1
|
Kulathunga J, Islam S. Wheat arabinoxylans: Insight into structure-function relationships. Carbohydr Polym 2025; 348:122933. [PMID: 39567151 DOI: 10.1016/j.carbpol.2024.122933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/22/2024]
Abstract
Arabinoxylan (AX), a key non-starch polysaccharide found in the cell walls of cereals like wheat, holds significant importance in the food industry. Recently, it has attracted attention due to its numerous health benefits. While the benefits of wheat arabinoxylans are well-established, a more comprehensive understanding of the relationship between their structure and functional properties is essential. This knowledge will be instrumental in addressing potential concerns in future research focusing on food products containing wheat arabinoxylan. Previous reviews predominantly focused on cereal arabinoxylans, and only a few have addressed wheat arabinoxylan. This review aims to consolidate recent research findings on wheat arabinoxylans, highlighting their health benefits and potential links to structural variations. This will aid future studies in this area. Feruloylated arabinoxylans and arabinoxylan oligosaccharides stand out as the most known for their health benefits. Modifying the chemical structure of arabinoxylans to yield low molecular weight oligosaccharides enhances their immunomodulatory and antioxidant activities, as well as promotes the growth and availability of beneficial gut microbes. The antioxidant activity is positively correlated with the ferulic acid content, whereas it has a negative correlation with arabinose substitution. Nevertheless, additional research using final products is necessary to delve into the potential underlying mechanisms.
Collapse
Affiliation(s)
- Jayani Kulathunga
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA; Department of Multidisciplinary Studies, Faculty of Urban and Aquatic Bioresources, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Shahidul Islam
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58102, USA; Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Western Australia 6150, Australia.
| |
Collapse
|
2
|
Junker F, Bunzel M. Chromatography based profiling of feruloylated arabinans and galactans. Carbohydr Res 2024; 538:109076. [PMID: 38537364 DOI: 10.1016/j.carres.2024.109076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Profiling of pectic arabinans and galactans by analysis of the released oligosaccharides after backbone cleavage provides information on the complexity of the polymer structure. In plants of the family Amaranthaceae, arabinan and galactan substitution with ferulates extends the polysaccharide complexity, changing its chemical properties. Knowledge of the ferulate environment is crucial to understand structure-function-relationships of feruloylated pectins. Here, we present an approach to separate enzymatically generated feruloylated and non-feruloylated arabino- and galactooligosaccharides, followed by deesterification and semiquantitative analysis by HPAEC-PAD using previously reported relative response factors. Application of this approach to sugar beet pectins and insoluble and soluble dietary fiber preparations of amaranth and quinoa suggests that ferulates are preferably incorporated into more complex structures, as nicely demonstrated for feruloylated galactans. Also, ferulate substitution appears to negatively affect enzymatic cleavage by using endo-enzymes. As a consequence, we were able to tentatively identify new feruloylated tri- and tetrasaccharides of galactans isolated from sugar beet pectins.
Collapse
Affiliation(s)
- Florian Junker
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences, Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
3
|
Sabbione AC, Añón MC, Scilingo A. Characterization and Bile Acid Binding Capacity of Dietary Fiber Obtained from Three Different Amaranth Products. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:38-47. [PMID: 37938455 DOI: 10.1007/s11130-023-01116-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/14/2023] [Indexed: 11/09/2023]
Abstract
Amaranth is a dicotyledonous plant, now considered a health-promoting food. It has been rediscovered by the worldwide food industry, which is increasingly becoming aware of the many uses and benefits provided by amaranth in various food preparations. Amaranth dietary fibers, soluble and insoluble fractions, obtained from flour, protein isolate, and beverage were physicochemically characterized and their potential bile acid binding capacity was evaluated. Primary bile acids binding to fiber might contribute to a hypocholesterolemic effect, while the binding of secondary bile acids could minimize the cytotoxic effect that these metabolites exert on the colon. Amaranth fiber fractions were capable of sequestering cholate, taurocholate, deoxycholate, and bovine bile, with a percentage depending not only on the origin and the type of amaranth fiber evaluated but also on the bile acid studied. Flour fiber and the protein isolate insoluble fractions were the most efficient for binding bile and bile acids with uptake values between 29 and 100% relative to cholestyramine. Moreover, deoxycholate, a hydrophobic secondary bile acid, was the most captured by all the fractions, reaching 100% uptake with total and insoluble fibers of the three amaranth products. These results would suggest that the main effect through which amaranth fiber binds bile acids corresponds to an adsorptive effect mediated by hydrophobic interactions.
Collapse
Affiliation(s)
- Ana Clara Sabbione
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET-CIC-UNLP), Street 47 and 116, La Plata, Buenos Aires, Argentina.
| | - María Cristina Añón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET-CIC-UNLP), Street 47 and 116, La Plata, Buenos Aires, Argentina
| | - Adriana Scilingo
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA-CONICET-CIC-UNLP), Street 47 and 116, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
4
|
Rang Y, Liu H, Cheng X, Li W, Shi J, Ou G, Huang H, Chen C, Xiao X, Liu C. Structural characterization of pectic polysaccharides from Amaranth caudatus leaves and the promotion effect on hippocampal glucagon-like peptide-1 level. Int J Biol Macromol 2023:124967. [PMID: 37217047 DOI: 10.1016/j.ijbiomac.2023.124967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/17/2023] [Indexed: 05/24/2023]
Abstract
In this study, decolorized pectic polysaccharides (D-ACLP) with molecular weight (Mw) distribution of 3483- 2,023,656 Da were prepared from Amaranth caudatus leaves. Purified polysaccharides (P-ACLP) with the Mw of 152,955 Da were further isolated from D-ACLP through gel filtration. The structure of P-ACLP was analyzed by 1D and 2D NMR spectra. P-ACLP were identified as rhamnogalacturonan-I (RG-I) containing dimeric arabinose side chains. The main chain of P-ACLP was composed of →4)-α-GalpA-(1→, →2)-β-Rhap-(1→, →3)-β-Galp-(1 → and →6)-β-Galp-(1→. There was a branched chain of α-Araf-(1 → 2)-α-Araf-(1 → connected to the O-6 position of →3)-β-Galp-(1→. The GalpA residues were partially methyl esterified at O-6 and acetylated at O-3. The 28-day consecutive gavage of D-ALCP (400 mg/kg) significantly elevated the hippocampal glucagon-like peptide-1 (GLP-1) levels in rats. The concentrations of butyric acid and total short chain fatty acids in the cecum contents also increased significantly. Moreover, D-ACLP could significantly increase the gut microbiota diversity and dramatically up-regulated the abundance of Actinobacteriota (phylum) and unclassified Oscillospiraceae (genus) in intestinal bacteria. Taking together, D-ACLP might promote the hippocampal GLP-1 level through the beneficial regulation of butyric acid-producing bacteria in gut microbiota. This study contributed to making full use of Amaranth caudatus leaves for cognitive dysfunction intervention in food industry.
