1
|
Holt RR, Ho E, Li X, Fam VW, Hedayati N, Keen CL, Charoenwoodhipong P, Hackman RM. Short-Term Cardiometabolic Response to Mango Intake in Postmenopausal Women. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2025:1-9. [PMID: 40105371 DOI: 10.1080/27697061.2025.2478937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/07/2025] [Accepted: 03/08/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Consumption of mangos has been associated with improved diet quality, with reported reductions in systolic blood pressure and inflammatory biomarkers when consumed daily in robust amounts for six to eight weeks. Whether these changes could occur with a shorter intake period is unknown. METHODS This study explored the effect of two weeks of mango intake (330 g/d) on microvascular function and cardiometabolic markers in a group of relatively healthy postmenopausal women with an overweight or obese body mass index. Outcomes were compared to two weeks of baseline measures without mango intake. RESULTS The primary outcome measure, microvascular function did not significantly change, while supine systolic blood pressure, mean arterial pressure, mean pulse pressure, and fasting cholesterol were significantly reduced. No significant changes in platelet aggregation or adhesion markers were noted. To explore the results further, a small probe study was conducted comparing the intake of mango to a calorically-equivalent amount of white bread. Blood glucose rose in both groups one hour after consumption, but significantly less after mango intake. Insulin levels also rose one hour after intake of both foods, but remained elevated in response to white bread, suggesting a moderating effect of mangos on glucose absorption and metabolism. CONCLUSIONS Further research using amounts of mango typically consumed, over an extended period of time, are warranted.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Esther Ho
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Xiang Li
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Vivien W Fam
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Nasim Hedayati
- Division of Vascular Surgery, Department of Surgery, University of California Davis, Sacramento, California, USA
| | - Carl L Keen
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Prae Charoenwoodhipong
- Division of Food Science and Nutrition, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakhon Nayok, Thailand
| | - Robert M Hackman
- Department of Nutrition, University of California, Davis, Davis, California, USA
| |
Collapse
|
2
|
Pett KD, Alex PG, Weisfuss C, Sandhu A, Burton-Freeman B, Edirisinghe I. Mango Consumption Is Associated with Increased Insulin Sensitivity in Participants with Overweight/Obesity and Chronic Low-Grade Inflammation. Nutrients 2025; 17:490. [PMID: 39940348 PMCID: PMC11820656 DOI: 10.3390/nu17030490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: Chronic low-grade inflammation is associated with insulin resistance and poor glycemic control, leading to the development of type 2 diabetes mellitus (T2DM). The present study investigated the effect of regular mango intake on inflammation and insulin sensitivity in participants with overweight or obesity and chronic low-grade inflammation. Methods: A human clinical study was performed using a randomized, controlled, two-arm, parallel design with a 2 h oral glucose tolerance test (OGTT) administered before and after 4 weeks (4 W) of mango or control product intake (1 cup/twice a day). Fasting and time course blood sampling for 2 h post-OGTT were analyzed for effects on plasma metabolic and inflammation endpoints using analysis of covariance and repeated-measure approaches (SAS 9.4). Results: Forty-eight adults (37.6 ± 2.8 years, 30.5 ± 4.1 BMI kg/m2) completed the study. Markers of inflammation (IL-6, TNFα, hs-CRP) were not different at the end of 4 W (p > 0.05). The intervention did not significantly influence fasting glucose concentrations; however, insulin was significantly lowered with the mango compared to the control intervention (8.2 ± 1.2 vs. 15.3 ± 1.2 µIU/mL respectively, p = 0.05). Furthermore, the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR), along with the disposition index (DI), was significantly improved in the mango compared to the control interventions (HOMA-IR, 2.28 ± 1.19 vs. 4.67 ± 1.21, p = 0.03; DI, 2.76 ± 1.02 vs. 5.37 ± 1.03, p = 0.04). Mean insulin concentrations were also significantly lower at W4 compared to W0 after the OGTT in the mango vs. control intervention (intervention × week effect, p = 0.04). Relative expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), a gene regulating endogenous antioxidant defense, was non-significantly increased twofold in the mango intervention (W4 vs. W0). Conclusions: Collectively, the data suggest that mango intake increased insulin sensitivity in individuals with chronic low-grade inflammation, possibly through activating Nrf-2 genes and increasing cellular antioxidant status. The data warrant further research on consuming mango fruit as part of a dietary pattern to address insulin resistance and the mechanisms underpinning the actions of mango intake.
