1
|
Fomina AD, Uvarova VI, Kozlovskaya LI, Palyulin VA, Osolodkin DI, Ishmukhametov AA. Ensemble docking based virtual screening of SARS-CoV-2 main protease inhibitors. Mol Inform 2024; 43:e202300279. [PMID: 38973780 DOI: 10.1002/minf.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 07/09/2024]
Abstract
During the first years of COVID-19 pandemic, X-ray structures of the coronavirus drug targets were acquired at an unprecedented rate, giving hundreds of PDB depositions in less than a year. The main protease (Mpro) of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is the primary validated target of direct-acting antivirals. The selection of the optimal ensemble of structures of Mpro for the docking-driven virtual screening campaign was thus non-trivial and required a systematic and automated approach. Here we report a semi-automated active site RMSD based procedure of ensemble selection from the SARS-CoV-2 Mpro crystallographic data and virtual screening of its inhibitors. The procedure was compared with other approaches to ensemble selection and validated with the help of hand-picked and peer-reviewed activity-annotated libraries. Prospective virtual screening of non-covalent Mpro inhibitors resulted in a new chemotype of thienopyrimidinone derivatives with experimentally confirmed enzyme inhibition.
Collapse
Affiliation(s)
- Anastasia D Fomina
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Vladimir A Palyulin
- Department of Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), 108819, Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991, Moscow, Russia
| |
Collapse
|
2
|
Thakur M, Bateman A, Brooksbank C, Freeberg M, Harrison M, Hartley M, Keane T, Kleywegt G, Leach A, Levchenko M, Morgan S, McDonagh E, Orchard S, Papatheodorou I, Velankar S, Vizcaino J, Witham R, Zdrazil B, McEntyre J. EMBL's European Bioinformatics Institute (EMBL-EBI) in 2022. Nucleic Acids Res 2023; 51:D9-D17. [PMID: 36477213 PMCID: PMC9825486 DOI: 10.1093/nar/gkac1098] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022] Open
Abstract
The European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) is one of the world's leading sources of public biomolecular data. Based at the Wellcome Genome Campus in Hinxton, UK, EMBL-EBI is one of six sites of the European Molecular Biology Laboratory (EMBL), Europe's only intergovernmental life sciences organisation. This overview summarises the status of services that EMBL-EBI data resources provide to scientific communities globally. The scale, openness, rich metadata and extensive curation of EMBL-EBI added-value databases makes them particularly well-suited as training sets for deep learning, machine learning and artificial intelligence applications, a selection of which are described here. The data resources at EMBL-EBI can catalyse such developments because they offer sustainable, high-quality data, collected in some cases over decades and made openly availability to any researcher, globally. Our aim is for EMBL-EBI data resources to keep providing the foundations for tools and research insights that transform fields across the life sciences.
Collapse
Affiliation(s)
| | - Alex Bateman
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Cath Brooksbank
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Mallory Freeberg
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Melissa Harrison
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Matthew Hartley
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Thomas Keane
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Gerard Kleywegt
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Andrew Leach
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Mariia Levchenko
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Sarah Morgan
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Ellen M McDonagh
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
- OpenTargets, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Sandra Orchard
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Irene Papatheodorou
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Sameer Velankar
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Juan Antonio Vizcaino
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Rick Witham
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Barbara Zdrazil
- Data Services Teams, EMBL’s European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | | |
Collapse
|
3
|
