 DOI: 10.3389/fchem.2025.1552298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/10/2025] [Indexed: 04/02/2025] Open
Abstract
The extract of medicinal plants is increasingly popular around the whole world due to its attractive therapeutic effects. However, the bioavailability of the extract of bioactive compounds was barely satisfactory due to its easily deactivated and untargeted properties. The use of nanotechnology to develop novel carrier delivery techniques for bioactive extracts has been proven to have significant potential and provides an amazing improvement in the therapeutic effect. Calcium carbonate nanoparticles (CaCO3 NPs), as representative biodegradable materials, are well recognized as environmentally responsive delivery vehicles for disease treatment. In this study, extracts of the root of ginseng, the fruit of Alpinia oxyphylla Miq., and the stem of Millettia speciosa Champ. were developed as a CaCO3 nanoparticle loading drug. All of the three composite nanoparticles exhibited spherical shapes with a narrow size distribution. Notably, the ginseng extract-loaded CaCO3 NPs hold a relatively higher entrapment efficiency of up to 55.2% ± 6.7% and excellent release performance under acidic conditions (pH = 5.5). Moreover, intravenous injection of ginseng CaCO3 NPs resulted in significantly enhanced therapeutic effects in the treatment of glioma. The results demonstrate that CaCO3-based composite nanoparticles are ideal for the delivery of plant extracts, and the systems are expected to be effective against various types of diseases in the future.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Department of Clinical Pharmacy, Hainan Cancer Hospital, Haikou, China
| | - Ting Ma
- Department of Clinical Pharmacy, Hainan Cancer Hospital, Haikou, China
| | - Risheng Liu
- Department of Clinical Pharmacy, Hainan Cancer Hospital, Haikou, China
| | - Xingyue Fang
- Department of Pharmacy and Engineering Research Center of Tropical Medicine Innovation and Transformation, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, China
| | - Liangjiu Huang
- Department of Clinical Pharmacy, Hainan Cancer Hospital, Haikou, China
| |
Collapse
|
3
|
Sohn Y, Hwang Y, Kim K, Lee SJ, Yeon JH. Comparison of Antioxidant Activities of Dendropanax morbifera Léveille Extracts According to Harvest Area. Rejuvenation Res 2025. [PMID: 39888630 DOI: 10.1089/rej.2024.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
Dendropanax morbifera Léveille is a medicinal plant native to East Asia with its diverse therapeutic potentials. In particular, the antioxidant effect of this plant is well known, but there has been little research on the antioxidant effect according to different habitats or ages. In this study, we evaluated the proximate composition, mineral, saponin, rutin, total phenolic and flavonoid contents, and antioxidant activities of leaf extracts of D. morbifera plants cultivated from two different regions (New Zealand and Jeju Island, Korea) and of the same age (2-year-old plants). The assessment of proximate composition and total phenolic and flavonoid contents revealed significant variations in these parameters dependent on the cultivation region and age. The highest total phenol and total flavonoid contents were observed in D. morbifera from Jeju Island. In addition, the antioxidant activities of leaf extracts of D. morbifera from different cultivation regions and ages were assessed in terms of 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)free radical scavenging, total antioxidant capacity, and superoxide dismutase activity. The extract of D. morbifera from Jeju Island showed the highest antioxidant activity among the samples tested. These findings clearly indicate that both the cultivation region and plant age affect the phytochemical content and antioxidant activity of D. morbifera. Therefore, extracts of D. morbifera obtained from optimal harvest regions and ages could serve as promising natural antioxidant candidates with potential health benefits.
Collapse
Affiliation(s)
- Yehjoo Sohn
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Yewon Hwang
- Double Pine Investment Limited, Kerikeri, New Zealand
| | - Kimin Kim
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| | - Sung Je Lee
- School of Food and Advanced Technology, Massey University, Auckland, New Zealand
| | - Ju Hun Yeon
- Department of Integrative Biosciences, University of Brain Education, Cheonan, Republic of Korea
| |
Collapse
|
4
|
Majeed A, Afzal H, Maqsood K, Noureen A, Gul Z, Imran M, Afzal A, Khawar MB. Using carbohydrate-based polymers to facilitate testicular regeneration. Biol Cell 2024; 116:e2400013. [PMID: 38881160 DOI: 10.1111/boc.202400013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
Male infertility is a significant global issue affecting 60-80 million people, with 40%-50% of cases linked to male issues. Exposure to radiation, drugs, sickness, the environment, and oxidative stress may result in testicular degeneration. Carbohydrate-based polymers (CBPs) restore testis differentiation and downregulate apoptosis genes. CBP has biodegradability, low cost, and wide availability, but is at risk of contamination and variations. CBP shows promise in wound healing, but more research is required before implementation in healthcare. Herein, we discuss the recent advances in engineering applications of CBP employed as scaffolds, drug delivery systems, immunomodulation, and stem cell therapy for testicular regeneration. Moreover, we emphasize the promising challenges warranted for future perspectives.