Collapse
Affiliation(s)
| | | | | | | | | | - Indika Edirisinghe
- Center for Nutrition Research, Department of Food Science and Nutrition, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA; (K.D.P.); (P.G.A.); (C.W.); (A.S.); (B.B.-F.)
| |
Collapse
|
3
|
Cáceres-Jiménez S, Pereira-Caro G, Dobani S, Pourshahidi K, Gill CIR, Moreno-Rojas JM, Ordoñez-Díaz JL, Almutairi TM, Clifford MN, Crozier A. Bioavailability of mango (poly)phenols: An evaluation of the impact of the colon, and phenylalanine and tyrosine on the production of phenolic catabolites. Free Radic Biol Med 2024; 225:605-616. [PMID: 39426756 DOI: 10.1016/j.freeradbiomed.2024.10.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
A mango pulp purée was ingested by ileostomists, whose colon had been removed surgically, and subjects with a full gastrointestinal (GI) tract, after which ileal fluid, urine and feces were collected over a 24 h period and analysed by UHPLC-HR-MS. The main (poly)phenols in the purée were gallotannins (356 μmol) and two hydroxy-methoxy-cinnamoyl glucose esters (43 μmol) together with the aromatic amino acids phenylalanine (22 μmol) and tyrosine (209 μmol). Analysis of ileal fluid revealed almost all the ingested gallotannins appeared to have broken down in the upper GI tract with the released benzoic acids being rapidly absorbed into the circulatory system prior to urinary excretion mainly as phase-2 metabolites. Likewise, the glucose moiety of the cinnamic acid conjugates was cleaved and the released cinnamic acids absorbed efficiently from the proximal GI tract and subjected to phase II metabolism prior to excretion. Among the main phenolics excreted after mango intake were phenylacetic and benzoic acids and hydroxybenzene catabolites which were present in lower, but none-the-less, substantial amounts, in the urine of ileostomists. This indicates that a portion of these phenolics, including the hydroxybenzene derivatives, originate from substrates absorbed in the upper GI tract and are principally products of endogenous metabolism rather than being derived from colonic microbiota-mediated catabolism. 1,2,3-Trihydroxybenzene (aka pyrogallol) was the dominant urinary catabolite in both groups. Hippuric acid excretion exceeded (poly)phenol intake indicating a significant contribution from phenylalanine and tyrosine. The aromatic amino acids, while present in the ingested pulp, can also originate from several sources including breakdown of dietary proteins in the GI tract, and endogenous breakdown of surplus mammalian proteins independent of the GI tract. The trial was registered at clinical trials.gov as NCT06182540.
Collapse
Affiliation(s)
- Salud Cáceres-Jiménez
- Departamento de Bromatología y Tecnología de Los Alimentos, Campus de Rabanales Ed. Darwin-anexo, Universidad de Córdoba, 14071, Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain.
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT1 6DN, UK
| | - Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT1 6DN, UK
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health, Ulster University, Coleraine, BT1 6DN, UK
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain; Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba, 14004, Córdoba, Spain
| | - José Luis Ordoñez-Díaz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain
| | - Tahani M Almutairi
- Department of Chemistry, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Alan Crozier
- Department of Chemistry, King Saud University, 11451, Riyadh, Saudi Arabia; School of Medicine, Dentistry and Nursing, University of Glasgow, G12 8QQ, Glasgow, UK.
| |
Collapse
|
4
|
Cáceres-Jiménez S, Rodríguez-Solana R, Dobani S, Pourshahidi K, Gill C, Moreno-Rojas JM, Almutairi TM, Crozier A, Pereira-Caro G. UHPLC-HRMS Spectrometric Analysis: Method Validation and Plasma and Urinary Metabolite Identification after Mango Pulp Intake. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37471325 DOI: 10.1021/acs.jafc.3c03846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
After an acute intake of 300 g of mango purée by 10 subjects, 0 and 24 h urine and plasma samples were analyzed by high-performance liquid chromatography-high-resolution mass spectrometry. The method was first validated for 44 reference polyphenols in terms of linearity, specificity, limits of detection and quantification, intra-day and inter-day precision, recovery, and matrix effects in two biological matrices. After method validation, a total of 94 microbial-derived phenolic catabolites, including 15 cinnamic acids, 3 phenylhydracrylic acids, 14 phenylpropanoic acids, 12 phenylacetic acids, 28 benzoic acids, 2 mandelic acids, 15 hydroxybenzenes, and 5 hippuric acid derivatives, were identified or tentatively identified in urine and/or plasma. These results establish the value of the UHPLC-HRMS protocol and the use of authentic standards to obtain a detailed and accurate picture of mango polyphenol metabolites, together with their phase II conjugated metabolites, in human bioavailability studies.
