1
|
ElSaadany K, Abd-Elhaleem HT. In vivo anti-hypercholesterolemic effect of buttermilk, milk fat globule membrane and Enterococcus faecium FFNL-12. CURRENT RESEARCH IN NUTRITION AND FOOD SCIENCE JOURNAL 2019; 7:517-531. [DOI: 10.12944/crnfsj.7.2.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The present study was undertaken to evaluate the hypocholesterolemic activity of buttermilk, milk fat globule membrane (MFGM) and Enterococcus faecium FFNL-12 in rat model. Thirty-sixth male Abino rats were divided into six groups. The first one (coded as G1) was fed a standard diet containing 10% corn oil as fat source while remaining five (coded G2 to G6) were fed hypercholesterolemic diets in which oil was replaced with animal grease. Animals subjected to treatment G1 served as healthy control while those in G2 were assigned as hypocholesterolemic animals which did not receive any treatment. The remaining experimental groups were designed to assess the hypocholesterolemic effect of intragastric adminstartion of dose of 109 CFU/Kg body weight of Enterococcus faecium FFNL-12 (G3), Enterococcus faecium FFNL-12/butter milk (G4), buttermilk (G5) and milk fat globule membrane (MFGM). After four weeks, animals were evaluated in relation to growth, fecal pH, organs weight, serum lipid profile, antioxidant activity of liver tissue, liver and heart function and liver histopathological architecture. Results revealed that animals fed hypercholesterolemic diet (G2-G6) had significantly lower faecal pH and liver weight compared with those fed standard diet (G1). Treatments applied to animals fed hypercholesterolemic diet with the above mentioned additions (G3 to G6) appeared to improve both cardiac and hepatic functions, serum lipid profile and glucose concentration and liver histopathological architecture compared with animals subjected to G2 treatment. In most cases, treatment with MFGM appeared to be the most effective to avoid adverse effects associated to feeding hypercholesterolemic diet. MFGM fraction as well as E. faecium FFNL-12/buttermilk combination were effective in reducing serum lipids and glucose levels to the normal range. This combination also had potential antioxidant activity and ability to improve liver and heart functions.
Collapse
Affiliation(s)
- Khaled ElSaadany
- Functional Foods and Nutraceuticals Laboratory (FFNL), Department of Dairy Science and Technology, Faculty of Agriculture, Alexandria University, Postal code 21545 Alexandria, Egypt
| | | |
Collapse
|
2
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019:100995. [PMID: 31445071 DOI: 10.1016/j.plipres.2019.100995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, 1749-016 Lisboa, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Switzerland; Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN) and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
3
|
Carreira AC, Santos TC, Lone MA, Zupančič E, Lloyd-Evans E, de Almeida RFM, Hornemann T, Silva LC. Mammalian sphingoid bases: Biophysical, physiological and pathological properties. Prog Lipid Res 2019; 75:100988. [PMID: 31132366 DOI: 10.1016/j.plipres.2019.100988] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/11/2022]
Abstract
Sphingoid bases encompass a group of long chain amino alcohols which form the essential structure of sphingolipids. Over the last years, these amphiphilic molecules were moving more and more into the focus of biomedical research due to their role as bioactive molecules. In fact, free sphingoid bases interact with specific receptors and target molecules, and have been associated with numerous biological and physiological processes. In addition, they can modulate the biophysical properties of biological membranes. Several human diseases are related to pathological changes in the structure and metabolism of sphingoid bases. Yet, the mechanisms underlying their biological and pathophysiological actions remain elusive. Within this review, we aimed to summarize the current knowledge on the biochemical and biophysical properties of the most common sphingoid bases and to discuss their importance in health and disease.