Collapse
Affiliation(s)
- Yifeng Rang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Huan Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China; College of Life Sciences, Hubei Normal University, Huangshi 435000, China
| | - Xianbo Cheng
- Nanning Higher Education Base, Guangxi Vocational College of Technology and Business, Nanning 530003, China
| | - Weiye Li
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Jian Shi
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Genghua Ou
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Huiying Huang
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Congying Chen
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Xueman Xiao
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China
| | - Chunhong Liu
- College of Food Science, South China Agricultural University, Guangzhou 510642, China; The Key Laboratory of Food Quality and Safety of Guangdong Province, Guangzhou 510642, China.
| |
Collapse
|
5
|
Eichhöfer H, Bindereif B, Karbstein HP, Bunzel M, van der Schaaf US, Wefers D. Influence of Arabinan Fine Structure, Galacturonan Backbone Length, and Degree of Esterification on the Emulsifying Properties of Acid-Extracted Sugar Beet Pectins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2105-2112. [PMID: 36668901 DOI: 10.1021/acs.jafc.2c07460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Sugar beet pectins (SBPs) are known for their emulsifying properties, but it is yet unknown which structural elements are most important for functionality. Recent results indicated that the arabinose content has a decisive influence, but the approach applied did not allow causality to be established. In this study, a mostly intact SBP was selectively modified and the obtained pectins were analyzed for their molecular structure and their emulsifying properties. De-esterification only resulted in a moderate increase in droplet size. The length of the pectin backbone only influenced the emulsifying properties when the homogalacturonan backbone was cleaved to a higher extent. By using different arabinan-modifying enzymes, it was demonstrated that both higher portions and chain lengths of arabinans positively influence the emulsifying properties of SBPs. Therefore, we were able to refine the structure-function relationships for acid-extracted SBPs, which can be used to optimize extraction conditions.
Collapse
Affiliation(s)
- Hendrik Eichhöfer
- Institute of Applied Biosciences─Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany
| | - Benjamin Bindereif
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Heike Petra Karbstein
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Institute of Applied Biosciences─Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, Building 50.41, 76131 Karlsruhe, Germany
| | - Ulrike Sabine van der Schaaf
- Institute of Process Engineering in Life Sciences─Food Process Engineering, Karlsruhe Institute of Technology (KIT), Gotthard-Franz-Str. 3, Building 50.31, 76131 Karlsruhe, Germany
| | - Daniel Wefers
- Institute of Chemistry─Division of Food Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2, 06120 Halle/Saale, Germany
| |
Collapse
|
6
|
Steck J, Junker F, Eichhöfer H, Bunzel M. Chemically Different but Often Mistaken Phenolic Polymers of Food Plants: Proanthocyanidins and Lignin in Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11704-11714. [PMID: 36094402 DOI: 10.1021/acs.jafc.2c03782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Flavonoid based proanthocyanidins and cinnamyl alcohol based lignins are chemically complex phenolic oligomers/polymers that are found in food plants. Although structurally very different, these two biopolymers are often not distinguished, for example, in the (quantitative) compositional analysis of cell walls and dietary fiber. Here, we analytically distinguish lignin and proanthocyanidins in dietary fiber samples by using degradative and nondegradative techniques and provide information about their occurrence, abundance, and structural characteristics in seeds of chokeberries, cranberries, raspberries, red currants, and grapes. These data revealed that the seeds of botanically diverse fruits largely differ in terms of their phenolic fiber polymers. The mostly hardened tissue of the seeds is not necessarily based on lignified cell walls. For example, red currant and chokeberry seeds almost exclusively contain proanthocyanidins, and raspberry seeds were clearly lignified (G-H-lignin) but did not contain proanthocyanidins. Our data also allows for estimating the bias of proanthocyanidins on different approaches of lignin analysis.
Collapse
Affiliation(s)
- Jan Steck
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
| | - Florian Junker
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
| | - Hendrik Eichhöfer
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology (KIT), Adenauerring 20A, 76131 Karlsruhe, Germany
| |
Collapse
|
7
|
Kongdang P, Dukaew N, Pruksakorn D, Koonrungsesomboon N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114547. [PMID: 34425138 DOI: 10.1016/j.jep.2021.114547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Amaranthus is phytonutrients-rich plant distributed worldwide and has been recognized as having medicinal value in traditional use against several diseases and conditions. There are a large amount of research data on the polyphenol profiles of Amaranthus plants and their links with potential benefits against gastrointestinal disorders. AIM OF THE REVIEW This review article aims to provide a comprehensive review of Amaranthus phenolic compounds and their microbial metabolites, as well as the biological and/or pharmacological effects of those compounds/metabolites. METHODOLOGY The relevant information about the genus Amaranthus was collected from various sources and databases, including Google Scholar, Google Books, PubMed, Web of Science, Scopus, Science Direct, and other internet sources. The World Flora Online (2021) database was used to verify the scientific names of the plants. RESULTS Comprehensive review of identified compounds in Amaranthus plants revealed the presence of phenolic acids, flavonoids, and coumarins in each part of the plants. The biotransformation by gut microbiota enzymes prominently produces diverse bioactive metabolites that are potentially active than their precursors. Lines of the evidence support the beneficial roles of Amaranthus extracts in several gastrointestinal diseases, particularly with the polar extracts of several plant parts. Dietary fibers in Amaranthus plants also coordinate the alteration of gut microbiota-related metabolisms and may be beneficial to certain gastrointestinal disorders in particular, such as constipation. CONCLUSIONS Amaranthus plants are rich in polyphenols and dietary fibers. Several microbial metabolites are biologically active, so alteration of gut microbiota is largely linked to the metabolic feature of the plants. Based on the evidence available to date, several Amaranthus plants containing a combination of phytonutrients, particularly polyphenols and dietary fibers, may be a promising candidate that is of interest to be further developed for use in the treatment of certain gastrointestinal conditions/disorders.