Fayyazi N, Mostashari-Rad T, Ghasemi JB, Ardakani MM, Kobarfard F. Molecular dynamics simulation, 3D-pharmacophore and scaffold hopping analysis in the design of multi-target drugs to inhibit potential targets of COVID-19. J Biomol Struct Dyn 2022; 40:11787-11808. [PMID: 34405765 DOI: 10.1080/07391102.2021.1965914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 has posed serious threat to the health and has inflicted huge costs in the world. Discovering potent compounds is a critical step to inhibit coronavirus. 3CLpro and RdRp are the most conserved targets associated with COVID-19. In this study, three-dimensional pharmacophore modeling, scaffold hopping, molecular docking, structure-based virtual screening, QSAR-based ADMET predictions and molecular dynamics analysis were used to identify inhibitors for these targets. Binding free energies estimated by molecular docking for each ligand in different binding sites of RdRp were used to predict the active site. Previously reported active 3CLpro and RdRp inhibitors were used to build a pharmacophore model to develop different scaffolds. Structure-based simulations and pharmacophore modeling based on Hip Hop algorithm converged in a state that suggest hydrogen bond acceptor and donor features have a critical role in the two binding sites. Further validations indicated that the best pharmacophore model has fairly good correlation values compared with approved inhibitors. Structure-based simulation results approved that GLu166 and Gln189 in 3CLpro and Lys551 and Glu811 in RdRp, are critical residues for dual activities. Ten compounds were extracted from pharmacophore-based virtual screening in six databases. The results, gained by repurposing approach, suggest the effectiveness of these ten compounds with different scaffolds as possible inhibitors of the two targets. Some quinoline-based hybrid derivatives also were designed. QSAR descriptors plot predicted that the scaffolds have had accepted pharmacokinetic profiles. Multiple molecular dynamics simulations in 100 ns and MM/PBSA studies of some reference inhibitors and the novel compounds in complex with both targets demonstrated stable complexes and confirmed the interaction modes. Based on different computational methods, COVID-19 multi-target inhibitors are proposed. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Neda Fayyazi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran.,Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tahereh Mostashari-Rad
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan, Iran.,Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jahan B Ghasemi
- College of Sciences, Faculty of Chemistry, University of Tehran, Tehran, Iran
| | - Mehran Mirabzadeh Ardakani
- Department of Traditional Pharmacy, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Farzad Kobarfard
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Saldívar-González FI, Medina-Franco JL. Approaches for enhancing the analysis of chemical space for drug discovery. Expert Opin Drug Discov 2022; 17:789-798. [PMID: 35640229 DOI: 10.1080/17460441.2022.2084608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Chemical space is a powerful, general, and practical conceptual framework in drug discovery and other areas in chemistry that addresses the diversity of molecules and it has various applications. Moreover, chemical space is a cornerstone of chemoinformatics as a scientific discipline. In response to the increase in the set of chemical compounds in databases, generators of chemical structures, and tools to calculate molecular descriptors, novel approaches to generate visual representations of chemical space in low dimensions are emerging and evolving. Such approaches include a wide range of commercial and free applications, software, and open-source methods. AREAS COVERED The current state of chemical space in drug design and discovery is reviewed. The topics discussed herein include advances for efficient navigation in chemical space, the use of this concept in assessing the diversity of different data sets, exploring structure-property/activity relationships for one or multiple endpoints, and compound library design. Recent advances in methodologies for generating visual representations of chemical space have been highlighted, thereby emphasizing open-source methods. EXPERT OPINION Quantitative and qualitative generation and analysis of chemical space require novel approaches for handling the increasing number of molecules and their information available in chemical databases (including emerging ultra-large libraries). In addition, it is of utmost importance to note that chemical space is a conceptual framework that goes beyond visual representation in low dimensions. However, the graphical representation of chemical space has several practical applications in drug discovery and beyond.