Collapse
Affiliation(s)
- Salud Cáceres-Jiménez
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, Córdoba 14004, Spain
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-anexo, Universidad de Córdoba, Córdoba 14071, Spain
| | - Raquel Rodríguez-Solana
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, Córdoba 14004, Spain
| | - Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT1 6DN, U.K
| | - Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT1 6DN, U.K
| | - Chris Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine BT1 6DN, U.K
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, Córdoba 14004, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain
| | - Tahani M Almutairi
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, Córdoba 14004, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba 14004, Spain
| |
Collapse
|
5
|
Del Burgo-Gutiérrez C, Cid C, Ludwig IA, De Peña MP. LC-MS/MS Analysis Elucidates the Different Effects of Industrial and Culinary Processing on Total and Individual (Poly)phenolic Compounds of Piquillo Pepper ( Capsicum annuum cv. Piquillo). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6050-6060. [PMID: 37014295 PMCID: PMC10119983 DOI: 10.1021/acs.jafc.2c07829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Pepper constitutes an important source of (poly)phenols, mainly flavonoids. Nevertheless, heat treatments applied prior to consumption may have an impact on these antioxidants, and thus may also affect their potential bioactivity. In this study, the effect of industrial and culinary treatments on the total and individual (poly)phenolic content of Piquillo pepper (Capsicum annuum cv. Piquillo) was thoroughly evaluated by high-performance liquid chromatography coupled to tandem mass spectrometry. A total of 40 (poly)phenols were identified and quantified in raw pepper. Flavonoids (10 flavonols, 15 flavones, and 2 flavanones) were the major compounds identified (62.6%). Among the 13 phenolic acids identified in raw samples, cinnamic acids were the most representative. High temperatures applied and subsequent peeling during industrial grilling drastically decreased the total (poly)phenolic content from 2736.34 to 1099.38 μg/g dm (59.8% reduction). In particular, flavonoids showed a higher reduction of 87.2% after grilling compared to nonflavonoids which only decreased by 14%. Moreover, 9 nonflavonoids were generated during grilling, modifying the (poly)phenolic profile. After culinary treatments, specifically frying, (poly)phenols appear to be better released from the food matrix, enhancing their extractability. Overall, industrial and culinary treatments differently affect both the total and individual (poly)phenolic compounds of pepper and, despite the reduction, they might also positively influence their bioaccessibility.
Collapse
Affiliation(s)
- Cristina Del Burgo-Gutiérrez
- Faculty
of Pharmacy & Nutrition, Department of Nutrition, Food Science
& Physiology, University of Navarra, 31008 Pamplona, Spain
- Center
for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
| | - Concepción Cid
- Faculty
of Pharmacy & Nutrition, Department of Nutrition, Food Science
& Physiology, University of Navarra, 31008 Pamplona, Spain
- Center
for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA,
Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Iziar A. Ludwig
- Faculty
of Pharmacy & Nutrition, Department of Nutrition, Food Science
& Physiology, University of Navarra, 31008 Pamplona, Spain
- Center
for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA,
Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - María-Paz De Peña
- Faculty
of Pharmacy & Nutrition, Department of Nutrition, Food Science
& Physiology, University of Navarra, 31008 Pamplona, Spain
- Center
for Nutrition Research, University of Navarra, c/Irunlarrea 1, 31008 Pamplona, Spain
- IdiSNA,
Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
6
|
Asuncion P, Liu C, Castro R, Yon V, Rosas M, Hooshmand S, Kern M, Hong MY. The effects of fresh mango consumption on gut health and microbiome - Randomized controlled trial. Food Sci Nutr 2023; 11:2069-2078. [PMID: 37051355 PMCID: PMC10084975 DOI: 10.1002/fsn3.3243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/19/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Some individual fruits have been widely researched for their effects on overall health and correlations with chronic diseases. The beneficial effects of mango supplementation on metabolic diseases have been detected. However, research into mango consumption on gut health, including the microbiome, is limited to processed mango preparations or peels. Our goal was to examine the effects of fresh mango consumption on the gut microbiome, gut permeability proteins, and bowel movement habits in overweight/obese individuals. In a 12-week crossover design study, 27 participants consumed 100 kcal/day of either mangos or low-fat cookies with a washout period of 4 weeks. The mango intervention showed higher Shannon-Wiener and Simpson alpha diversity indices of the microbiome than the low-fat cookie intervention in week 4. Significant differences in beta diversity of the microbiome were found between diet interventions at week 12. Mango consumption increased the abundance of Prevotella maculosa, Corynebacterium pyruviciproducens, and Mogibacterium timidum while it decreased Prevotella copri. Low-fat cookie intake increased Cyanobacterium aponinum and Desulfovibrio butyratiphilus and reduced Alloscardovia omnicolens. There were no significant differences in circulating gut permeability protein (ZO-1, claudin-2, and occludin) levels. There was a slight increase in the amount of bowel movement with mango consumption, but no significant findings for frequency, consistency, strain, pain, and constipation in bowel movement between trials. Given these results, it can be concluded that consumption of mango may have positive effects on the gut health, which may yield possible health benefits for chronic disease that deserve further study.