Collapse
Affiliation(s)
- Patiwat Kongdang
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
| | - Nahathai Dukaew
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Multidisciplinary Technology for Advanced Medicine (CMUTEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand.
| | - Nut Koonrungsesomboon
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
8
|
Bindereif B, Eichhöfer H, Bunzel M, Karbstein H, Wefers D, van der Schaaf U. Arabinan side-chains strongly affect the emulsifying properties of acid-extracted sugar beet pectins. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Dietary fiber polysaccharides of amaranth, buckwheat and quinoa grains: A review of chemical structure, biological functions and food uses. Carbohydr Polym 2020; 248:116819. [DOI: 10.1016/j.carbpol.2020.116819] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
|
11
|
Rodríguez M, Tironi VA. Polyphenols in amaranth (A. manteggazianus) flour and protein isolate: Interaction with other components and effect of the gastrointestinal digestion. Food Res Int 2020; 137:109524. [PMID: 33233157 DOI: 10.1016/j.foodres.2020.109524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 06/29/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023]
Abstract
In this work, there were analysed the interaction between phenolics present in amaranth flour (F) and amaranth protein isolate (I) with other components, as well as the effect of the gastrointestinal digestion on them (Fd and Id). Extractions were performed under different conditions (temperature, acid, organic solvent, alkali). Methanol/water extracts (25 °C and 80 °C) from F showed the presence of isoquercetin/rutin, quercetin, kaempferol and two unidentified peaks (II and III). In the presence of acid (much more evident at 80 °C), the extraction of some components increased: catechin, 4-hydroxibenzoic acid, isoquercetin/rutin, II, III. When methanol/acetone/water extraction was performed, p-coumaric acid and a new unidentified peak (IV) were observed. About 15% of the total phenol -namely; p-coumaric, rutin/isoquercetin, and kaempferol- were linked to the protein fraction. After the proteins were isolated (I), the amount of some of the compounds which were originally present in a soluble form (e. g. catechin) and in the protein-bound fraction were decreased. Simulated gastrointestinal digestion of flour released some phenolics (catechin, phenolic acids) that were ligated to proteins, and they significantly incremented the ORAC and ABTS activity of most of the extracts. Isoquercetin/rutin, quercetin and kaempferol remained after digestion. Extracts from the digested protein isolate presented differences in the composition and lower ORAC and/or ABTS activities for some of them. The study of the effect of the simulated gastrointestinal digestion process on bioaccessibility and on antioxidant activity (an aspect that, to our knowledge, has not been previously studied on amaranth polyphenols) yielded promising results, which suggest that amaranth flour is a potential antioxidant functional ingredient.
Collapse
Affiliation(s)
- Mariela Rodríguez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CCT La Plata-CONICET, CICPBA, UNLP), 47 y 116 (1900) La Plata, Argentina
| | - Valeria A Tironi
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) - (CCT La Plata-CONICET, CICPBA, UNLP), 47 y 116 (1900) La Plata, Argentina.
| |
Collapse
|
12
|
The Homogalacturonan Deconstruction System of Paenibacillus amylolyticus 27C64 Requires No Extracellular Pectin Methylesterase and Has Significant Industrial Potential. Appl Environ Microbiol 2020; 86:AEM.02275-19. [PMID: 32303547 PMCID: PMC7267202 DOI: 10.1128/aem.02275-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/08/2020] [Indexed: 11/20/2022] Open
Abstract
Pectin is an important structural polysaccharide found in most plant cell walls. In the environment, pectin degradation is part of the decomposition process that turns over dead plant material and is important to organisms that feed on plants. Industrially, pectinases are used to improve the quality of fruit juices and can also be used to process coffee cherries or tea leaves. These enzymes may also prove useful in reducing the environmental impact of paper and cotton manufacturing. This work is significant because it focuses on a Gram-positive bacterium that is evolutionarily distinct from other well-studied pectin-degrading organisms and differs from known systems in key ways. Most importantly, a simplified extracellular deconstruction process in this organism is able to break down pectins without first removing the methyl groups that inhibit other systems. Moreover, some of the enzymes described here have the potential to improve industrial processes that rely on pectin deconstruction. Paenibacillus amylolyticus 27C64, a Gram-positive bacterium with diverse plant cell wall polysaccharide deconstruction capabilities, was isolated previously from an insect hindgut. Previous work suggested that this organism’s pectin deconstruction system differs from known systems in that its sole pectin methylesterase is cytoplasmic, not extracellular. In this work, we have characterized the specific roles of key extracellular pectinases involved in homogalacturonan deconstruction, including four pectate lyases and one pectin lyase. We show that one newly characterized pectate lyase, PelC, has a novel substrate specificity, with a lower Km for highly methylated pectins than for polygalacturonic acid. PelC works synergistically with PelB, a high-turnover exo-pectate lyase that releases Δ4,5-unsaturated trigalacturonate as its major product. It is likely that PelC frees internal stretches of demethylated homogalacturonan which PelB can degrade. We also show that the sole pectin lyase has a high kcat value and rapidly depolymerizes methylated substrates. Three cytoplasmic GH105 hydrolases were screened for the ability to remove terminal unsaturated galacturonic acid residues from oligogalacturonide products produced by the action of extracellular lyases, and we found that two are active on demethylated oligogalacturonides. This work confirms that efficient homogalacturonan deconstruction in P. amylolyticus 27C65 does not require extracellular pectin methylesterase activity. Three of the extracellular lyases studied in this work are also thermostable, function well over a broad pH range, and have significant industrial potential. IMPORTANCE Pectin is an important structural polysaccharide found in most plant cell walls. In the environment, pectin degradation is part of the decomposition process that turns over dead plant material and is important to organisms that feed on plants. Industrially, pectinases are used to improve the quality of fruit juices and can also be used to process coffee cherries or tea leaves. These enzymes may also prove useful in reducing the environmental impact of paper and cotton manufacturing. This work is significant because it focuses on a Gram-positive bacterium that is evolutionarily distinct from other well-studied pectin-degrading organisms and differs from known systems in key ways. Most importantly, a simplified extracellular deconstruction process in this organism is able to break down pectins without first removing the methyl groups that inhibit other systems. Moreover, some of the enzymes described here have the potential to improve industrial processes that rely on pectin deconstruction.
