1
|
Burghartz M, Gehrke T, Storck K, Staudenmaier R, Mandlik V, Schurr C, Hoang N, Hagen R, Kleinsasser N. Vascularization of engineered cartilage constructs in a mouse model. Cell Tissue Res 2014; 359:479-487. [PMID: 25381568 DOI: 10.1007/s00441-014-2026-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 10/09/2014] [Indexed: 01/25/2023]
Abstract
Tissue engineering of cartilage tissue offers a promising method for reconstructing ear, nose, larynx and trachea defects. However, a lack of sufficient nutrient supply to cartilage constructs limits this procedure. Only a few animal models exist to vascularize the seeded scaffolds. In this study, polycaprolactone (PCL)-based polyurethane scaffolds are seeded with 1 × 10(6) human cartilage cells and implanted in the right hind leg of a nude mouse using an arteriovenous flow-through vessel loop for angiogenesis for the first 3 weeks. Equally seeded scaffolds but without access to a vessel loop served as controls. After 3 weeks, a transposition of the vascularized scaffolds into the groin of the nude mouse was performed. Constructs (verum and controls) were explanted 1 and 6 weeks after transposition. Constructs with implanted vessels were well vascularized. The amount of cells increased in vascularized constructs compared to the controls but at the same time noticeably less extracellular matrix was produced. This mouse model provides critical answers to important questions concerning the vascularization of engineered tissue, which offers a viable option for repairing defects, especially when the desired amount of autologous cartilage or other tissues is not available and the nutritive situation at the implantation site is poor.
Collapse
Affiliation(s)
- Marc Burghartz
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Klinikum Stuttgart, Kriegsbergstrasse 60, 70174, Stuttgart, Germany.
| | - Thomas Gehrke
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetik and Reconstructive Head and Neck Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Katharina Storck
- Department for Ear-Nose-Throat, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | | - Veronika Mandlik
- Department for Plastic Surgery, Klinikum Kassel, Kassel, Germany
| | - Christian Schurr
- Department for Ear-Nose-Throat, Klinik Josephinum, München, Germany
| | - Nguyen Hoang
- Department of Hand Surgery and Microsurgery, Institute of Trauma and Orthopaedics, Central University Hospital 108, Hanoi, Vietnam
| | - Rudolf Hagen
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetik and Reconstructive Head and Neck Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Norbert Kleinsasser
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetik and Reconstructive Head and Neck Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Rodríguez-Lorenzo A, Arufe MC, de la Fuente A, Fernandez F, Blanco F. Influence of flap prefabrication on seeding of subcutaneously injected mesenchymal stem cells in microvascular beds in rats. Ann Plast Surg 2014; 73:234-238. [PMID: 24830657 DOI: 10.1097/sap.0000000000000074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this article, the authors investigated whether the prefabrication of an autologous pedicled flap by isolation from the surrounding with artificial skin substitutes would increase mesenchymal stem cell (MSC) seeding. METHODS Mesenchymal stem cells were isolated from human umbilical cords and were cultured and characterized by fluorescence-activated cell sorting. Oxacarbocyanine and its green fluorescence emission were used to label the MSCs population.Sixteen adult Wistar rats were randomized in 4 groups (n = 4 animals per group). In group 1, a prefabricated groin flap (GF) with skin substitutes was harvested without cell injection; in group 2, 1 million MSCs were injected subcutaneously in the area corresponding to the GF without flap harvesting; in Group 3, a prefabricated GF with skin substitutes was harvested and 1 million MSCs were injected subcutaneously; and in Group 4, a prefabricated GF with skin substitutes was harvested and 2 million MSCs were injected subcutaneously. All procedures were performed bilaterally in each animal. Animals were sacrificed 2 weeks after the surgery. Flap viability was then assessed by clinical inspection and histology, and seeding of MSCs was observed. RESULTS All flaps survived 2 weeks after the surgery. Oxacarbocyanine-labeled cells were found in all prefabricated flaps injected (Groups 3 and 4) in higher number in comparison with the group where subcutaneous injection without flap harvesting was performed (Group 2). This difference was statistically significant (P < 0.05). CONCLUSIONS Prefabricated skin flaps with skin substitutes may provide a useful vehicle for the implantation of MSCs to serve as an autologous microvascular bioscaffold.