Collapse
Affiliation(s)
- Pia Asuncion
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Changqi Liu
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Robert Castro
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Viviana Yon
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Martin Rosas
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Shirin Hooshmand
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mark Kern
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| | - Mee Young Hong
- School of Exercise and Nutritional SciencesSan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
7
|
Zarasvand SA, Mullins AP, Arjmandi B, Haley-Zitlin V. Antidiabetic properties of mango in animal models and humans: A systematic review. Nutr Res 2023; 111:73-89. [PMID: 36841190 DOI: 10.1016/j.nutres.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/25/2022] [Accepted: 01/21/2023] [Indexed: 01/30/2023]
Abstract
Mango has long been an attractive source of nutrition and pharmacological therapeutics. The mango plant (Mangifera indica L.) contains bioactive compounds that may have antidiabetic properties. This systematic review investigated the evidence for antidiabetic properties of the different parts of the mango plant in managing type 2 diabetes mellitus in animal models and humans. The electronic databases PubMed, FSTA, Web of Science, CINAHL, MEDLINE, and Cochrane Library were systematically searched to identify articles with clear objectives and methodologies available in the English language with publication date limits up to December 2020. Twenty-eight of 1001 animal and human studies met the inclusion criteria that investigated antidiabetic properties of mango from leaf (31%), flesh (38%), seed-kernel (7%), peel (14%), stem-bark (7%), and by-product (3%). Results support the glucose-lowering properties of mango in both animals and human. Proposed antidiabetic mechanisms of action include inhibition of α-amylase and α-glucosidase, improved antioxidant status, improved insulin sensitivity, facilitated glucose uptake, and gene regulation of glucose transporter type 4, insulin receptor substrate 1, and phosphoinositide 3-kinase. The animal and randomized control trial findings suggest that mango may be beneficial as an antidiabetic agent. Although these studies hold promise, additional observational studies and randomized control trials are required because human studies are significantly fewer in number, use mango flesh almost exclusively, and had modest blood glucose effects. Additional research gaps include identifying the mechanisms of action for the different components of the mango plant.
Collapse
Affiliation(s)
| | - Amy P Mullins
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA; Department of Family and Consumer Sciences-Leon County Extension Services, University of Florida Institute of Food and Agricultural Sciences, Tallahassee, FL 32301, USA.
| | - Bahram Arjmandi
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| | - Vivian Haley-Zitlin
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634-0316, USA.
| |
Collapse
|
8
|
Nicolás García M, Borrás Enríquez A, González Escobar J, Calva Cruz O, Pérez Pérez V, Sánchez Becerril M. Phenolic Compounds in Agro-Industrial Waste of Mango Fruit: Impact on Health and Its Prebiotic Effect – a Review. POL J FOOD NUTR SCI 2023. [DOI: 10.31883/pjfns/159361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
|
9
|
Pulido-Mateos EC, Lessard-Lord J, Guyonnet D, Desjardins Y, Roy D. Comprehensive analysis of the metabolic and genomic features of tannin transforming Lactiplantibacillus plantarum strains. Sci Rep 2022; 12:22406. [PMID: 36575241 PMCID: PMC9794748 DOI: 10.1038/s41598-022-26005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/07/2022] [Indexed: 12/28/2022] Open
Abstract
Extracellular tannase Lactiplantibacillus plantarum-producing strains (TanA+) release bioactive metabolites from dietary tannins. However, there is a paucity of knowledge of TanA+ strains and their hydrolyzing capacities. This study aimed to shed light on the metabolic and genomic features of TanA+ L. plantarum strains and to develop a screening technique. The established spectrophotometric was validated by UPLC-UV-QToF. Eight of 115 screened strains harbored the tanA gene, and six presented TanA activity (PROBI S126, PROBI S204, RKG 1-473, RKG 1-500, RKG 2-219, and RKG 2-690). When cultured with tannic acid (a gallotannin), TanA+ strains released 3.2-11 times more gallic acid than a lacking strain (WCFS1) (p < 0.05). TanA+ strains with gallate decarboxylase (n = 5) transformed this latter metabolite, producing 2.2-4.8 times more pyrogallol than the TanA lacking strain (p < 0.05). However, TanA+ strains could not transform punicalagin (an ellagitannin). Genomic analysis revealed high similarity between TanA+ strains, as only two variable regions of phage and polysaccharide synthesis were distinguished. A phylogenetic analysis of 149 additional genome sequences showed that tanA harboring strains form a cluster and present two bacteriocin coding sequences profile. In conclusion, TanA+ L. plantarum strains are closely related and possess the ability to resist and transform gallotannins. TanA can be screened by the method proposed herein.