Collapse
Affiliation(s)
- A C Carreira
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal; Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - T C Santos
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal; Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - M A Lone
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - E Zupančič
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal
| | - E Lloyd-Evans
- Sir Martin Evans Building, School of Biosciences, Cardiff University, Cardiff, UK
| | - R F M de Almeida
- Centro de Química e Bioquímica (CQB) e Centro de Química Estrutural (CQE), Faculdade de Ciências, Universidade de Lisboa, Ed. C8, Campo Grande, Lisboa 1749-016, Portugal
| | - T Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland
| | - L C Silva
- iMed.ULisboa - Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisboa 1649-003, Portugal; Centro de Química-Física Molecular - Institute of Nanoscience and Nanotechnology (CQFM-IN), IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
4
|
Li Z, Kabir I, Jiang H, Zhou H, Libien J, Zeng J, Stanek A, Ou P, Li KR, Zhang S, Bui HH, Kuo MS, Park TS, Kim B, Worgall TS, Huan C, Jiang XC. Liver serine palmitoyltransferase activity deficiency in early life impairs adherens junctions and promotes tumorigenesis. Hepatology 2016; 64:2089-2102. [PMID: 27642075 PMCID: PMC5115983 DOI: 10.1002/hep.28845] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/18/2016] [Accepted: 09/08/2016] [Indexed: 12/22/2022]
Abstract
UNLABELLED Serine palmitoyltransferase is the key enzyme in sphingolipid biosynthesis. Mice lacking serine palmitoyltransferase are embryonic lethal. We prepared liver-specific mice deficient in the serine palmitoyltransferase long chain base subunit 2 gene using an albumin-cyclization recombination approach and found that the deficient mice have severe jaundice. Moreover, the deficiency impairs hepatocyte polarity, attenuates liver regeneration after hepatectomy, and promotes tumorigenesis. Importantly, we show that the deficiency significantly reduces sphingomyelin but not other sphingolipids in hepatocyte plasma membrane; greatly reduces cadherin, the major protein in adherens junctions, on the membrane; and greatly induces cadherin phosphorylation, an indication of its degradation. The deficiency affects cellular distribution of β-catenin, the central component of the canonical Wnt pathway. Furthermore, such a defect can be partially corrected by sphingomyelin supplementation in vivo and in vitro. CONCLUSION The plasma membrane sphingomyelin level is one of the key factors in regulating hepatocyte polarity and tumorigenesis. (Hepatology 2016;64:2089-2102).
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
- Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn
| | - Inamul Kabir
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | - Hui Jiang
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | | | - Jenny Libien
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | - Jianying Zeng
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | - Albert Stanek
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | - Peiqi Ou
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | - Kailyn R. Li
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | - Shane Zhang
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | - Hai H. Bui
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, 46285
| | - Ming-Shang Kuo
- Lilly Research Laboratories, Eli Lilly & Company, Indianapolis, IN, 46285
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, South Korea
| | | | | | - Chongmin Huan
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
| | - Xian-Cheng Jiang
- Department of Cell Biology, Department of Surgery, and Department of Pathology, SUNY Downstate Medical Center
- Molecular and Cellular Cardiology Program, VA New York Harbor Healthcare System, Brooklyn
| |
Collapse
|
5
|
Kuchta-Noctor AM, Murray BA, Stanton C, Devery R, Kelly PM. Anticancer Activity of Buttermilk Against SW480 Colon Cancer Cells is Associated with Caspase-Independent Cell Death and Attenuation of Wnt, Akt, and ERK Signaling. Nutr Cancer 2016; 68:1234-46. [DOI: 10.1080/01635581.2016.1206580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Pierucci F, Frati A, Squecco R, Lenci E, Vicenti C, Slavik J, Francini F, Machala M, Meacci E. Non-dioxin-like organic toxicant PCB153 modulates sphingolipid metabolism in liver progenitor cells: its role in Cx43-formed gap junction impairment. Arch Toxicol 2016; 91:749-760. [PMID: 27318803 DOI: 10.1007/s00204-016-1750-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/08/2016] [Indexed: 12/13/2022]
Abstract