Collapse
Affiliation(s)
- Fernanda I Saldívar-González
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| | - José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Mexico City 04510, Mexico
| |
Collapse
|
5
|
Zakharova MY, Kuznetsova AA, Uvarova VI, Fomina AD, Kozlovskaya LI, Kaliberda EN, Kurbatskaia IN, Smirnov IV, Bulygin AA, Knorre VD, Fedorova OS, Varnek A, Osolodkin DI, Ishmukhametov AA, Egorov AM, Gabibov AG, Kuznetsov NA. Pre-Steady-State Kinetics of the SARS-CoV-2 Main Protease as a Powerful Tool for Antiviral Drug Discovery. Front Pharmacol 2021; 12:773198. [PMID: 34938188 PMCID: PMC8686763 DOI: 10.3389/fphar.2021.773198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/29/2021] [Indexed: 02/05/2023] Open
Abstract
The design of effective target-specific drugs for COVID-19 treatment has become an intriguing challenge for modern science. The SARS-CoV-2 main protease, Mpro, responsible for the processing of SARS-CoV-2 polyproteins and production of individual components of viral replication machinery, is an attractive candidate target for drug discovery. Specific Mpro inhibitors have turned out to be promising anticoronaviral agents. Thus, an effective platform for quantitative screening of Mpro-targeting molecules is urgently needed. Here, we propose a pre-steady-state kinetic analysis of the interaction of Mpro with inhibitors as a basis for such a platform. We examined the kinetic mechanism of peptide substrate binding and cleavage by wild-type Mpro and by its catalytically inactive mutant C145A. The enzyme induces conformational changes of the peptide during the reaction. The inhibition of Mpro by boceprevir, telaprevir, GC-376, PF-00835231, or thimerosal was investigated. Detailed pre-steady-state kinetics of the interaction of the wild-type enzyme with the most potent inhibitor, PF-00835231, revealed a two-step binding mechanism, followed by covalent complex formation. The C145A Mpro mutant interacts with PF-00835231 approximately 100-fold less effectively. Nevertheless, the binding constant of PF-00835231 toward C145A Mpro is still good enough to inhibit the enzyme. Therefore, our results suggest that even noncovalent inhibitor binding due to a fine conformational fit into the active site is sufficient for efficient inhibition. A structure-based virtual screening and a subsequent detailed assessment of inhibition efficacy allowed us to select two compounds as promising noncovalent inhibitor leads of SARS-CoV-2 Mpro.
Collapse
Affiliation(s)
- Maria Yu Zakharova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia.,Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexandra A Kuznetsova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch (SB) of RAS, Novosibirsk, Russia
| | - Victoria I Uvarova
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
| | - Anastasiia D Fomina
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Liubov I Kozlovskaya
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia.,Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Elena N Kaliberda
- Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Inna N Kurbatskaia
- Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Ivan V Smirnov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Anatoly A Bulygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch (SB) of RAS, Novosibirsk, Russia
| | - Vera D Knorre
- Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Olga S Fedorova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch (SB) of RAS, Novosibirsk, Russia
| | - Alexandre Varnek
- Laboratoire de Chémoinformatique, UMR 7140 CNRS, Université de Strasbourg, Strasbourg, France
| | - Dmitry I Osolodkin
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aydar A Ishmukhametov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia.,Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Alexey M Egorov
- FSASI "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Alexander G Gabibov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Department of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
| | - Nikita A Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch (SB) of RAS, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
6
|
Kaur A, Chopra M, Bhushan M, Gupta S, Kumari P H, Sivagurunathan N, Shukla N, Rajagopal S, Bhalothia P, Sharma P, Naravula J, Suravajhala R, Gupta A, Abbasi BA, Goswami P, Singh H, Narang R, Polavarapu R, Medicherla KM, Valadi J, Kumar S A, Chaubey G, Singh KK, Bandapalli OR, Kavi Kishor PB, Suravajhala P. The Omic Insights on Unfolding Saga of COVID-19. Front Immunol 2021; 12:724914. [PMID: 34745097 PMCID: PMC8564481 DOI: 10.3389/fimmu.2021.724914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
The year 2019 has seen an emergence of the novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coronavirus disease of 2019 (COVID-19). Since the onset of the pandemic, biological and interdisciplinary research is being carried out across the world at a rapid pace to beat the pandemic. There is an increased need to comprehensively understand various aspects of the virus from detection to treatment options including drugs and vaccines for effective global management of the disease. In this review, we summarize the salient findings pertaining to SARS-CoV-2 biology, including symptoms, hosts, epidemiology, SARS-CoV-2 genome, and its emerging variants, viral diagnostics, host-pathogen interactions, alternative antiviral strategies and application of machine learning heuristics and artificial intelligence for effective management of COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Arvinpreet Kaur
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