Collapse
|
13
|
Zhang Y, Legland D, El Hage F, Devaux MF, Guillon F, Reymond M, Méchin V. Changes in cell walls lignification, feruloylation and p-coumaroylation throughout maize internode development. PLoS One 2019; 14:e0219923. [PMID: 31361770 PMCID: PMC6667141 DOI: 10.1371/journal.pone.0219923] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023] Open
Abstract
Plant cell walls development is an integrated process during which several components are deposited successively. In the cell walls in grass, the accessibility of structural polysaccharides is limited by the cell walls structure and composition mainly as a result of phenolic compounds. Here, we studied the patterns of cell walls establishment in the internode supporting the ear in three distinct maize genotypes. The developmental patterns observed in the internode cell walls in terms of its composition are reported with an emphasis on lignification, p-coumaroylation and feruloylation. We combined biochemical and histological approaches and revealed that internode cell walls development in maize before flowering is characterized by the rapid deposition of secondary cell walls components and robust lignification in both the pith and the rind. After flowering and until silage maturity, the slow deposition of secondary walls components occurs in the cortical region, and the deposited lignins are rich in β-O-4 bonds and are highly p-coumaroylated. We conclude the paper by proposing a revised spatiotemporal model based on that proposed by Terashima et al. (1993) for cell walls development in grass.
Collapse
Affiliation(s)
- Yu Zhang
- UMR 1318, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Weed Research Laboratory, Nanjing Agricultural University, China
| | - David Legland
- UR1268, Biopolymères, Interactions et Assemblages, INRA, Nantes, France
| | - Fadi El Hage
- UMR 1318, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- Ecole Doctorale 567 Sciences du Vegetal, University Paris-Sud, University of Paris-Saclay, Orsay, France
| | | | - Fabienne Guillon
- UR1268, Biopolymères, Interactions et Assemblages, INRA, Nantes, France
| | - Matthieu Reymond
- UMR 1318, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Valérie Méchin
- UMR 1318, Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
- * E-mail:
| |
Collapse
|
14
|
Waterstraat M, Bunzel M. A stable isotope dilution approach to analyze ferulic acid oligomers in plant cell walls using liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2019; 411:5047-5062. [PMID: 31172238 DOI: 10.1007/s00216-019-01924-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/26/2019] [Accepted: 05/15/2019] [Indexed: 11/27/2022]
Abstract
Diferulic (DFA) and triferulic acids (TriFA) acylate and cross-link plant cell wall polysaccharides, thereby being important structural elements within the cell wall, also affecting physicochemical properties of the isolated polysaccharides. Due to the large number of potential regio- and configurational isomers and due to the fact that oligoferulic acids are not commercially available as standard compounds, analysis of oligoferulic acids after alkaline hydrolysis is challenging. Eighteen di- and triferulic acids were synthesized both non-labeled as well as 13C-labeled. By using these standard compounds, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) (electrospray ionization, negative mode)-based stable isotope dilution approach was developed, fully validated and applied to plant materials. Whereas this stable isotope dilution approach is most useful to analyze plant materials with complex matrices (especially lignified tissues), less complicated matrices may not require this approach. Therefore, an alternative LC-MS/MS-based method that is based on using a single internal standard compound only was developed, too, validated, and compared to the stable isotope dilution approach. Although the stable isotope dilution approach appears to be superior, plant samples with simple matrices can also be screened by using the single internal standard method developed here.
Collapse
Affiliation(s)
- Martin Waterstraat
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131, Karlsruhe, Germany.
| |
Collapse
|
15
|
Kurek MA, Karp S, Wyrwisz J, Niu Y. Physicochemical properties of dietary fibers extracted from gluten-free sources: quinoa ( Chenopodium quinoa ), amaranth ( Amaranthus caudatus ) and millet ( Panicum miliaceum ). Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.07.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Antioxidant properties of feruloylated oligosaccharides of different degrees of polymerization from wheat bran. Glycoconj J 2018; 35:547-559. [DOI: 10.1007/s10719-018-9847-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 11/28/2022]
|
17
|
Waterstraat M, Bunzel M. A Multi-Step Chromatographic Approach to Purify Radically Generated Ferulate Oligomers Reveals Naturally Occurring 5-5/8-8(Cyclic)-, 8-8(Noncyclic)/8-O-4-, and 5-5/8-8(Noncyclic)-Coupled Dehydrotriferulic Acids. Front Chem 2018; 6:190. [PMID: 29951478 PMCID: PMC6008569 DOI: 10.3389/fchem.2018.00190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Ferulate-mediated cross-linking of plant cell wall polymers has various implications on the quality of plant based food products, forage digestibility, and biomass utilization. Besides dehydrodiferulic acids (DFA), dehydrotriferulic acids (TriFA) gained increasing interest over the past two decades, because they potentially cross-link up to three polymers. Here, we describe a separation strategy to obtain several TriFA as analytical standard compounds from a reaction mixture after radical coupling of ethyl ferulate. By using silica flash chromatography, Sephadex LH-20 chromatography, and reversed phase HPLC, six known TriFA as well as three previously unidentified ferulic acid trimers were obtained, and their structures were characterized by mass spectrometry and NMR spectroscopy (1H, HSQC, COSY, HMBC, and NOESY). The novel trimers were identified as 5-5/8-8(cyclic)-, 8-8(noncyclic)/8-O-4-, and, tentatively, 5-5/8-8(noncyclic)-TriFA. Natural occurrence of these TriFA in plant cell walls was demonstrated by LC-MS/MS analyses of alkaline cell wall hydrolyzates.
Collapse
Affiliation(s)
- Martin Waterstraat
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
18
|
Nutritional constituents of pseudo cereals and their potential use in food systems: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Lara-Espinoza C, Carvajal-Millán E, Balandrán-Quintana R, López-Franco Y, Rascón-Chu A. Pectin and Pectin-Based Composite Materials: Beyond Food Texture. Molecules 2018; 23:E942. [PMID: 29670040 PMCID: PMC6017442 DOI: 10.3390/molecules23040942] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/07/2018] [Accepted: 04/12/2018] [Indexed: 12/03/2022] Open
Abstract
Pectins are plant cell wall natural heteropolysaccharides composed mainly of α-1-4 d-galacturonic acid units, which may or may not be methyl esterified, possesses neutral sugars branching that harbor functional moieties. Physicochemical features as pH, temperature, ions concentration, and cosolute presence, affect directly the extraction yield and gelling capacity of pectins. The chemical and structural features of this polysaccharide enables its interaction with a wide range of molecules, a property that scientists profit from to form new composite matrices for target/controlled delivery of therapeutic molecules, genes or cells. Considered a prebiotic dietary fiber, pectins meetmany regulations easily, regarding health applications within the pharmaceutical industry as a raw material and as an agent for the prevention of cancer. Thus, this review lists many emergent pectin-based composite materials which will probably palliate the impact of obesity, diabetes and heart disease, aid to forestall actual epidemics, expand the ken of food additives and food products design.