The non-dioxin-like environmental toxicant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153), member of a group of persistent organic pollutants wide-spread throughout the environment, reduces gap junction intercellular communication (GJIC), an event possibly associated with tumor promotion. Since very few studies have investigated the signaling effectors and mode(s) of action of PCB153, and it is known that the gap junction (GJ) protein Cx43 can be regulated by the bioactive sphingolipid (SL) sphingosine 1-phosphate (S1P), this in vitro study mainly addresses whether SL metabolism is affected by PCB153 in rat liver epithelial WB-F344 cells. PCB153 treatment obtained significant changes in the S1P/ceramide (Cer) ratio, known to be crucial in determining cell fate. In particular, an increase in S1P at 30 min and a decrease of the bioactive lipid at 3 h were observed, whereas Cer level increased at 1 h and 24 h. Notably, a time-dependent modulation of sphingosine kinase (SphK), the enzyme responsible for S1P synthesis, and of its regulators, ERK1/2 and protein phosphatase PP2A, supports the involvement of these signaling effectors in PCB153 toxicity. Electrophysiological analyses, furthermore, indicated that the lipophilic environmental toxicant significantly reduced GJ biophysical properties, affecting both voltage-dependent (such as those formed by Cx43 and/or Cx32) and voltage-independent channels, thereby demonstrating that PCB153 may act differently on GJs formed by distinct Cx isoforms. SphK down-regulation alone induced GJIC impairment, and, when combined with PCB153, the acute effect on GJ suppression was additive. Moreover, after enzyme-specific gene silencing, the SphK1 isoform appears to be responsible for down-regulating Cx43 expression, while being the target of PCB153 at short-term exposure. In conclusion, we provide the first evidence of novel effectors in PCB153 toxic action in rat liver stem-like cells, leading us to consider SLs as potential markers for preventing GJIC deregulation and, thus, the tumorigenic action elicited by this environmental toxicant.
Collapse
Affiliation(s)
- F Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - A Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - R Squecco
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - E Lenci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - C Vicenti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy
| | - J Slavik
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - F Francini
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, University of Florence, Viale GB Morgagni 63, 50134, Florence, Italy
| | - M Machala
- Veterinary Research Institute, Hudcova 70, 62100, Brno, Czech Republic
| | - E Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Research Unit of Molecular and Applied Biology, University of Florence, Viale GB Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
7
|
Jing Y, Guo S, Zhang X, Sun A, Tao F, Ju H, Qian H. Effects of small interfering RNA interference of connexin 37 on subcutaneous gastric tumours in mice. Mol Med Rep 2014; 10:2955-60. [PMID: 25310476 DOI: 10.3892/mmr.2014.2609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 05/09/2014] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of small interfering (si)RNA interference of connexin 37 (Cx37) on subcutaneous gastric tumours in mice. Constructed lentiviruses carrying siRNA against Cx37 significantly knocked down Cx37 mRNA and protein expression in vitro. A total of 60 mice with gastric cancer were randomly divided into the Cx37 siRNA group, the mock‑siRNA group and the control group. Cx37 siRNA, mock‑siRNA and saline were separately injected (with the lentiviruses transfected into the gastric cancer cells). Following six weeks, the Cx37 mRNA expression, Cx37 protein expression and tumor apoptosis were detected using semiquantitative reverse transcription‑polymerase chain reaction, western blot analysis and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labelling, respectively. Six weeks following lentiviral transfection, the Cx37 mRNA levels in the Cx37 siRNA group, mock‑siRNA group and saline group decreased to 42, 63 and 67%, respectively (P<0.05). The mock‑siRNA group demonstrated no significant change in Cx37 levels compared with the control group. Western blot analysis revealed lower Cx37 protein levels in the Cx37‑RNAi group than in the other groups (0.21±0.07 vs. 0.65±0.06 vs. 0.54±0.07), and that the apoptotic index of the Cx37‑RNAi group was higher than those of the mock‑siRNA and control groups (19.7±5.1 vs. 9.8±6.4 vs. 10.5±7.2%, 11.1±6.9; P<0.05). In conclusion, it was demonstrated that Cx37 siRNA is correlated with gastric cancer. Interference of Cx37 effectively reduces Cx37 mRNA and protein expression and promotes tumour apoptosis.