- Bioclues.org, Hyderabad, India
| | - Mehak Chopra
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mahak Bhushan
- Department of Biological Sciences, Indian Institute of Science Education and Research, Kolkata, India
| | - Sonal Gupta
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | | | - Narmadhaa Sivagurunathan
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Nidhi Shukla
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Shalini Rajagopal
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Purva Bhalothia
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Purnima Sharma
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
| | - Jalaja Naravula
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Renuka Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, India
| | - Ayam Gupta
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Bilal Ahmed Abbasi
- Functional Genomics Unit, Council of Scientific and Industrial Research- Institute of Genomics & Integrative Biology (CSIR-IGIB), Delhi, India
| | - Prittam Goswami
- Department of Biotechnology, Haldia Institute of Technology, West Bengal, India
| | - Harpreet Singh
- Department of Bioinformatics, Hans Raj Mahila Maha Vidyalaya, Punjab, India
- Bioclues.org, Hyderabad, India
| | - Rahul Narang
- Department of Microbiology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, India
| | | | - Krishna Mohan Medicherla
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
| | - Jayaraman Valadi
- Bioclues.org, Hyderabad, India
- Department of Computer Science, Flame University, Pune, India
| | - Anil Kumar S
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Gyaneshwer Chaubey
- Cytogenetics Laboratory, Department of Zoology, Benaras Hindu University, Varanasi, India
| | - Keshav K. Singh
- Department of Genetics, University of Alabama, Birmingham, AL, United States
| | - Obul Reddy Bandapalli
- Bioclues.org, Hyderabad, India
- German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Department of Applied Biology, Council of Scientific and Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India
| | - Polavarapu Bilhan Kavi Kishor
- Bioclues.org, Hyderabad, India
- Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur, India
| | - Prashanth Suravajhala
- Bioclues.org, Hyderabad, India
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Jaipur, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kerala, India
| |
Collapse
|
7
|
Muratov EN, Amaro R, Andrade CH, Brown N, Ekins S, Fourches D, Isayev O, Kozakov D, Medina-Franco JL, Merz KM, Oprea TI, Poroikov V, Schneider G, Todd MH, Varnek A, Winkler DA, Zakharov AV, Cherkasov A, Tropsha A. A critical overview of computational approaches employed for COVID-19 drug discovery. Chem Soc Rev 2021; 50:9121-9151. [PMID: 34212944 PMCID: PMC8371861 DOI: 10.1039/d0cs01065k] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 01/18/2023]
Abstract
COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.
Collapse
Affiliation(s)
- Eugene N. Muratov
- UNC Eshelman School of Pharmacy, University of North CarolinaChapel HillNCUSA
| | - Rommie Amaro
- University of California in San DiegoSan DiegoCAUSA
| | | | | | - Sean Ekins
- Collaborations PharmaceuticalsRaleighNCUSA
| | - Denis Fourches
- Department of Chemistry, North Carolina State UniversityRaleighNCUSA
| | - Olexandr Isayev
- Department of Chemistry, Carnegie Melon UniversityPittsburghPAUSA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook UniversityStony BrookNYUSA
| | | | - Kenneth M. Merz
- Department of Chemistry, Michigan State UniversityEast LansingMIUSA
| | - Tudor I. Oprea
- Department of Internal Medicine and UNM Comprehensive Cancer Center, University of New Mexico, AlbuquerqueNMUSA
- Department of Rheumatology and Inflammation Research, Gothenburg UniversitySweden
- Novo Nordisk Foundation Center for Protein Research, University of CopenhagenDenmark
| | | | - Gisbert Schneider
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of TechnologyZurichSwitzerland
| | | | - Alexandre Varnek
- Department of Chemistry, University of StrasbourgStrasbourgFrance
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido UniversitySapporoJapan
| | - David A. Winkler
- Monash Institute of Pharmaceutical Sciences, Monash UniversityMelbourneVICAustralia
- School of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityBundooraAustralia
- School of Pharmacy, University of NottinghamNottinghamUK
| | | | - Artem Cherkasov
- Vancouver Prostate Centre, University of British ColumbiaVancouverBCCanada
| | - Alexander Tropsha
- UNC Eshelman School of Pharmacy, University of North CarolinaChapel HillNCUSA
| |
Collapse
|
8
|
Junaid M, Akter Y, Siddika A, Nayeem SMA, Nahrin A, Afrose SS, Ezaj MMA, Alam MS. Nature-derived hit, lead, and drug-like small molecules: Current status and future aspects against key target proteins of Coronaviruses. Mini Rev Med Chem 2021; 22:498-549. [PMID: 34353257 DOI: 10.2174/1389557521666210805113231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND COVID-19 pandemic, the most unprecedented event of the year 2020, has brought millions of scientists worldwide in a single platform to fight against it. Though several drugs are now in the clinical trial, few vaccines available on the market already but the lack of an effect of those is making the situation worse. AIM OF THE STUDY In this review, we demonstrated comprehensive data of natural antiviral products showing activities against different proteins of Human Coronaviruses (HCoV) that are responsible for its pathogenesis. Furthermore, we categorized the compounds into the hit, lead, and drug based on the