Collapse
Affiliation(s)
- Claudia Lara-Espinoza
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Elizabeth Carvajal-Millán
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - René Balandrán-Quintana
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Yolanda López-Franco
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| | - Agustín Rascón-Chu
- Research Center for Food and Development, CIAD, A.C., Carretera a La Victoria Km. 0.6, Hermosillo, Sonora 83304, Mexico.
| |
Collapse
|
20
|
Abstract
The studies on the effects of arabinoxylan (AX) polysaccharides on postprandial glucose response have resulted in contrasting results owing to the diversity in AX structures. Four water extractable AX (WEAX) extracts obtained from wheat aleurone and bran were used to investigate (a) the effect of AX on activities of α-amylase and α-glucosidase, (b) influence of AX chemical composition on their inhibition potency, and (c) kinetics of enzyme inhibition. α-Amylase activity was not significantly affected by the presence WEAX fractions regardless of type or concentration. WEAX inhibited α-glucosidase activity only when maltose was used as a substrate but not sucrose. The IC50 values of WEAX (4.88 ± 0.3-10.14 ± 0.5 mg/mL) were highly correlated to ferulic acid content (R = -0.89), arabinose to xylose ratio (R = -0.67), and relative proportions of xylose being unsubstituted (R = 0.69), disubstituted (R = -0.63), and monosubstituted (R = -0.76). The Lineweaver-Burk plot suggested an uncompetitive enzyme inhibition mode. Thus, our results suggest that antiglycemic properties of WEAX may be derived from direct inhibition of α-glucosidase activity.
Collapse
|
21
|
Tang Y, Tsao R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti-inflammatory, and potential health beneficial effects: a review. Mol Nutr Food Res 2017; 61. [PMID: 28239982 DOI: 10.1002/mnfr.201600767] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/08/2017] [Accepted: 02/13/2017] [Indexed: 01/07/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) and amaranth (Amaranthus cruentus L.) are pseudocereal grains rich in both macronutrients and micronutrients including vitamins and minerals. The proteins are particularly of high nutritional quality due to the outstanding balance of essential amino acids. However, recent research strongly suggests that nonessential nutrients such as phytochemicals of quinoa and amaranth may also have potential health beneficial effects. This review focuses on the phytochemical composition of quinoa and amaranth seeds, the antioxidant and anti-inflammatory activities of hydrophilic (e.g. phenolics, betacyanins) and lipophilic (e.g. fatty acids, tocopherols, and carotenoids) nutrients, and how these contribute to the potential health benefits, especially in lowering the risk of the oxidative stress related diseases e.g. cancer, cardiovascular disease, diabetes, and obesity. The gap between current knowledge and future research needs have also been identified.
Collapse
Affiliation(s)
- Yao Tang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, Kannapolis, NC, USA.,Guelph Research and Development Centre, Agriculture and Agri-Food Canada, West, Guelph, Ontario, Canada
| | - Rong Tsao
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, West, Guelph, Ontario, Canada
| |
Collapse
|
22
|
Malunga LN, Izydorczyk M, Beta T. Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.bcdf.2017.05.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Zhang Z, Wang X, Wang J, Jia Z, Liu Y, Xie X, Wang C, Jia W. Metabonomics Approach to Assessing the Metabolism Variation and Endoexogenous Metabolic Interaction of Ginsenosides in Cold Stress Rats. J Proteome Res 2016; 15:1842-52. [DOI: 10.1021/acs.jproteome.6b00015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zhihao Zhang
- Ministry
of Education Key Laboratory of Systems Biomedicine, Shanghai
Center for Systems Biomedicine and ‡Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaoyan Wang
- Ministry
of Education Key Laboratory of Systems Biomedicine, Shanghai
Center for Systems Biomedicine and ‡Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jingcheng Wang
- Ministry
of Education Key Laboratory of Systems Biomedicine, Shanghai
Center for Systems Biomedicine and ‡Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhiying Jia
- Ministry
of Education Key Laboratory of Systems Biomedicine, Shanghai
Center for Systems Biomedicine and ‡Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yumin Liu
- Ministry
of Education Key Laboratory of Systems Biomedicine, Shanghai
Center for Systems Biomedicine and ‡Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xie Xie
- Ministry
of Education Key Laboratory of Systems Biomedicine, Shanghai
Center for Systems Biomedicine and ‡Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chongchong Wang
- Ministry
of Education Key Laboratory of Systems Biomedicine, Shanghai
Center for Systems Biomedicine and ‡Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Jia
- Ministry
of Education Key Laboratory of Systems Biomedicine, Shanghai
Center for Systems Biomedicine and ‡Instrumental Analysis Center of SJTU, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
24
|
Malunga LN, Beta T. Isolation and identification of feruloylated arabinoxylan mono- and oligosaccharides from undigested and digested maize and wheat. Heliyon 2016; 2:e00106. [PMID: 27441278 PMCID: PMC4946213 DOI: 10.1016/j.heliyon.2016.e00106] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 04/27/2016] [Indexed: 10/28/2022] Open
Abstract
Feruloylated arabinoxylan mono- and oligosaccharides (F-AXOS) are a subject of interest because of their prebiotic and antioxidant properties. We aimed at isolating and identifying F-AXOS from maize, wheat, wheat bran and wheat aleurone using HPLC and LC-MS/MS. Prior to extraction of F-AXOS, samples were subjected to either simulated gastric fluid with enzymes (gastric) or without enzymes (pH) or water (aqueous) at 37 °C. F-AXOS present in all samples were identified as 5-O-feruloyl-α-L- arabinofuranose and possibly 5-O-feruloyl-α-L-arabinofuranosyl-(1 → 3)-O-β-D-xylopyranose. Their mean content, measured as esterified ferulic acid (FA), was 2.5 times higher in maize (10.33 ± 2.40 μg/g) compared to wheat. Digestion under gastric or pH conditions resulted in a two-fold increase in F-AXOS in all samples. The level of F-AXOS produced during gastric or pH condition was positively correlated to the insoluble bound FA content of the sample (R(2) = 0.98). 5-O-Feruloyl-α-L- arabinofuranose was the only identifiable F-AXOS released during gastric digestion. Our results suggest feruloyl arabinose is the most abundant form of F-AXOS in maize and wheat.