Collapse
Affiliation(s)
- Yuanming Jing
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Suxia Guo
- Department of Cardiology, The Affiliated People's Hospital of Nanjing Medical University in Wuxi and People's Hospital of Wuxi City, Wuxi, Jiangsu 214023, P.R. China
| | - Xiaoping Zhang
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Aijing Sun
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Feng Tao
- Department of Gastrointestinal Surgery, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, Zhejiang 312000, P.R. China
| | - Haixing Ju
- Department of Colorectal Surgery, Zhejiang Provincial Tumor Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Haixin Qian
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
8
|
The antiproliferative properties of the milk fat globule membrane are affected by extensive heating. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s13594-014-0171-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Leucht K, Fischbeck A, Caj M, Liebisch G, Hartlieb E, Benes P, Fried M, Humpf HU, Rogler G, Hausmann M. Sphingomyelin and phosphatidylcholine contrarily affect the induction of apoptosis in intestinal epithelial cells. Mol Nutr Food Res 2013; 58:782-98. [PMID: 24142587 DOI: 10.1002/mnfr.201300369] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/14/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022]
Abstract
SCOPE The major alimentary sources for the plasma membrane lipid sphingomyelin (SM) are dairy products, eggs, and meat. We recently reported that the SM metabolite ceramide induces cathepsin D mediated apoptosis in murine intestinal epithelial cells (IECs) and increases inflammation in acute colitis. We investigated the impact of SM and phosphatidylcholine on apoptosis in human IECs and point out BH3-interacting death agonist (BID) as link between cathepsin D and apoptosis. METHODS AND RESULTS HT-29 and isolated human IECs were stimulated with SM or phosphatidylcholine. SM treatment resulted in increased apoptosis. Phosphatidylcholine showed contrary effects. Western revealed higher amounts of cathepsin D and BID activation upon lipid stimulation. Western blotting revealed BID activation through SM in both an induced and a spontaneous mouse model of colitis. CONCLUSION Dietary phospholipids may induce or abolish apoptosis in IECs and seem to play a role in the pathogenesis of inflammatory bowel diseases. This nutritional factor might be considered when evaluating the pathogenesis of inflammatory bowel diseases. Effects of SMase- and SM treatment on inflammation in dextran sulfate sodium induced animal models of colitis and in vitro experiments are discussed as controversial. Variable sources of SM, feeding techniques, and mouse strains might play a role.
Collapse
Affiliation(s)
- Katharina Leucht
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University Hospital Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
García-Barros M, Coant N, Truman JP, Snider AJ, Hannun YA. Sphingolipids in colon cancer. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:773-82. [PMID: 24060581 DOI: 10.1016/j.bbalip.2013.09.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 09/12/2013] [Accepted: 09/16/2013] [Indexed: 01/28/2023]
Abstract
Colorectal cancer is one of the major causes of death in the western world. Despite increasing knowledge of the molecular signaling pathways implicated in colon cancer, therapeutic outcomes are still only moderately successful. Sphingolipids, a family of N-acyl linked lipids, have not only structural functions but are also implicated in important biological functions. Ceramide, sphingosine and sphingosine-1-phosphate are the most important bioactive lipids, and they regulate several key cellular functions. Accumulating evidence suggests that many cancers present alterations in sphingolipids and their metabolizing enzymes. The aim of this review is to discuss the emerging roles of sphingolipids, both endogenous and dietary, in colon cancer and the interaction of sphingolipids with WNT/β-catenin pathway, one of the most important signaling cascades that regulate development and homeostasis in intestine. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.
Collapse
Affiliation(s)
- Mónica García-Barros
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 101 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| | - Nicolas Coant
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 101 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| | - Jean-Philip Truman
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 101 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| | - Ashley J Snider
- VAMC Northport, 79 Middleville Road, Northport, NY, USA, Health Science Center, Stony Brook University, Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 101 Nicolls Road, T15, 023, 11794, Stony Brook, NY, USA.