Collapse
Affiliation(s)
- Aneeqa Majeed
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Hanan Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
| | - Kaleem Maqsood
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Amara Noureen
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
| | - Zaman Gul
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Center of Applied Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Ali Afzal
- Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences & Technology, University of Central Punjab, Lahore, Pakistan
- Shenzhen Institutes of Advanced Technology, University of Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Muhammad Babar Khawar
- Applied Molecular Biology and Biomedicine Lab, Department of Zoology, University of Narowal, Narowal, Pakistan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Manju, Bharadvaja N. Exploring the Potential Therapeutic Approach Using Ginsenosides for the Management of Neurodegenerative Disorders. Mol Biotechnol 2024; 66:1520-1536. [PMID: 37330923 DOI: 10.1007/s12033-023-00783-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/31/2023] [Indexed: 06/20/2023]
Abstract
There is a need for an efficient and long-lasting treatment due to the population's increasing prevalence of neurodegenerative disorders. In an effort to generate fresh ideas and create novel therapeutic medications, scientists have recently started to investigate the biological functions of compounds derived from plants and herbs. Ginseng, famous Chinese herbal medicine, has therapeutic value by virtue of its compounds ginsenosides or panaxosides, which are triterpene saponins and steroid glycosides. Research revealed positive impacts on ameliorating various disease conditions and found it as a possible drug candidate. Several neuroprotection mechanisms followed by this compound are inhibition of cell apoptosis, oxidative stress, inflammatory, and tumor activity. It has been demonstrated that controlling these mechanisms enhances cognitive performance and safeguards the brain against neurodegenerative disorders. The main objective of this review is to give a description of the most recent studies on ginsenoside's possible therapeutic application in the treatment of neurodegenerative diseases. Using organic compounds like ginseng and its various components may create new avenues for innovative treatment approaches development for neurological diseases. However, further research is necessary to confirm the stability and effectiveness of ginsenosides for neurodegenerative disease.
Collapse
Affiliation(s)
- Manju
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India
| | - Navneeta Bharadvaja
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| |
Collapse
|
6
|
Dhandapani S, Samad A, Liu Y, Wang R, Balusamy SR, Perumalsamy H, Kim YJ. Coprisin/Compound K Conjugated Gold Nanoparticles Induced Cell Death through Apoptosis and Ferroptosis Pathway in Adenocarcinoma Gastric Cells. ACS OMEGA 2024; 9:25932-25944. [PMID: 38911731 PMCID: PMC11190908 DOI: 10.1021/acsomega.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/03/2024] [Accepted: 04/26/2024] [Indexed: 06/25/2024]
Abstract
Ferroptosis and apoptosis are programmed cell death pathways with distinct characteristics. Sometimes, cancer cells are aided by the induction of a different pathway, such as ferroptosis, when they develop chemoresistance and avoid apoptosis. Identifying the nanomedicine that targets dual pathways is considered as one of the best strategies for diverse cancer types. In our previous work, we synthesized gold nanoparticles (GNP) utilizing Gluconacetobacter liquefaciens in conjunction with compound K (CK) and coprisin (CopA3), yielding GNP-CK-CopA3. Here, we assessed the inhibitory effect of GNP-CK-CopA3 on AGS cells and the induction of apoptosis using Hoechst and PI, Annexin V-FITC/PI, and qRT-PCR. Subsequently, we conducted downstream proteomic analysis and molecular dynamic stimulation to identify the underlying molecular mechanisms. Our investigation of cultured AGS cells treated with varying concentrations of GNP-CK-CopA3 demonstrated the anticancer properties of these nanoparticles. Penetration of GNP-CK-CopA3 into AGS cells was visualized using an enhanced dark field microscope. Apoptosis induction was initially confirmed by treating AGS cells with GNP-CK-CopA3, as evidenced by staining with dyes such as Hoechst and PI. Additionally, mitochondrial disruption and cellular localization induced by GNP-CK-CopA3 were validated through Mito-tracker staining and transmission electron microscopy images. Annexin V-FITC/PI staining was used to distinguish early and late-stage apoptosis or necrosis based on fluorescence patterns. The gene expression of apoptotic markers indicated the initiation of cellular apoptosis. Further, proteomic analysis suggested that the treatment of GNP-CK-CopA3 to AGS cells led to the suppression of 439 proteins and the stimulation of 832 proteins. Among these, ferroptosis emerged as a significant interconnected pathway where glutathione peroxidase 4 (GPX4) and glutathione synthetase (GSS) were significant interacting proteins. Molecular docking and dynamic simulation studies confirmed the binding affinity and stability between CopA3 and CK with GSS and GPX4 proteins, suggesting the role of GNP-CK-CopA3 in ferroptosis induction. Overall, our study showed GNP-CK-CopA3 could play a dual role by inducing apoptosis and ferroptosis to induce AGS cell death.
