1
|
Zheng P, Yu C, Xie L, Ji X, Feng S, Gao Y, Wei X, Wu W, Chen Q. Accelerating the diagnosis of Chinese cblC type MMA patients by multiplex PCR sequencing method. Pediatr Res 2025:10.1038/s41390-025-03841-4. [PMID: 39815091 DOI: 10.1038/s41390-025-03841-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
BACKGROUND CblC type methylmalonic aciduria (cblC disease) is the most common inborn error of vitamin B12 metabolism and due to mutations in the MMACHC gene. The earlier the diagnosis, the better the prognosis. Therefore, convenient and inexpensive detection method is needed. METHODS This study selected mutational hot-spot regions in the MMACHC gene which harbors more than 90% of mutant alleles responsible for cblC disease in China. Subsequently, a hot-spot regions multi-PCR Sanger sequencing method (HsRMSS) was designed. The accuracy and efficiency of HsRMSS was validated using samples from 20 cblC families with known MMACHC gene mutations and 50 healthy volunteers. In addition, patients' clinical phenotypes and molecular genetic features were analyzed. RESULTS A total of 16 different mutations were identified in 20 cblC families. Among them, the most common mutations were c.609 G>A (26/80, 32.5%), c.567dupT (10/80, 12.5%), c.80A>G (8/80, 10.0%), c.658_660delAAG (8/80, 10.0%) and c.394C>T (6/80, 7.5%), which accounted for over 70% of disease alleles. The HsRMSS results were the same as the results using the whole exon sequencing, with a coincidence rate of 100%. CONCLUSION The HsRMSS targeting the mutational hot-spots of MMACHC gene could be a promising tool to accurately and rapidly diagnose cblC disease in China. IMPACT This study reported the development and validation of a hot-spot regions multi-PCR Sanger sequencing method for targeting hotspots which harbor most of the common MMACHC gene mutations reported in Chinese patients with cblC disease. The approach could have a potential clinical application as a rapid diagnosis and screening tool for suspected children with cblC type MMA and population carrier, owing to its high throughput, low cost, and high sensitivity and specificity.
Collapse
Affiliation(s)
- Ping Zheng
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Chaoji Yu
- Beijing Huanuo Aomei Gene Biotech Co. Ltd, Beijing, China
| | - Lina Xie
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Xinna Ji
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Shuo Feng
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Yanyan Gao
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China
| | - Xing Wei
- Beijing Huanuo Aomei Gene Biotech Co. Ltd, Beijing, China
| | - Wenli Wu
- Beijing Huanuo Aomei Gene Biotech Co. Ltd, Beijing, China
| | - Qian Chen
- Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
2
|
Zhang R, Cui X, Zhang Y, Ma H, Gao J, Zhang Y, Shu J, Cai C, Liu Y. Whole-exome sequencing as the first-tier test for patients in neonatal intensive care unit: a Chinese single-center study. BMC Pediatr 2024; 24:351. [PMID: 38778310 PMCID: PMC11110365 DOI: 10.1186/s12887-024-04820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Genetic disorders significantly affect patients in neonatal intensive care units, where establishing a diagnosis can be challenging through routine tests and supplementary examinations. Whole-exome sequencing offers a molecular-based approach for diagnosing genetic disorders. This study aimed to assess the importance of whole-exome sequencing for neonates in intensive care through a retrospective observational study within a Chinese cohort. METHODS We gathered data from neonatal patients at Tianjin Children's Hospital between January 2018 and April 2021. These patients presented with acute illnesses and were suspected of having genetic disorders, which were investigated using whole-exome sequencing. Our retrospective analysis covered clinical data, genetic findings, and the correlation between phenotypes and genetic variations. RESULTS The study included 121 neonates. Disorders affected multiple organs or systems, predominantly the metabolic, neurological, and endocrine systems. The detection rate for whole-exome sequencing was 52.9% (64 out of 121 patients), identifying 84 pathogenic or likely pathogenic genetic variants in 64 neonates. These included 13 copy number variations and 71 single-nucleotide variants. The most frequent inheritance pattern was autosomal recessive (57.8%, 37 out of 64), followed by autosomal dominant (29.7%, 19 out of 64). In total, 40 diseases were identified through whole-exome sequencing. CONCLUSION This study underscores the value and clinical utility of whole-exome sequencing as a primary diagnostic tool for neonates in intensive care units with suspected genetic disorders. Whole-exome sequencing not only aids in diagnosis but also offers significant benefits to patients and their families by providing clarity in uncertain diagnostic situations.
Collapse
Affiliation(s)
- Ruiping Zhang
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China
| | - Xiaoyu Cui
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China
| | - Yan Zhang
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China
- Graduate College, Tianjin Medical University, Heping District, Tianjin, China
| | - Huiqing Ma
- Graduate College, Tianjin Medical University, Heping District, Tianjin, China
| | - Jing Gao
- Graduate College, Tianjin Medical University, Heping District, Tianjin, China
| | - Ying Zhang
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Beichen District, Tianjin, China.