| |
Collapse
|
11
|
KUCHTA ANNAM, KELLY PHILIPM, STANTON CATHERINE, DEVERY ROSALEENA. Milk fat globule membrane - a source of polar lipids for colon health? A review. INT J DAIRY TECHNOL 2012. [DOI: 10.1111/j.1471-0307.2011.00759.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
12
|
Abumrad NA, Piomelli D, Yurko-Mauro K, Merrill A, Clandinin MT, Serhan CN. Moving beyond "good fat, bad fat": the complex roles of dietary lipids in cellular function and health: session abstracts. Adv Nutr 2012; 3:60-8. [PMID: 22332103 PMCID: PMC3262616 DOI: 10.3945/an.111.000802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The International Life Science Institute North America and the American Society for Nutrition annual Functional Foods for Health Symposium was held 9 April 2011. Evidence that foods and their components offer health benefits beyond basic nutrition continues to captivate the interest of the scientific community, government agencies, and the general public. This paper is comprised of extended abstracts from the session and addresses issues related to emerging lipid nutrition science, including active roles of lipids in modulating physiological pathways. Identified pathways underlie the development of obesity, cognitive development, and inflammation, the latter of which is thought to relate to multiple disease processes. These data point to a new way of thinking about the role of lipids in health and disease.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
13
|
Jing YM, Guo SX, Zhang XP, Sun AJ, Tao F, Qian HX. Association between C1019T polymorphism in the connexin 37 gene and Helicobacter pylori infection in patients with gastric cancer. Asian Pac J Cancer Prev 2012; 13:2363-7. [PMID: 22901223 DOI: 10.7314/apjcp.2012.13.5.2363] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To investigate the association between the connexin 37 C1019T polymorphism and Helicobacter pylori infection in patients with gastric cancer. METHODS 388 patients with gastric cancer (GC), 204 with chronic superficial gastritis (CSG) were studied. H. pylori was detected by gastric mucosal biopsies biopsy dyeing method. Connexin 37 gene polymorphism 1019 site genotypes were determined by gene sequencing technology. Genotypes and alleles frequencies were compared. RESULTS (1) Connexin37 gene 1019 site distribution frequency (CC type, TC type, TT type) in the CSG group was 18.1%, 45.1% and 36.8%; in the stomach cancer group it was 35.1%, 45.9% and 19.%, conforming to the Hardy-Weinberg euilibrium. (2) In comparison with CSG group, the frequency of Connexin37 C allele was higher in the gastric cancer group (58.0% vs 40.7%, OR=2.01, 95%CI=1.58-2.57, P<0.01). The prevalence of gastric cancer risk was significantly increased in the carriers of C allele (CC+TC) than in TT homozygote (OR=2.47, 5%CI=1.68-3.610. (3) Gastric cancer patients complicated with Hp infection 211 cases, gastric cancer group of the male patients with HP positive patients with 187 cases, 40 cases of female patients with negative patients, 24 cases were HP positive, negative in 137 cases, control group male patients, 28 cases were Hp positive, negative in 95 patients, female patients with Hp positive 6 cases, 75 cases were negative. On hierarchical analysis, the male group OR value was 15.9 (95%CI to 9.22-27.3), and the female OR was 2.19 (95%CI 0.88-5.59), indicating a greater contribution in males (P<0.01). After elimination of gender effects, positive HP and gastric cancer were closely related (OR 8.82, 95% CI: 5.45-14.3). (4) The distribution frequency of C allele in patients with Hp infection was much higher than that in Hp negative cases in the GC group (64.5% vs 47.0%, OR=2.05, 95%CI=1.54-2.74, P<0.01). Compared with TT homozygotes, (CC+TC) genotype prevalence of gastric cancer risk increased significantly (OR=2.96, 5%CI=1.76-2.99). CONCLUSION The T allele in the connexin37 gene might not only be associated with gastric cancer but also with H. pylori infection.
Collapse
Affiliation(s)
- Yuan-Ming Jing
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Zhejing University, Shaoxing, Zhejiang, China
| | | | | | | | | | | |
Collapse
|
14
|
Merrill AH. Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011; 111:6387-422. [PMID: 21942574 PMCID: PMC3191729 DOI: 10.1021/cr2002917] [Citation(s) in RCA: 578] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Indexed: 12/15/2022]
Affiliation(s)
- Alfred H Merrill
- School of Biology, and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA.