Collapse
Affiliation(s)
- Andrés Rodríguez-Lorenzo
- From the *Departments of Surgical Sciences and Plastic and Maxillofacial Surgery, Uppsala University, Uppsala, Sweden; and †Osteoarticular and Aging Research Laboratory, Cell Therapy Unit, Biomedical Research Center, INIBIC-Hospital and ‡Department of Medicine of University of A Coruña, A Coruña, Spain
| | | | | | | | | |
Collapse
|
3
|
Storck K, Staudenmaier R, Buchberger M, Strenger T, Kreutzer K, von Bomhard A, Stark T. Total reconstruction of the auricle: our experiences on indications and recent techniques. BIOMED RESEARCH INTERNATIONAL 2014; 2014:373286. [PMID: 24822198 PMCID: PMC4005147 DOI: 10.1155/2014/373286] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 12/04/2022]
Abstract
INTRODUCTION Auricular reconstruction is a great challenge in facial plastic surgery. With the advances in surgical techniques and biotechnology, different options are available for consideration. The aim of this paper is to review the knowledge about the various techniques for total auricular reconstruction based on the literature and our experience. METHODS Approximately 179 articles published from 1980 to 2013 were identified, and 59 articles were included. We have focused on the current status of total auricular reconstruction based on our personal experience and on papers of particular interest, published within the period of review. We have also included a prospective view on the tissue engineering of cartilage. RESULTS Most surgeons still practice total auricular reconstruction by employing techniques developed by Brent, Nagata, and Firmin with autologous rib cartilage. Within the last years, alloplastic frameworks for reconstruction have become well established. Choosing the reconstruction techniques depends mainly on the surgeon's preference and experience. Prosthetic reconstruction is still reserved for special conditions, even though the material is constantly improving. Tissue engineering has a growing potential for clinical applicability. CONCLUSION Auricular reconstruction still receives attention of plastic/maxillofacial surgeons and otolaryngologists. Even though clinical applicability lags behind initial expectations, the development of tissue-engineered constructs continues its potential development.
Collapse
Affiliation(s)
- K. Storck
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - R. Staudenmaier
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - M. Buchberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - T. Strenger
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - K. Kreutzer
- Department of Maxillofacial Surgery, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - A. von Bomhard
- Department of Maxillofacial Surgery, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| | - T. Stark
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 München, Germany
| |
Collapse
|
4
|
Prefabrication of 3D cartilage contructs: towards a tissue engineered auricle--a model tested in rabbits. PLoS One 2013; 8:e71667. [PMID: 23951215 PMCID: PMC3739741 DOI: 10.1371/journal.pone.0071667] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 07/08/2013] [Indexed: 11/28/2022] Open
Abstract
The reconstruction of an auricle for congenital deformity or following trauma remains one of the greatest challenges in reconstructive surgery. Tissue-engineered (TE) three-dimensional (3D) cartilage constructs have proven to be a promising option, but problems remain with regard to cell vitality in large cell constructs. The supply of nutrients and oxygen is limited because cultured cartilage is not vascular integrated due to missing perichondrium. The consequence is necrosis and thus a loss of form stability. The micro-surgical implantation of an arteriovenous loop represents a reliable technology for neovascularization, and thus vascular integration, of three-dimensional (3D) cultivated cell constructs. Auricular cartilage biopsies were obtained from 15 rabbits and seeded in 3D scaffolds made from polycaprolactone-based polyurethane in the shape and size of a human auricle. These cartilage cell constructs were implanted subcutaneously into a skin flap (15×8 cm) and neovascularized by means of vascular loops implanted micro-surgically. They were then totally enhanced as 3D tissue and freely re-implanted in-situ through microsurgery. Neovascularization in the prefabricated flap and cultured cartilage construct was analyzed by microangiography. After explantation, the specimens were examined by histological and immunohistochemical methods. Cultivated 3D cartilage cell constructs with implanted vascular pedicle promoted the formation of engineered cartilaginous tissue within the scaffold in vivo. The auricles contained cartilage-specific extracellular matrix (ECM) components, such as GAGs and collagen even in the center oft the constructs. In contrast, in cultivated 3D cartilage cell constructs without vascular pedicle, ECM distribution was only detectable on the surface compared to constructs with vascular pedicle. We demonstrated, that the 3D flaps could be freely transplanted. On a microangiographic level it was evident that all the skin flaps and the implanted cultivated constructs were well neovascularized. The presented method is suggested as a promising alternative towards clinical application of engineered cartilaginous tissue for plastic and reconstructive surgery.