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Beichen District, Tianjin, China.
| | - Yang Liu
- Department of Neonatology, Tianjin Children's Hospital/Tianjin University Children's Hospital, Beichen District, Tianjin, China.
- The Pediatric Clinical College in Tianjin Medical University, Heping District, Tianjin, China.
| |
Collapse
|
3
|
Passantino R, Mangione MR, Ortore MG, Costa MA, Provenzano A, Amenitsch H, Sabbatella R, Alfano C, Martorana V, Vilasi S. Investigation on a MMACHC mutant from cblC disease: The c.394C>T variant. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140793. [PMID: 35618206 DOI: 10.1016/j.bbapap.2022.140793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The cblC disease is an inborn disorder of the vitamin B12 (cobalamin, Cbl) metabolism characterized by methylmalonic aciduria and homocystinuria. The clinical consequences of this disease are devastating and, even when early treated with current therapies, the affected children manifest symptoms involving vision, growth, and learning. The illness is caused by mutations in the gene codifying for MMACHC, a 282aa protein that transports and transforms the different Cbl forms. Here we present data on the structural properties of the truncated protein p.R132X resulting from the c.394C > T mutation that, along with c.271dupA and c.331C > T, is among the most common mutations in cblC. Although missing part of the Cbl binding domain, p.R132X is associated to late-onset symptoms and, therefore, it is supposed to retain residual function. However, to our knowledge structural-functional studies on c.394C > T mutant aimed at verifying this hypothesis are still lacking. By using a biophysical approach including Circular Dichroism, fluorescence, Small Angle X-ray Scattering, and Molecular Dynamics, we show that the mutant protein MMACHC-R132X retains secondary structure elements and remains compact in solution, partly preserving its binding affinity for Cbl. Insights on the fragile stability of MMACHC-R132X-Cbl are provided.
Collapse
Affiliation(s)
- Rosa Passantino
- Biophysics Institute, National Research Council, Palermo 90143, Italy
| | | | - Maria Grazia Ortore
- Dept. Life and Environmental Sciences, Marche Polytechnic University, Ancona 60131, Italy
| | | | | | | | | | | | | | - Silvia Vilasi
- Biophysics Institute, National Research Council, Palermo 90143, Italy.
| |
Collapse
|
4
|
Han L. Genetic screening techniques and diseases for neonatal genetic diseases. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:429-435. [PMID: 34704410 PMCID: PMC8714486 DOI: 10.3724/zdxbyxb-2021-0288] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/22/2021] [Indexed: 11/25/2022]
Abstract
Neonatal genetic disease is currently screened mainly based on metabolite biochemical technology. The false positive rate of biochemical screening technology is relatively high, and there are certain false negatives, and only few types of diseases can be screened. The genetic techniques have been gradually used for neonatal genetic disease screening in recent years. Gene detection technology includes quantitative PCR (qPCR) and high-throughput sequencing. High-throughput sequencing includes gene panel sequencing, whole-exome sequencing and whole-genome sequencing. At present, qPCR and gene panel sequencing are the main technologies to be used for newborn genetic disease screening. Genetic screening diseases range from single disease such as hearing loss, spinal muscular atrophy and severe combined immunodeficiency to multiple diseases. Besides standards and guidelines for the interpretation of sequence variants proposed by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology in 2015, the interpretation of genetic screening results should also consider biochemical results and other results. The development of newborn genetic screening needs to follow ethical principles, including the ethics of newborn genetic screening as a public health project, the privacy ethics of newborns and their family members, and the ethics of bioinformatics. The development of newborn genetic screening will enable more patients with inherited diseases to receive early diagnosis and treatment and improve their prognosis, which is a milestone in the field of neonatal screening.
Collapse
Affiliation(s)
- Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Institute for Pediatric Research, Shanghai 200092, China
| |
Collapse
|
5
|
Wang C, Liu Y, Zhang X, Wang H, Cui Y, Zhi X, Zheng J, Wang N, Shu J, Li D, Cai C. Phenotypic and genotypic analysis of children with methylmalonic academia: A single-center study in China and a recent literature review. Clin Chim Acta 2021; 522:14-22. [PMID: 34389282 DOI: 10.1016/j.cca.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 12/23/2022]
Abstract
BACKGROUND Methylmalonic acidemia (MMA) is a rare inherited metabolic disease caused by methylmalonyl-CoA deficiency or cobalamin metabolism disorder. It is mainly inherited in autosomal recessive mode. According to whether combined with homocysteinemia and the causative genes, it can be divided into many different subtypes. Early diagnosis and early treatment can significantly improve the prognosis. METHODS The children with MMA diagnosed in Tianjin Children's Hospital from 2012 to 2020 were collected. All the children underwent comprehensive physical and laboratory examinations. The metabolites in blood and urine were screened by mass spectrometry. Sanger sequencing, Next-generation sequencing and methylation detection were used for gene detection. RESULTS The detection rate of MMA was 0.20% in children with high-risk of inherited metabolic diseases. The three most common clinical phenotypes of children with MMA were respiratory / metabolic acidosis, global developmental delay and anemia, which were found in 36.00%, 33.33% and 30.67% of children respectively. The most common mutations of MMACHC gene in children with cblC were c.609G > A, c.658_660delAAG and c.80A > G, with frequencies of 34.09%, 13.64% and 13.64%, respectively. CONCLUSIONS This research expands the study of phenotype and genotype of MMA in Chinese population, and can provide reference for clinical diagnosis and treatment of MMA.