Collapse
Affiliation(s)
| | - Trust Beta
- University of Manitoba, Department of Food Science, Winnipeg, Manitoba R3T 2N2, Canada; University of Manitoba, Richardson Centre for Functional Foods and Nutraceuticals, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
25
|
Inhibition of Intestinal α-Glucosidase and Glucose Absorption by Feruloylated Arabinoxylan Mono- and Oligosaccharides from Corn Bran and Wheat Aleurone. J Nutr Metab 2016; 2016:1932532. [PMID: 27073693 PMCID: PMC4814672 DOI: 10.1155/2016/1932532] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/12/2016] [Accepted: 02/23/2016] [Indexed: 01/17/2023] Open
Abstract
The effect of feruloylated arabinoxylan mono- and oligosaccharides (FAXmo) on mammalian α-glucosidase and glucose transporters was investigated using human Caco-2 cells, rat intestinal acetone powder, and Xenopus laevis oocytes. The isolated FAXmo from wheat aleurone and corn bran were identified to have degree of polymerization (DP) of 4 and 1, respectively, by HPLC-MS. Both FAXmo extracts were effective inhibitors of sucrase and maltase functions of the α-glucosidase. The IC50 for FAXmo extracts on Caco-2 cells and rat intestinal α-glucosidase was 1.03–1.65 mg/mL and 2.6–6.5 mg/mL, respectively. Similarly, glucose uptake in Caco-2 cells was inhibited up to 40%. The inhibitory effect of FAXmo was dependent on their ferulic acid (FA) content (R = 0.95). Sodium independent glucose transporter 2 (GLUT2) activity was completely inhibited by FAXmo in oocytes injected to express GLUT2. Our results suggest that ferulic acid and feruloylated arabinoxylan mono-/oligosaccharides have potential for use in diabetes management.
Collapse
|
26
|
Wefers D, Bunzel M. Characterization of Dietary Fiber Polysaccharides from Dehulled Common Buckwheat (Fagopyrum esculentum) Seeds. Cereal Chem 2015. [DOI: 10.1094/cchem-03-15-0056-r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany
| |
Collapse
|
27
|
Wefers D, Gmeiner BM, Tyl CE, Bunzel M. Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.). PHYTOCHEMISTRY 2015; 116:320-328. [PMID: 25983037 DOI: 10.1016/j.phytochem.2015.04.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 05/15/2023]
Abstract
In plants belonging to the order of Caryophyllales, pectic neutral side chains can be substituted with ferulic acid. The ability of ferulic acid to form intra- and/or intermolecular polysaccharide cross-links by dimerization was shown by the isolation and characterization of diferulic acid oligosaccharides from monocotyledonous plants. In this study, two diferulic acid oligosaccharides were isolated from the enzymatic hydrolyzate of seeds of the dicotyledonous pseudocereal quinoa by gel permeation chromatography and preparative HPLC and unambiguously identified by LC-MS(2) and 1D/2D NMR spectroscopy. The isolated oligosaccharides are comprised of 5-5- and 8-O-4-diferulic acid linked to the O2-position of the nonreducing residue of two (1→5)-linked arabinobioses. To get insight into the structure and the degree of phenolic acid substitution of the diferuloylated polysaccharides, polymeric sugar composition, glycosidic linkages, and polysaccharide-bound monomeric phenolic acids and diferulic acids were analyzed. This study demonstrates that diferulic acids are involved into intramolecular and/or intermolecular cross-linking of arabinan chains and may have a major impact on cell wall architecture of quinoa and other dicotyledonous plants of the order of Caryophyllales.
Collapse
Affiliation(s)
- Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Bianca M Gmeiner
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany
| | - Catrin E Tyl
- Department of Food Science and Nutrition, University of Minnesota, 1334 Eckles Avenue, St. Paul, MN 55108, United States
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT), Adenauerring 20a, 76131 Karlsruhe, Germany.
| |
Collapse
|
28
|
Wefers D, Tyl CE, Bunzel M. Pectic Arabinans in Quinoa Seeds (
Chenopodium quinoa
Willd.) Are Acylated with
p
‐Coumaric Acid. Cereal Chem 2015. [DOI: 10.1094/cchem-10-14-0207-n] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Catrin E. Tyl
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, U.S.A
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
29
|
Xia X, Li G, Liao F, Zhang F, Zheng J, Kan J. Granular Structure and Physicochemical Properties of Starches from Amaranth Grain. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2013.860168] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Wefers D, Tyl CE, Bunzel M. Neutral Pectin side chains of Amaranth (Amaranthus hypochondriacus) contain long, partially branched Arabinans and short galactans, both with terminal arabinopyranoses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:707-15. [PMID: 25529336 DOI: 10.1021/jf505283x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Amaranth is a pseudocereal of high nutritional value, including a high dietary fiber content. Amaranth dietary fiber was suggested to contain large amounts of neutral rhamnogalacturonan I side chains. In this study, endo-arabinanase and endo-galactanase were used to liberate arabinan and galactan oligosaccharides from amaranth fiber. The liberated oligosaccharides were identified by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) and HPLC-MS(n) using standard compounds, which were isolated from amaranth, sugar beet, potato, and red clover sprouts and characterized by one- and two-dimensional NMR spectroscopy. It was demonstrated that insoluble amaranth arabinans have linear and branched areas, with the O-3 position being the dominant branching point. Minor amounts of branches at position O-2 and double substitution were also found. Amaranth arabinans were also demonstrated to contain terminal α-(1→5)-linked l-arabinopyranose units. In addition, it was evidenced that galactans from amaranth seeds are composed of β-(1→4)-linked d-galactopyranose units, which can also be terminated with l-arabinopyranose units. In direct comparison to structural elucidation of amaranth fiber by using methylation analysis, the advantage of the enzymatic approach over methylation analysis was demonstrated.