Collapse
Affiliation(s)
- Elena C. Pulido-Mateos
- grid.23856.3a0000 0004 1936 8390Institut sur la Nutrition et les Aliments Fonctionnels de l’Université Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada ,grid.23856.3a0000 0004 1936 8390Laboratoire de Génomique Microbienne, Département des Sciences des Aliments, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada
| | - Jacob Lessard-Lord
- grid.23856.3a0000 0004 1936 8390Institut sur la Nutrition et les Aliments Fonctionnels de l’Université Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada
| | | | - Yves Desjardins
- grid.23856.3a0000 0004 1936 8390Institut sur la Nutrition et les Aliments Fonctionnels de l’Université Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada
| | - Denis Roy
- grid.23856.3a0000 0004 1936 8390Institut sur la Nutrition et les Aliments Fonctionnels de l’Université Laval, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada ,grid.23856.3a0000 0004 1936 8390Laboratoire de Génomique Microbienne, Département des Sciences des Aliments, Faculté des Sciences de l’agriculture et de l’alimentation, Université Laval, Quebec, QC Canada
| |
Collapse
|
10
|
Keathley J, de Toro-Martín J, Kearney M, Garneau V, Pilon G, Couture P, Marette A, Vohl MC, Couillard C. Gene expression signatures and cardiometabolic outcomes following 8-week mango consumption in individuals with overweight/obesity. Front Nutr 2022; 9:918844. [PMID: 36034894 PMCID: PMC9407242 DOI: 10.3389/fnut.2022.918844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022] Open
Abstract
Background Little is known about the impact of mango consumption on metabolic pathways assessed by changes in gene expression. Methods In this single-arm clinical trial, cardiometabolic outcomes and gene expression levels in whole blood samples from 26 men and women were examined at baseline and after 8 weeks of mango consumption and differential gene expression changes were determined. Based on changes in gene expression profiles, partial least squares discriminant analysis followed by hierarchical clustering were used to classify participants into subgroups of response and differences in gene expression changes and in cardiometabolic clinical outcomes following the intervention were tested. Results Two subgroups of participants were separated based on the resemblance of gene expression profiles in response to the intervention and as responders (n = 8) and non-responders (n = 18). A total of 280 transcripts were significantly up-regulated and 603 transcripts down-regulated following the intervention in responders, as compared to non-responders. Several metabolic pathways, mainly related to oxygen and carbon dioxide transport as well as oxidative stress, were found to be significantly enriched with differentially expressed genes. In addition, significantly beneficial changes in hip and waist circumference, c-reactive protein, HOMA-IR and QUICKI indices were observed in responders vs. non-responders, following the intervention. Conclusion The impact of mango consumption on cardiometabolic health appears to largely rely on interindividual variability. The novel transcriptomic-based clustering analysis used herein can provide insights for future research focused on unveiling the origins of heterogeneous responses to dietary interventions. Clinical Trial Registration [clinicaltrials.gov], identifier [NCT03825276].
Collapse
Affiliation(s)
- Justine Keathley
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,School of Nutrition, Université Laval, Québec, QC, Canada
| | - Juan de Toro-Martín
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,School of Nutrition, Université Laval, Québec, QC, Canada
| | - Michèle Kearney
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,School of Nutrition, Université Laval, Québec, QC, Canada
| | - Véronique Garneau
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,School of Nutrition, Université Laval, Québec, QC, Canada
| | - Geneviève Pilon
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,Quebec Heart and Lung Institute (IUCPQ) Research Center, Québec, QC, Canada
| | - Patrick Couture
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,Endocrinology and Nephrology Unit, CHU de Quebec Research Center, Québec, QC, Canada
| | - André Marette
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,Quebec Heart and Lung Institute (IUCPQ) Research Center, Québec, QC, Canada
| | - Marie-Claude Vohl
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,School of Nutrition, Université Laval, Québec, QC, Canada
| | - Charles Couillard
- Center Nutrition, Santé et Société (NUTRISS)-Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Université Laval, Québec, QC, Canada.,School of Nutrition, Université Laval, Québec, QC, Canada
| |
Collapse
|
11
|
Effects of 2-Year Nutritional and Lifestyle Intervention on Oxidative and Inflammatory Statuses in Individuals of 55 Years of Age and over at High Cardiovascular Risk. Antioxidants (Basel) 2022; 11:antiox11071326. [PMID: 35883817 PMCID: PMC9312253 DOI: 10.3390/antiox11071326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity and overweight are disorders with high impact on the morbidity and mortality of chronic diseases, such as type 2 diabetes mellitus (T2DM) and cardiovascular diseases (CVD). We aim to assess the effects of 2-year nutritional and lifestyle intervention on oxidative and inflammatory status in individuals of 55 years of age and over at high CVD risk. Participants (n = 100 individuals of 55 years of age and over living in the Balearic Islands, Spain) were randomized into control and intervention group. Anthropometric and haematological parameters, blood pressure and physical activity were measured before and after the intervention. Oxidative and inflammatory biomarkers in plasma, urine, peripheral blood mononuclear cells (PBMCs) and neutrophils were determined. A higher reduction in abdominal obesity, blood pressure and triglycerides levels was observed after a 2-year intervention. An improvement of oxidative stress and proinflammatory status was demonstrated with a significant reduction in myeloperoxidase, xanthine oxidase, malondialdehyde and monocyte chemoattractant protein-1 (MCP1) levels, and an increase in polyphenols in plasma was observed. A decrease in reactive oxygen species production in PBMCs and neutrophils levels after zymosan and lipopolysaccharide activation was found in the intervention group with respect to the control group. The intervention with hypocaloric Mediterranean Diet and customized physical activity improves oxidative stress and proinflammatory status and could contribute to decreasing the CVD risk.