IC50/EC50 value, drug-likeness, and lead-likeness test to portray their potentiality to be a drug. We also demonstrated the present status of our screened antiviral compounds with respect to clinical trials and reported the lead compounds that can be promoted to clinical trial against COVID-19. METHODS A systematic search strategy was employed focusing on Natural Products (NPs) with proven activity (in vitro, in vivo, or in silico) against human coronaviruses, in general, and data were gathered from databases like PubMed, Web of Science, Google Scholar, SciVerse, and Scopus. Information regarding clinical trials retrieved from the Clinical Trial database. RESULTS Total "245" natural compounds were identified initially from the literature study. Among them, Glycyrrhizin, Caffeic acid, Curcumin is in phase 3, and Tetrandrine, Cyclosporine, Tacrolimus, Everolimus are in phase 4 clinical trial. Except for Glycyrrhizin, all compounds showed activity against COVID-19. CONCLUSIONS In summary, our demonstrated specific small molecules with lead and drug-like capabilities clarified their position in the drug discovery pipeline and proposed their future research against COVID-19.
Collapse
Affiliation(s)
- Md Junaid
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Yeasmin Akter
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Aysha Siddika
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - S M Abdul Nayeem
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Afsana Nahrin
- Department of Pharmacy, University of Science and Technology Chittagong. Bangladesh
| | - Syeda Samira Afrose
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | - Md Muzahid Ahmed Ezaj
- Natural Products Research Division, Advanced Bioinformatics, Computational Biology and Data Science Laboratory. Bangladesh
| | | |
Collapse
|
9
|
Nogara PA, Omage FB, Bolzan GR, Delgado CP, Aschner M, Orian L, Teixeira Rocha JB. In silico Studies on the Interaction between Mpro and PLpro From SARS-CoV-2 and Ebselen, its Metabolites and Derivatives. Mol Inform 2021; 40:e2100028. [PMID: 34018687 PMCID: PMC8236915 DOI: 10.1002/minf.202100028] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic caused by the SARS-CoV-2 has mobilized scientific attention in search of a treatment. The cysteine-proteases, main protease (Mpro) and papain-like protease (PLpro) are important targets for antiviral drugs. In this work, we simulate the interactions between the Mpro and PLpro with Ebselen, its metabolites and derivatives with the aim of finding molecules that can potentially inhibit these enzymes. The docking data demonstrate that there are two main interactions between the thiol (-SH) group of Cys (from the protease active sites) and the electrophilic centers of the organoselenium molecules, i. e. the interaction with the carbonyl group (O=C… SH) and the interaction with the Se moiety (Se… SH). Both interactions may lead to an adduct formation and enzyme inhibition. Density Functional Theory (DFT) calculations with Ebselen indicate that the energetics of the thiol nucleophilic attack is more favorable on Se than on the carbonyl group, which is in accordance with experimental data (Jin et al. Nature, 2020, 582, 289-293). Therefore, organoselenium molecules should be further explored as inhibitors of the SARS-CoV-2 proteases. Furthermore, we suggest that some metabolites of Ebselen (e. g. Ebselen diselenide and methylebselenoxide) and derivatives ethaselen and ebsulfur should be tested in vitro as inhibitors of virus replication and its proteases.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Folorunsho Bright Omage
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Gustavo Roni Bolzan
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Cássia Pereira Delgado
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of Medicine1300 Morris Park Avenue, BronxNY10461USA
| | - Laura Orian
- Dipartimento di Scienze ChimicheUniversità degli Studi di PadovaVia Marzolo 135131PadovaItaly
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia MolecularUniversidade Federal de Santa Maria (UFSM)Santa Maria97105-900RSBrazil
| |
Collapse
|
10
|
Medina-Franco JL, Sánchez-Cruz N, López-López E, Díaz-Eufracio BI. Progress on open chemoinformatic tools for expanding and exploring the chemical space. J Comput Aided Mol Des 2021; 36:341-354. [PMID: 34143323 PMCID: PMC8211976 DOI: 10.1007/s10822-021-00399-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 01/10/2023]
Abstract
The concept of chemical space is a cornerstone in chemoinformatics, and it has broad conceptual and practical applicability in many areas of chemistry, including drug design and discovery. One of the most considerable impacts is in the study of structure-property relationships where the property can be a biological activity or any other characteristic of interest to a particular chemistry discipline. The chemical space is highly dependent on the molecular representation that is also a cornerstone concept in computational chemistry. Herein, we discuss the recent progress on chemoinformatic tools developed to expand and characterize the chemical space of compound data sets using different types of molecular representations, generate visual representations of such spaces, and explore structure-property relationships in the context of chemical spaces. We emphasize the development of methods and freely available tools focusing on drug discovery applications. We also comment on the general advantages and shortcomings of using freely available and easy-to-use tools and discuss the value of using such open resources for research, education, and scientific dissemination.