Collapse
Affiliation(s)
- Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology (KIT) , Adenauerring 20a, 76131 Karlsruhe, Germany
| | | | | |
Collapse
|
31
|
Malunga LN, Beta T. Antioxidant Capacity of Water-Extractable Arabinoxylan from Commercial Barley, Wheat, and Wheat Fractions. Cereal Chem 2015. [DOI: 10.1094/cchem-11-13-0247-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Trust Beta
- Corresponding author. Phone: +1.204.474.8214
- Department of Food Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
- Richardson Center for Functional Foods and Nutraceuticals, Smartpark, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
32
|
Antioxidant capacity of arabinoxylan oligosaccharide fractions prepared from wheat aleurone using Trichoderma viride or Neocallimastix patriciarum xylanase. Food Chem 2015; 167:311-9. [DOI: 10.1016/j.foodchem.2014.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/12/2014] [Accepted: 07/01/2014] [Indexed: 11/20/2022]
|
33
|
Quinoa (Chenopodium quinoa W.) and amaranth (Amaranthus caudatus L.) provide dietary fibres high in pectic substances and xyloglucans. Food Chem 2015; 167:490-6. [DOI: 10.1016/j.foodchem.2014.07.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/03/2014] [Accepted: 07/05/2014] [Indexed: 11/21/2022]
|
34
|
Wefers D, Tyl CE, Bunzel M. Novel arabinan and galactan oligosaccharides from dicotyledonous plants. Front Chem 2014; 2:100. [PMID: 25426490 PMCID: PMC4226231 DOI: 10.3389/fchem.2014.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/24/2014] [Indexed: 11/13/2022] Open
Abstract
Arabinans and galactans are neutral pectic side chains and an important part of the cell walls of dicotyledonous plants. To get a detailed insight into their fine structure, various oligosaccharides were isolated from quinoa, potato galactan, and sugar beet pulp after enzymatic treatment. LC-MS(2) and one- and two-dimensional NMR spectroscopy were used for unambiguous structural characterization. It was demonstrated that arabinans contain β-(1→3)-linked arabinobiose as a side chain in quinoa seeds, while potato galactan was comprised of β-(1→4)-linked galactopyranoses which are interspersed with α-(1→4)-linked arabinopyranoses. Additionally, an oligosaccharide with two adjacent arabinofuranose units O2-substituted with two ferulic acid monomers was characterized. The isolated oligosaccharides gave further insight into the structures of pectic side chains and may have an impact on plant physiology and dietary fiber fermentation.
Collapse
Affiliation(s)
- Daniel Wefers
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology Karlsruhe, Germany
| | - Catrin E Tyl
- Department of Food Science and Nutrition, University of Minnesota St. Paul, MN, USA
| | - Mirko Bunzel
- Department of Food Chemistry and Phytochemistry, Institute of Applied Biosciences, Karlsruhe Institute of Technology Karlsruhe, Germany
| |
Collapse
|
35
|
Analytical techniques for the elucidation of wheat bran constituents and their structural features with emphasis on dietary fiber – A review. Trends Food Sci Technol 2014. [DOI: 10.1016/j.tifs.2013.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Jilek ML, Bunzel M. Dehydrotriferulic and Dehydrodiferulic Acid Profiles of Cereal and Pseudocereal Flours. Cereal Chem 2013. [DOI: 10.1094/cchem-11-12-0144-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Margaret L. Jilek
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, U.S.A
| | - Mirko Bunzel
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, U.S.A
- Department of Food Chemistry and Phytochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Corresponding author. Phone: +49-721-608-4-2936. Fax: +49-721-608-4-7255. E-mail:
| |
Collapse
|
37
|
Venskutonis PR, Kraujalis P. Nutritional Components of Amaranth Seeds and Vegetables: A Review on Composition, Properties, and Uses. Compr Rev Food Sci Food Saf 2013; 12:381-412. [PMID: 33412681 DOI: 10.1111/1541-4337.12021] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/25/2013] [Indexed: 01/05/2023]
Abstract
A few decades ago Amaranthus was rediscovered as a most promising plant genus that may provide high-quality protein, unsaturated oil, and various other valuable constituents. Since then research has focused on various Amaranthus spp. and has been rapidly expanding, and a large number of reports have been published. Several review articles focusing on different aspects, such as botanical, agrotechnological, compositional, biological, chemical, and technological properties, as well as applications and health effects, have also been published since then. This comprehensive review is focused on amaranth composition, antioxidant properties, applications, and processing. The composition includes macrocomponets (lipids, proteins, carbohydrates, and dietary fiber) and other important constituents, such as squalene, tocopherols, phenolic compounds, phytates, and vitamins. These aspects of amaranth studies have not been comprehensively reviewed for a long time.
Collapse
Affiliation(s)
- Petras R Venskutonis
- Dept. of Food Technology, Kaunas Univ. of Technology, Radvilėnų Rd., 19, LT-50254 Kaunas, Lithuania
| | - Paulius Kraujalis
- Dept. of Food Technology, Kaunas Univ. of Technology, Radvilėnų Rd., 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
38
|
Rastogi A, Shukla S. Amaranth: A New Millennium Crop of Nutraceutical Values. Crit Rev Food Sci Nutr 2013; 53:109-25. [DOI: 10.1080/10408398.2010.517876] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
39
|
Mikhaleva NY, Borisenkov MF, Gyunter EA, Popeiko OV, Ovodov YS. Effect of successive acid and enzymatic hydrolysis on the structure and antioxidant activity of pectins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011. [DOI: 10.1134/s1068162011070156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Steffensen SK, Rinnan Å, Mortensen AG, Laursen B, de Troiani RM, Noellemeyer EJ, Janovska D, Dusek K, Délano-Frier J, Taberner A, Christophersen C, Fomsgaard IS. Variations in the polyphenol content of seeds of field grown Amaranthus genotypes. Food Chem 2011. [DOI: 10.1016/j.foodchem.2011.04.044] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Günter EA, Borisenkov MF, Ovodov YS. The effects of ultraviolet irradiation upon structure and antioxidant activity of silenan from bladder campion callus. APPL BIOCHEM MICRO+ 2009. [DOI: 10.1134/s0003683809040139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Russell WR, Scobbie L, Chesson A, Richardson AJ, Stewart CS, Duncan SH, Drew JE, Duthie GG. Anti-inflammatory implications of the microbial transformation of dietary phenolic compounds. Nutr Cancer 2009; 60:636-42. [PMID: 18791927 DOI: 10.1080/01635580801987498] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Due to the success of therapeutic anti-inflammatory compounds to inhibit, retard, and reverse the development of colon cancer, the identification of dietary compounds as chemopreventives is being vigorously pursued. However, an important factor often overlooked is the metabolic transformation of the food-derived compounds in the gut that may affect their bioactivity. Commonly consumed dietary phenolics (esterified ferulic acid and its 5-5'-linked dimer), which have the potential to undergo predominant microbial transformations (de-esterification, hydrogenation, demethylation, dehydroxylation, and dimer cleavage), were incubated with human microbiota. The metabolites were identified (high-performance liquid chromatography and nuclear magnetic resonance) and confirmed to be present in fresh fecal samples from 4 human volunteers. The potential anti-inflammatory properties were compared by measuring the ability of the parent compounds and their metabolites to modulate prostanoid production in a cell line in which the inflammatory pathways were stimulated following a cytokine-induced insult. The compounds were readily de-esterified and hydrogenated, but no dimer cleavage occurred. Only the monomer underwent demethylation and selective de-hydroxylation. The resultant metabolites had differing effects on prostanoid production ranging from a slight increase to a significant reduction in magnitude. This suggests that the microbial transformation of dietary compounds will have important inflammatory implications in the chemoprevention of colon cancer.