Collapse
|
12
|
Keathley J, Kearney M, Garneau V, Toro-Martín JD, Varin TV, Pilon G, Couture P, Marette A, Vohl MC, Couillard C. Changes in systolic blood pressure, postprandial glucose, and gut microbial composition following mango consumption in individuals with overweight and obesity. Appl Physiol Nutr Metab 2022; 47:565-574. [PMID: 35506190 DOI: 10.1139/apnm-2021-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study aimed to explore the impact of daily mango consumption (Mangifera indica) on cardiometabolic health and gut microbiota in individuals with overweight and obesity. Changes in cardiometabolic variables, gut microbiota diversity and composition, physical activity habits, and dietary intakes were assessed in 8 males and 19 females with overweight and obesity who consumed 280 g/day of mango pulp for 8 weeks. There were no significant changes in body weight, waist circumference, or plasma lipid levels. However, after consuming mangos for 8 weeks, participants showed a 3.5% reduction in systolic blood pressure (-4 ± 6 mm Hg, p = 0.011) as well as a 10.5% reduction in 2-hour plasma glucose concentration after a 75-g oral glucose tolerance test (-0.58 ± 1.03 mmol/L, p = 0.008). These beneficial cardiometabolic outcomes were accompanied with enhanced gut microbiota diversity and with changes in the abundance of specific gut bacterial species. Mango consumption may have beneficial effects on both blood pressure and glucose homeostasis in individuals with overweight and obesity. Further studies are warranted to determine the impact of long-term and regular mango intake on cardiometabolic risk factors of individuals with overweight and obesity, and the potential mechanisms linking gut microbial changes to those health benefits. This study was registered with clinicaltrials.gov as NCT03825276. Novelty: A 3.5% reduction in systolic blood pressure is noted after consuming mangos for 8 weeks. A 10.5% reduction in 2-hour plasma glucose concentration of an oral glucose tolerance test is observed after consuming mangos for 8 weeks. Mango consumption for 8 weeks may enhance gut microbial diversity and abundance of specific bacterial species.
Collapse
Affiliation(s)
- Justine Keathley
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Michèle Kearney
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Véronique Garneau
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Juan de Toro-Martín
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Thibault V Varin
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - Geneviève Pilon
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,Québec Heart and Lung Institute (IUCPQ) Research Centre, Québec, QC G1V 4G5, Canada
| | - Patrick Couture
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada
| | - André Marette
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,Québec Heart and Lung Institute (IUCPQ) Research Centre, Québec, QC G1V 4G5, Canada
| | - Marie-Claude Vohl
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| | - Charles Couillard
- Centre Nutrition, santé et société (NUTRISS), Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V 0A6, Canada.,School of Nutrition, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
13
|
Abstract
Tannins are an interesting class of polyphenols, characterized, in almost all cases, by a different degree of polymerization, which, inevitably, markedly influences their bioavailability, as well as biochemical and pharmacological activities. They have been used for the process of tanning to transform hides into leather, from which their name derives. For several time, they have not been accurately evaluated, but now researchers have started to unravel their potential, highlighting anti-inflammatory, antimicrobial, antioxidant and anticancer activities, as well as their involvement in cardiovascular, neuroprotective and in general metabolic diseases prevention. The mechanisms underlying their activity are often complex, but the main targets of their action (such as key enzymes modulation, activation of metabolic pathways and changes in the metabolic fluxes) are highlighted in this review, without losing sight of their toxicity. This aspect still needs further and better-designed study to be thoroughly understood and allow a more conscious use of tannins for human health.