Collapse
Affiliation(s)
- Sanjeevram Dhandapani
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Abdus Samad
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ying Liu
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Rongbo Wang
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Sri Renukadevi Balusamy
- Department
of Food Science and Biotechnology, Sejong
University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Haribalan Perumalsamy
- Center
for Creative Convergence Education, Hanyang
University, Seoul 04763, Republic of Korea
- Research
Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, South Korea
| | - Yeon-Ju Kim
- Graduate
School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| |
Collapse
|
7
|
Kabadayı SN, Sadiq NB, Hamayun M, Park NI, Kim HY. Impact of Sodium Silicate Supplemented, IR-Treated Panax Ginseng on Extraction Optimization for Enhanced Anti-Tyrosinase and Antioxidant Activity: A Response Surface Methodology (RSM) Approach. Antioxidants (Basel) 2023; 13:54. [PMID: 38247479 PMCID: PMC10812770 DOI: 10.3390/antiox13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Ginseng has long been widely used for its therapeutic potential. In our current study, we investigated the impact of abiotic stress induced by infrared (IR) radiations and sodium silicate on the upregulation of antioxidant and anti-tyrosinase levels, as well as the total phenolic and total flavonoid contents of the Korean ginseng (Panax ginseng C.A. Meyer) variety Yeonpoong. The RSM-based design was used to optimize ultrasonic-assisted extraction time (1-3 h) and temperature (40-60 °C) for better anti-tyrosinase activity and improved antioxidant potential. The optimal extraction results were obtained with a one-hour extraction time, at a temperature of 40 °C, and with a 1.0 mM sodium silicate treatment. We recorded maximum anti-tyrosinase (53.69%) and antioxidant (40.39%) activities when RSM conditions were kept at 875.2 mg GAE/100 g TPC, and 3219.58 mg catechin/100 g. When 1.0 mM sodium silicate was added to the media and extracted at 40 °C for 1 h, the highest total ginsenoside content (368.09 mg/g) was recorded, with variations in individual ginsenosides. Ginsenosides Rb1, Rd, and F2 were significantly affected by extraction temperature, while Rb2 and Rc were influenced by the sodium silicate concentration. Moreover, ginsenoside F2 increased with the sodium silicate treatment, while the Rg3-S content decreased. Interestingly, higher temperatures favored greater ginsenoside diversity while sodium silicate impacted PPD-type ginsenosides. It was observed that the actual experimental values closely matched the predicted values, and this agreement was statistically significant at a 95% confidence level. Our findings suggest that the application of IR irradiation in hydroponic systems can help to improve the quality of ginseng sprouts when supplemented with sodium silicate in hydroponic media. Optimized extraction conditions using ultrasonication can be helpful in improving antioxidant and anti-tyrosinase activity.
Collapse
Affiliation(s)
- Seda Nur Kabadayı
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
| | - Nooruddin Bin Sadiq
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Muhammad Hamayun
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan;
| | - Nam-Il Park
- Department of Plant Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea;
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea; (S.N.K.); (N.B.S.)
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|