| |
Collapse
|
15
|
Symolon H, Bushnev A, Peng Q, Ramaraju H, Mays SG, Allegood JC, Pruett ST, Sullards MC, Dillehay DL, Liotta DC, Merrill AH. Enigmol: a novel sphingolipid analogue with anticancer activity against cancer cell lines and in vivo models for intestinal and prostate cancer. Mol Cancer Ther 2011; 10:648-57. [PMID: 21398423 DOI: 10.1158/1535-7163.mct-10-0754] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sphingoid bases are cytotoxic for many cancer cell lines and are thought to contribute to suppression of intestinal tumorigenesis in vivo by ingested sphingolipids. This study explored the behavior of a sphingoid base analogue, (2S,3S,5S)-2-amino-3,5-dihydroxyoctadecane (Enigmol), that cannot be phosphorylated by sphingosine kinases and is slowly N-acylated and therefore is more persistent than natural sphingoid bases. Enigmol had potential anticancer activity in a National Cancer Institute (NCI-60) cell line screen and was confirmed to be more cytotoxic and persistent than naturally occurring sphingoid bases using HT29 cells, a colon cancer cell line. Although the molecular targets of sphingoid bases are not well delineated, Enigmol shared one of the mechanisms that has been found for naturally occurring sphingoid bases: normalization of the aberrant accumulation of β-catenin in the nucleus and cytoplasm of colon cancer cells due to defect(s) in the adenomatous polyposis coli (APC)/β-catenin regulatory system. Enigmol also had antitumor efficacy when administered orally to Min mice, a mouse model with a truncated APC gene product (C57Bl/6J(Min/+) mice), decreasing the number of intestinal tumors by half at 0.025% of the diet (w/w), with no evidence of host toxicity until higher dosages. Enigmol was also tested against the prostate cancer cell lines DU145 and PC-3 in nude mouse xenografts and suppressed tumor growth in both. Thus, Enigmol represents a novel category of sphingoid base analogue that is orally bioavailable and has the potential to be effective against multiple types of cancer.
Collapse
Affiliation(s)
- Holly Symolon
- School of Biology, 310 Ferst Drive, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Huang YL, Huang WP, Lee H. Roles of sphingosine 1-phosphate on tumorigenesis. World J Biol Chem 2011; 2:25-34. [PMID: 21537487 PMCID: PMC3083992 DOI: 10.4331/wjbc.v2.i2.25] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/10/2011] [Accepted: 02/16/2011] [Indexed: 02/05/2023] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with a variety of biological activities. It is generated from the conversion of ceramide to sphingosine by ceramidase and the subsequent conversion of sphingosine to S1P, which is catalyzed by sphingosine kinases. Through increasing its intracellular levels by sphingolipid metabolism and binding to its cell surface receptors, S1P regulates several physiological and pathological processes, including cell proliferation, migration, angiogenesis and autophagy. These processes are responsible for tumor growth, metastasis and invasion and promote tumor survival. Since ceramide and S1P have distinct functions in regulating in cell fate decision, the balance between the ceramide/sphingosine/S1P rheostat becomes a potent therapeutic target for cancer cells. Herein, we summarize our current understanding of S1P signaling on tumorigenesis and its potential as a target for cancer therapy.
Collapse
Affiliation(s)
- Yuan-Li Huang
- Yuan-Li Huang, Department of Biotechnology, College of Health Science, Asia University, Taichung 41354, Taiwan, China
| | | | | |
Collapse
|
17
|
Hydrophilic Interaction Chromatography (HILIC) in the Analysis of Relevant Quality and Safety Biochemical Compounds in Meat, Poultry and Processed Meats. FOOD ANAL METHOD 2010. [DOI: 10.1007/s12161-010-9149-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Ohlsson L, Hertervig E, Jönsson BA, Duan RD, Nyberg L, Svernlöv R, Nilsson A. Sphingolipids in human ileostomy content after meals containing milk sphingomyelin. Am J Clin Nutr 2010; 91:672-8. [PMID: 20071649 DOI: 10.3945/ajcn.2009.28311] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Sphingomyelin occurs in modest amounts in the diet, in sloughed mucosal cells, and in bile. It is digested by the mucosal enzymes alkaline sphingomyelinase and ceramidase. In humans, alkaline sphingomyelinase is also secreted in bile. The digestion of sphingomyelin is slow and incomplete, which has been linked to the inhibition of cholesterol absorption and colonic carcinogenesis. OBJECTIVE We evaluated whether the supply of moderate amounts of milk sphingomyelin increases the exposure of the colon to sphingomyelin and its metabolites. DESIGN Two experimental series were performed. In experiment A, we measured the content of sphingomyelin and ceramide in human ileostomy content by HPLC during 8 h after consumption of a test meal containing 250 mg milk sphingomyelin. In experiment B, we measured the molecular species of sphingomyelin and ceramide by HPLC-tandem mass spectrometry after doses of 50, 100, or 200 mg sphingomyelin. RESULTS In experiment A, the average increase in ileostomy content of ceramide plus sphingomyelin amounted to 19% of the fed dose of sphingomyelin. In experiment B, the output of C-22:0-sphingomyelin, C-23:0-sphingomyelin, C-24:0-sphingomyelin, and sphingosine increased significantly, and palmitoyl-sphingomyelin increased proportionally less. Outputs and concentrations of palmitoyl-ceramide and sphingosine showed great individual variation, and stearoyl-sphingomyelin and stearoyl-ceramide did not increase after the meals. Although the output of long-chain sphingomyelin species increased significantly, the data indicated that >81% of all measured sphingomyelin species had been digested. CONCLUSIONS Humans digest and absorb most of the sphingomyelin in normal diets. The amount of sphingolipid metabolites to which the colon is exposed can, however, be influenced by realistic amounts of dietary sphingomyelin.