Collapse
|
14
|
Bio-Waste Products of Mangifera indica L. Reduce Adipogenesis and Exert Antioxidant Effects on 3T3-L1 Cells. Antioxidants (Basel) 2022; 11:antiox11020363. [PMID: 35204243 PMCID: PMC8869144 DOI: 10.3390/antiox11020363] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/14/2022] Open
Abstract
Several studies highlighted the beneficial value of natural compounds in the prevention and treatment of obesity. Here, we investigated the anti-obesity effects of extracts of peel and seed of mango (Mangifera indica L.) cultivated in Sicily (Italy) in 3T3-L1 cells. Mango Peel (MPE) and Mango Seed (MSE) extracts at a 100 µg/mL concentration significantly reduced lipid accumulation and triacylglycerol contents during 3T3-L1 adipocyte differentiation without toxicity. HPLC-ESI-MS analysis showed that both the extracts contain some polyphenolic compounds that can account for the observed biological effects. The anti-adipogenic effect of MPE and MSE was the result of down-regulation of the key adipogenic transcription factor PPARγ and its downstream targets FABP4/aP2, GLUT4 and Adipsin, as well SREBP-1c, a transcription factor which promotes lipogenesis. In addition, both MPE and MSE significantly activated AMPK with the consequent inhibition of Acetyl-CoA-carboxylase (ACC) and up-regulated PPARα. The addition of compound C, a specific AMPK inhibitor, reduced the effects of MPE and MSE on AMPK and ACC phosphorylation, suggesting a role of AMPK in mediating MPE and MSE anti-lipogenic effects. Notably, MPE and MSE possess an elevated radical scavenging activity, as demonstrated by DPPH radical scavenging assay, and reduced ROS content produced during adipocyte differentiation. This last effect could be a consequence of the increase in the antioxidant factors Nrf2, MnSOD and HO-1. In conclusion, MPE and MSE possesses both anti-adipogenic and antioxidant potential, thus suggesting that the bio-waste products of mango are promising anti-obesity natural compounds.
Collapse
|
15
|
Rosas M, Pinneo S, O'Mealy C, Tsang M, Liu C, Kern M, Hooshmand S, Hong MY. Effects of fresh mango consumption on cardiometabolic risk factors in overweight and obese adults. Nutr Metab Cardiovasc Dis 2022; 32:494-503. [PMID: 34953634 DOI: 10.1016/j.numecd.2021.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/13/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND & AIMS In vitro and animal studies show antidiabetic, anti-inflammatory, and cardioprotective properties of mangos. The objective of this study was to examine the effects of fresh mango consumption compared to an isocaloric control snack on body weight, glucose, insulin, lipid profiles, liver function enzymes, inflammation, and antioxidant activity in overweight and obese adults (BMI ≥26 kg/m2). METHODS AND RESULTS In a crossover design, 27 participants consumed 100 kcal/d of fresh mangos or isocaloric low-fat cookies daily for 12 weeks each, separated by a four-week washout period. Blood glucose, C-reactive protein (CRP), and aspartate transaminase activity significantly decreased while total antioxidant capacity significantly increased following mango consumption. There were no significant changes in body weight, body fat %, blood pressure, insulin, or lipid profile following mango consumption. Cookie consumption significantly increased body weight, insulin, CRP, and triglycerides. CONCLUSION These results suggest that relative to the control snack, mangos may improve certain risk factors associated with overweight and obesity including improved glycemic control and reduced inflammation. CLINICAL TRIALS REGISTER NCT03957928.
Collapse
Affiliation(s)
- Martin Rosas
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Sherry Pinneo
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Celeste O'Mealy
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Michelle Tsang
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Changqi Liu
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA
| | - Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, 92182, USA.
| |
Collapse
|
16
|
Natella F, Guantario B, Ambra R, Ranaldi G, Intorre F, Burki C, Canali R. Human Metabolites of Hamaforton™ ( Hamamelis virginiana L. Extract) Modulates Fibroblast Extracellular Matrix Components in Response to UV-A Irradiation. Front Pharmacol 2022; 12:747638. [PMID: 34975471 PMCID: PMC8719534 DOI: 10.3389/fphar.2021.747638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
Hamamelis virginiana L. a rich source of both condensed and hydrolyzable tannins, utilized to treat dermatological disorders. Since no experimental and clinical data is available for its use as oral formulation in skin related disorders, the purpose of this study was to investigate the effects of Hamaforton™ (Hamamelis virginiana extract) metabolites on gene dysregulation induced by ultraviolet A radiation in cultured human dermal fibroblasts. A combination of in vivo and ex vivo experimental designs has been exploited in order to take into account the polyphenol metabolic transformation that occurs in humans. 12 healthy volunteers received either a capsule of Hamaforton™ or a placebo in a randomized, blinded crossover trial. After Hamaforton™ ingestion, the kinetic of appearance of galloyl derivatives was measured in plasma. Then, in the ex vivo experiment, the serum isolated after supplementation was used as a source of Hamaforton™ metabolites to enrich the culture medium of dermal fibroblasts exposed to ultraviolet A radiation. Three different gallic acid metabolites (4-O-methyl gallic acid, 4-O-methyl gallic acid sulphate and trimethyl gallic acid glucuronide) were identified in volunteer plasma. While, ultraviolet A irradiation of dermal fibroblasts affected the expression of extracellular matrix genes, the presence of Hamaforton™ metabolites in the culture media did not affect the expression of most of those genes. However, the activation of the expression of 10 different genes involved in repair processes for the maintenance of skin integrity, suggest that the metabolites can play a role in damage recovery. To our knowledge, this is the first study that demonstrates the bioavailability of Hamaforton™ phenolic compounds, and the effects of its metabolites on cultured dermal fibroblast response to ultraviolet A irradiation.