Collapse
|
5
|
Froelich K, Setiawan LE, Technau A, Ramos Tirado M, Hackenberg S, Hagen R, Staudenmaier R, Kleinsasser NH. Influence of Different Growth Factors on Chondrogenic Differentiation of Adipose-Derived Stem Cells in Polyurethane-Fibrin Composites. Int J Artif Organs 2012. [DOI: 10.1177/039139881203501203] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Introduction Chondrogenic differentiation of adipose-derived stem cells (ASCs) has proven to be feasible. To compensate for laryngeal palsy or cartilage defects after surgery or trauma using tissue engineering, a formable and stable scaffold material is mandatory. Methods ASCs were seeded in fibrin-polyurethane scaffolds and cultured in chondrogenic differentiation medium adding the growth factors TGF-□1, TGF-□3, and BMP-2 for up to 35 days. Results Histological examination showed acid glycosaminoglycans in the extracellular matrix in all groups. Immunofluorescence presented positive staining for collagen II, aggrecan, and SOX-9 in the TGF-□1–, TGF-□3–, and BMP-2-group. With Real-time PCR analyses, chondrogenic differentiation became apparent by the expression of the specific genes COL2A1 (collagen II), AGC 1 (aggrecan), and SOX-9, whereas collagen II expression was low in all groups compared to bone marrow-derived stem cells (BMSC) due to reduced chondrogenic ability. Conclusions These findings demonstrate the general ability of ASCs to differentiate into matrix-producing chondrocytes in fibrin-polyurethane scaffolds. However, further experiments are necessary to enhance this chondrogenic potential of ASCs seeded in fibrin-polyurethane scaffolds in order to produce a suitable regeneration method for treating cartilage defects or an implantable medialization material for vocal cord palsy.
Collapse
Affiliation(s)
- Katrin Froelich
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Lydia E. Setiawan
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Antje Technau
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Mario Ramos Tirado
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Stephan Hackenberg
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Rudolf Hagen
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| | - Rainer Staudenmaier
- Department of Otorhinolaryngology, Head and Neck Surgery, Technical University Munich - Germany
| | - Norbert H. Kleinsasser
- Department of Otorhinolaryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University of Wuerzburg - Germany
| |
Collapse
|
6
|
Neovaskularisation und freier mikrochirurgischer Transfer von in vitro gezüchteten Knorpelkonstrukten. HNO 2011; 59:239-47. [DOI: 10.1007/s00106-011-2270-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Lee CH, Marion NW, Hollister S, Mao JJ. Tissue formation and vascularization in anatomically shaped human joint condyle ectopically in vivo. Tissue Eng Part A 2009; 15:3923-30. [PMID: 19563263 PMCID: PMC2792071 DOI: 10.1089/ten.tea.2008.0653] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 06/29/2009] [Indexed: 12/24/2022] Open
Abstract
Scale-up of bioengineered grafts toward clinical applications is a challenge in regenerative medicine. Here, we report tissue formation and vascularization of anatomically shaped human tibial condyles ectopically with a dimension of 20 x 15 x 15 mm(3). A composite of poly-epsilon-caprolactone and hydroxyapatite was fabricated using layer deposition of three-dimensional interlaid strands with interconnecting microchannels (400 microm) and seeded with human bone marrow stem cells (hMSCs) with or without osteogenic differentiation. An overlaying layer (1 mm deep) of poly(ethylene glycol)-based hydrogel encapsulating hMSCs or hMSC-derived chondrocytes was molded into anatomic shape and anchored into microchannels by gel infusion. After 6 weeks of subcutaneous implantation in athymic rats, hMSCs generated not only significantly more blood vessels, but also significantly larger-diameter vessels than hMSC-derived osteoblasts, although hMSC-derived osteoblasts yielded mineralized tissue in microchannels. Chondrocytes in safranin-O-positive glycosaminoglycan matrix were present in the cartilage layer seeded with hMSC-derived chondrogenic cells, although significantly more cells were present in the cartilage layer seeded with hMSCs than hMSC-derived chondrocytes. Together, MSCs elaborate substantially more angiogenesis, whereas their progenies yield corresponding differentiated tissue phenotypes. Scale up is probable by incorporating a combination of stem cells and their progenies in repeating modules of internal microchannels.
Collapse
Affiliation(s)
- Chang H. Lee
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York
| | - Nicholas W. Marion
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York
| | - Scott Hollister
- Scaffold Tissue Engineering Group, Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Jeremy J. Mao
- Tissue Engineering and Regenerative Medicine Laboratory, Columbia University Medical Center, New York, New York
| |
Collapse
|