Collapse
Affiliation(s)
- Lena Ohlsson
- Department of Gastroenterology, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
19
|
Snow DR, Jimenez-Flores R, Ward RE, Cambell J, Young MJ, Nemere I, Hintze KJ. Dietary milk fat globule membrane reduces the incidence of aberrant crypt foci in Fischer-344 rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2157-2163. [PMID: 20099884 DOI: 10.1021/jf903617q] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Milk fat globule membrane (MFGM) is a biopolymer composed primarily of membrane proteins and lipids that surround the fat globules in milk. Although it is considered to have potential as a bioactive ingredient, few feeding studies have been conducted to measure its potential benefits. The aim of this investigation was to determine if dietary MFGM confers protection against colon carcinogenesis compared to diets containing corn oil (CO) or anhydrous milk fat (AMF). Male, weanling Fischer-344 rats were randomly assigned to one of three dietary treatments that differed only in the fat source: (1) AIN-76A diet, corn oil; (2) AIN-76A diet, AMF; and (3) AIN-76A diet, 50% MFGM, 50% AMF. Each diet contained 50 g/kg diet of fat. With the exception of the fat source, diets were formulated to be identical in macro and micro nutrient content. Animals were injected with 1,2-dimethylhydrazine once per week at weeks 3 and 4, and fed experimental diets for a total of 13 weeks. Over the course of the study dietary treatment did not affect food consumption, weight gain or body composition. After 13 weeks animals were sacrificed, colons were removed and aberrant crypt foci (ACF) were counted by microscopy. Rats fed the MFGM diet (n = 16) had significantly fewer ACF (20.9 +/- 5.7) compared to rats fed corn oil (n = 17) or AMF (n = 16) diets (31.3 +/- 9.5 and 29.8 +/- 11.4 respectively; P < 0.05). Gene expression analysis of colonic mucosa did not reveal differential expression of candidate colon cancer genes, and the sphingolipid profile of the colonic mucosa was not affected by diet. While there were notable and significant differences in plasma and red blood cell lipids, there was no relationship to the cancer protection. These results support previous findings that dietary sphingolipids are protective against colon carcinogenesis yet extend this finding to MFGM, a milk fat fraction available as a food ingredient.
Collapse
Affiliation(s)
- Dallin R Snow
- Department of Nutrition, Dietetics and Food Sciences, Utah State University, 750 N 1200 E, Logan, Utah 84322-8700, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Simon KW, Tait L, Miller F, Cao C, Davy KP, LeRoith T, Schmelz EM. Suppression of breast xenograft growth and progression in nude mice: implications for the use of orally administered sphingolipids as chemopreventive agents against breast cancer. Food Funct 2010; 1:90-8. [DOI: 10.1039/c0fo00108b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
21
|
Clinical significance of vascular endothelial growth factor and connexin43 for predicting pancreatic cancer clinicopathologic parameters. Med Oncol 2009; 27:1164-70. [DOI: 10.1007/s12032-009-9354-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2009] [Accepted: 10/27/2009] [Indexed: 12/20/2022]
|