Collapse
Affiliation(s)
- José L Medina-Franco
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| | - Norberto Sánchez-Cruz
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Edgar López-López
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.,Departamento de Química y Programa de Posgrado en Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado 14-740, 07000, Mexico City, Mexico
| | - Bárbara I Díaz-Eufracio
- DIFACQUIM Research Group, Department of Pharmacy, School of Chemistry, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| |
Collapse
|
11
|
Andrade BS, Rangel FDS, Santos NO, Freitas ADS, Soares WRDA, Siqueira S, Barh D, Góes-Neto A, Birbrair A, Azevedo VADC. Repurposing Approved Drugs for Guiding COVID-19 Prophylaxis: A Systematic Review. Front Pharmacol 2020; 11:590598. [PMID: 33390967 PMCID: PMC7772842 DOI: 10.3389/fphar.2020.590598] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
The SARS-CoV-2 outbreak originally appeared in China in December 2019 and became a global pandemic in March 2020. This infectious disease has directly affected public health and the world economy. Several palliative therapeutic treatments and prophylaxis strategies have been used to control the progress of this viral infection, including pre-(PrEP) and post-exposure prophylaxis. On the other hand, research groups around the world are still studying novel drug prophylaxis and treatment using repurposing approaches, as well as vaccination options, which are in different pre-clinical and clinical testing phases. This systematic review evaluated 1,228 articles from the PubMed and Scopus indexing databases, following the Kitchenham bibliographic searching protocol, with the aim to list drug candidates, potentially approved to be used as new options for SARS-CoV-2 prophylaxis clinical trials and medical protocols. In searching protocol, we used the following keywords: "Covid-19 or SARS-CoV-2" or "Coronavirus or 2019 nCoV," "prophylaxis," "prophylactic," "pre-exposure," "COVID-19 or SARS-CoV-2 Chemoprophylaxis," "repurposed," "strategies," "clinical," "trials," "anti-SARS-CoV-2," "anti-covid-19," "Antiviral," "Therapy prevention in vitro," in cells "and" human testing. After all protocol steps, we selected 60 articles that included: 15 studies with clinical data, 22 studies that used in vitro experiments, seven studies using animal models, and 18 studies performed with in silico experiments. Additionally, we included more 22 compounds between FDA approved drugs and drug-like like molecules, which were tested in large-scale screenings, as well as those repurposed approved drugs with new mechanism of actions. The drugs selected in this review can assist clinical studies and medical guidelines on the rational repurposing of known antiviral drugs for COVID-19 prophylaxis.
Collapse
Affiliation(s)
- Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
| | - Fernanda de Souza Rangel
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Naiane Oliveira Santos
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Andria dos Santos Freitas
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Wagner Rodrigues de Assis Soares
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
- Departamento de Saúde II, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil
| | - Sérgio Siqueira
- Laboratório de Bioinformática e Química Computacional, Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Brazil
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, India
| | - Aristóteles Góes-Neto
- Laboratório de Biologia Molecular e Computacional de Fungos, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Alexander Birbrair
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Laboratório de Genética Celular e Molecular, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|