Collapse
Affiliation(s)
- Chao Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Yang Liu
- Department of Neonatology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Xinjie Zhang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Hong Wang
- Department of Neurology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Yaqiong Cui
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Xiufang Zhi
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Jie Zheng
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Ning Wang
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| | - Jianbo Shu
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China.
| | - Dong Li
- Department of Neonatology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China
| | - Chunquan Cai
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Tianjin 300134, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin 300134, China
| |
Collapse
|
6
|
Wang C, Liu Y, Cai F, Zhang X, Xu X, Li Y, Zou Q, Zheng J, Zhang Y, Guo W, Cai C, Shu J. Rapid screening of MMACHC gene mutations by high-resolution melting curve analysis. Mol Genet Genomic Med 2020; 8:e1221. [PMID: 32198913 PMCID: PMC7284048 DOI: 10.1002/mgg3.1221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 02/07/2020] [Accepted: 02/24/2020] [Indexed: 12/23/2022] Open
Abstract
Background Cobalamin (cbl) C is a treatable rare hereditary disorder of cbl metabolism with autosomal recessive inheritance. It is the most common organic acidemia, manifested as methylmalonic academia combined with homocysteinemia. Early screening and diagnosis are important. The mutation spectrum of the MMACHC gene causing cblC varies among populations. The mutation spectrum in Chinese population is notably different from that in other populations. Methods A PCR followed by high‐resolution melting curve analysis (PCR‐HRM) method covering all coding exons of MMACHC gene was designed to verify 14 pathogenic MMACHC gene variants found in patients with cblC, including all common mutations in Chinese patients with cblC. Result By PCR‐HRM analysis, 14 pathogenic variants of MMACHC showed distinctly different melting curves, which were consistent with Sanger sequencing. The homozygous type of the most common mutation c.609G > A (p.Trp203Ter) can also be analyzed by specially designed PCR‐HRM. Conclusion The established PCR‐HRM method for screening common pathogenic MMACHC variants in Chinese patients with cblC has the advantages of high accuracy, high throughput, low cost, and high speed. It is suitable for the large‐sample screening of suspected children with methylmalonic acidemia and carriers in population.
Collapse
Affiliation(s)
- Chao Wang
- Tianjin Pediatric Research InstituteTianjin Children’s HospitalTianjinChina
- Tianjin Key Laboratory of Prevention and Treatment of Birth DefectsTianjinChina
| | - Yang Liu
- Department of NeonatalogyTianjin Children’s HospitalThe Pediatric Clinical College in Tianjin Medical UniversityTianjinChina
| | - Fengying Cai
- Department of PhysiologyTianjin Medical CollegeTianjinChina
| | - Xinjie Zhang
- Tianjin Pediatric Research InstituteTianjin Children’s HospitalTianjinChina
- Tianjin Key Laboratory of Prevention and Treatment of Birth DefectsTianjinChina
| | - Xiaowei Xu
- Tianjin Pediatric Research InstituteTianjin Children’s HospitalTianjinChina
- Tianjin Key Laboratory of Prevention and Treatment of Birth DefectsTianjinChina
| | - Yani Li
- Department of Internal MedicineQuyang County People's HospitalBaodingChina
| | - Qianqian Zou
- Department of NeurosurgeryTianjin Children’s HospitalTianjinChina
| | - Jie Zheng
- Department of NeurosurgeryTianjin Children’s HospitalTianjinChina
| | - Yuqin Zhang
- Department of NeurologyTianjin Children’s HospitalTianjinChina
| | - Wei Guo
- Department of RespirationTianjin Children’s HospitalTianjinChina
| | - Chunquan Cai
- Department of NeurosurgeryTianjin Children’s HospitalTianjinChina
| | - Jianbo Shu
- Tianjin Pediatric Research InstituteTianjin Children’s HospitalTianjinChina
- Tianjin Key Laboratory of Prevention and Treatment of Birth DefectsTianjinChina
| |
Collapse
|