Collapse
Affiliation(s)
- Wendy R Russell
- Molecular Nutrition Group, Rowett Research Institute, Aberdeen, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Bunzel M, Heuermann B, Kim H, Ralph J. Peroxidase-catalyzed oligomerization of ferulic acid esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:10368-10375. [PMID: 18841901 DOI: 10.1021/jf801825z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Valuable information about possible types of linkages, reaction mechanisms, and sequences for oxidative coupling of phenolic compounds in planta is available from in vitro model systems. Ferulate oligomers were generated in a system using ethyl ferulate, peroxidase, and hydrogen peroxide under various conditions. A molar ferulate/H2O2 ratio of 1:1, an ethanol level of 30% in an aqueous sodium phosphate buffer (pH 6.0), and a reaction time of 10 min were considered to be ideal to produce maximal proportions of ferulate trimers and tetramers from ethyl ferulate as starting material. The dominant trimer and tetramer were each isolated from the reaction mixture and identified as 8-O-4/8-5(cyclic)-dehydrotriferulic acid triethyl ester and 8-5(cyclic)/4-O-5/8-5(cyclic)-dehydrotetraferulic acid tetraethyl ester. The structure of the 8-O-4/8-5(cyclic)-dehydrotriferulic acid triethyl ester revealed that a third ferulate unit is bound to a preformed 8-O-4-diferulate dimer, a surprising reaction sequence considering the dominance of 8-5-coupled dimers among dehydrodiferulates in H2O2/peroxidase-based model reactions. As 4-O-5-coupling is not favored in the dimerization process of ferulates, the main tetramer isolated in this study is probably formed by 4-O-5-coupling of two preformed 8-5(cyclic)-diferulates, a logical step in analogy with reactions occurring in lignin biosynthesis.
Collapse
Affiliation(s)
- Mirko Bunzel
- Department of Food Science and Nutrition, University of Minnesotas-Twin Cities, St. Paul, Minnesota 55108, USA.
| | | | | | | |
Collapse
|
44
|
Gniechwitz D, Reichardt N, Meiss E, Ralph J, Steinhart H, Blaut M, Bunzel M. Characterization and fermentability of an ethanol soluble high molecular weight coffee fraction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:5960-5969. [PMID: 18558695 DOI: 10.1021/jf800231q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Brews from differently roasted Arabica coffees were shown to contain 8-12% ethanol soluble substances with molecular masses greater than 2 kDa, possibly contributing to their dietary fiber contents. About 13% of these substances were nondigestible carbohydrates, mainly arabinogalactans. The nondigestible high molecular weight ethanol soluble fraction (HESF) of the medium roasted coffee brew was further characterized and subjected to in vitro fermentation with human fecal bacteria. In addition to carbohydrates, HESF contained proteins/peptides (approximately 20%), but the main fraction was composed of structurally unknown Maillard reaction products. From NMR spectroscopy, we conclude that intact caffeic and ferulic acid derivatives were not incorporated into the melanoidins to a significant extent. Stepwise ultrafiltration and gel filtration indicated a large variation in the molecular weights of HESF constituents. Coffee HESF was shown to be less fermentable by fecal bacteria than soluble coffee fiber isolated by the enzymatic-gravimetric methodology, and because of its lower carbohydrate content, less short-chain fatty acids were produced during the fermentation. Total cell counts, destructive chemical analysis, and NMR spectroscopy indicated that coffee carbohydrates are the preferred substrates for colonic microbiota. However, NMR spectra, absorbances at 405 nm, and nonprotein nitrogen contents showed that noncarbohydrate and nonprotein compounds were also utilized to some extent but the bacterial species involved in this degradation remain to be identified.
Collapse
Affiliation(s)
- Diana Gniechwitz
- Department of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Bunzel M, Ralph J, Brüning P, Steinhart H. Structural identification of dehydrotriferulic and dehydrotetraferulic acids isolated from insoluble maize bran fiber. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:6409-18. [PMID: 16910738 DOI: 10.1021/jf061196a] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Two new dehydrotriferulic acids and two dehydrotetraferulic acids were isolated from saponified maize bran insoluble fiber using size exclusion chromatography on Bio-Beads S-X3 followed by Sephadex LH-20 chromatography and semipreparative phenyl-hexyl reversed phase high-performance liquid chromatography. On the basis of UV spectroscopy, mass spectrometry, and one- and two-dimensional NMR experiments, the structures were identified as 8-5(noncyclic)/5-5-dehydrotriferulic acid, 8-8(tetrahydrofuran)/5-5-dehydrotriferulic acid, and 4-O-8/5-5/8-O-4-dehydrotetraferulic acid. The second tetramer was tentatively identified as 4-O-8/5-5/8-5(noncyclic)-dehydrotetraferulic acid. Compounds containing an 8-5(noncyclic)-coupled dimeric unit probably do not exist in planta but are formed from their phenylcoumaran precursors containing an 8-5(cyclic)-coupled dimeric unit during saponification. The presented dehydrotrimers are the first dehydrotriferulates that do not contain an 8-O-4-coupled dimeric unit. The ferulate dehydrotetramers that are reported for the first time are presumed, like the dimers and trimers, to cross-link polysaccharides in the plant. Because both tetramers contain a 5-5/8-O-4-dehydrotriferulate moiety, the predominant dehydrotrimer in maize bran, it is not possible to deduce whether tetramers are formed by coupling of a fourth unit to a preformed dehydrotriferulate or by 5-5-coupling of preformed 8-O-4- and 8-5-dehydrodiferulates. Nevertheless, such compounds document expanded roles for ferulates in cross-linking polysaccharides in plant cell walls.
Collapse
Affiliation(s)
- Mirko Bunzel
- Institute of Biochemistry and Food Chemistry, Department of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany.
| | | | | | | |
Collapse
|