Collapse
Affiliation(s)
- Fausta Natella
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Barbara Guantario
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Roberto Ambra
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Giulia Ranaldi
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | - Federica Intorre
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| | | | - Raffaella Canali
- Research Centre for Food and Nutrition, CREA-Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Rome, Italy
| |
Collapse
|
17
|
Li Y, Zhu L, Guo C, Xue M, Xia F, Wang Y, Jia D, Li L, Gao Y, Shi Y, He Y, Yuan C. Dietary Intake of Hydrolyzable Tannins and Condensed Tannins to Regulate Lipid Metabolism. Mini Rev Med Chem 2021; 22:1789-1802. [PMID: 34967286 DOI: 10.2174/1389557522666211229112223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/23/2021] [Accepted: 10/03/2021] [Indexed: 11/22/2022]
Abstract
Lipid metabolism disorder is a multifactor issue, which contributes to several serious health consequences, such as obesity, hyperlipidemia, atherosclerosis diabetes, non-alcoholic fatty liver etc. Tannins, applied as natural derived plant, are commonly used in the study of lipid metabolism disease with excellent safety and effectiveness, while producing less toxic and side effects. Meanwhile, recognition of the significance of dietary tannins in lipid metabolism disease prevention has increased. As suggested by existing evidence, dietary tannins can reduce lipid accumulation, block adipocyte differentiation, enhance antioxidant capacity, increase the content of short-chain fatty acids, and lower blood lipid levels, thus alleviating lipid metabolism disorder. This study is purposed to sum up and analyze plenty of documents on tannins, so as to provide the information required to assess the lipid metabolism of tannins.
Collapse
Affiliation(s)
- Yuanyang Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Leiqi Zhu
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Mengzhen Xue
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Fangqi Xia
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yaqi Wang
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Dengke Jia
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Luoying Li
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yan Gao
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yue Shi
- College of Medical Science, China Three Gorges University, Yichang, China
| | - Yuming He
- College of Medical Science, China Three Gorges University, Yichang, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges, Yichang, China
- Hubei Key Laboratory of Tumour Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| |
Collapse
|
18
|
de Aguiar Cipriano P, Kim H, Fang C, Paula Venancio V, Mertens-Talcott SU, Talcott ST. In vitro digestion, absorption and biological activities of acylated anthocyanins from purple sweet potatoes (Ipomoea batatas). Food Chem 2021; 374:131076. [PMID: 34915366 DOI: 10.1016/j.foodchem.2021.131076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/02/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
Purple sweet potatoes (PSP) are widely used as color enhancers in food formulations. Investigations on the stability of PSP polyphenolics during simulated digestion and subsequent absorption in a Caco-2 cell monolayer model were accomplished. Measures of bioactive activities were also assessed in vitro. PSP whole polyphenolic extracts as a control (WC) were compared to isolates enriched in anthocyanins (AC) or non-anthocyanin phenolics (NAP). Anthocyanins were also alkali-hydrolyzed to remove acylated moieties. Compounds were subjected to simulated gastro-intestinal digestions where non-hydrolyzed anthocyanins showed higher stability compared to alkali-hydrolyzed. For many alkali-hydrolyzed anthocyanins, the transport through a Caco-2 cell monolayer was reduced. PSP fractions significantly increased the generation of reactive oxygen species in HT-29 cells and was suppressive in the CCD-18Co cells while down-regulated mRNA expression of inflammatory markers. Results indicate the importance of PSP composition and the effects of acyl moieties on anthocyanin stability and functional properties for food colors.
Collapse
Affiliation(s)
- Paula de Aguiar Cipriano
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Hyemee Kim
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Chuo Fang
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Vinicius Paula Venancio
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Susanne U Mertens-Talcott
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States
| | - Stephen T Talcott
- Department of Food Science and Technology, Texas A&M University, College Station, TX 77843-2256, United States.
| |
Collapse
|
19
|
Polyphenolic QTOF-ESI MS Characterization and the Antioxidant and Cytotoxic Activities of Prunus domestica Commercial Cultivars from Costa Rica. Molecules 2021; 26:molecules26216493. [PMID: 34770900 PMCID: PMC8588404 DOI: 10.3390/molecules26216493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
There is an increased interest in plum research because of their metabolites' potential bioactivities. In this study, the phenolic profiles of Prunus domestica commercial cultivars (Methley, Pisardii and Satsuma) in Costa Rica were determined by Ultra Performance Liquid Chromatography coupled with High Resolution Mass Spectrometry using a quadrupole-time-of-flight analyzer (UPLC-ESI-QTOF MS) on enriched phenolic extracts obtained through Pressurized Liquid Extraction (PLE) under acidic and neutral extraction conditions. In total, 41 different phenolic compounds were identified in the skin and flesh extracts, comprising 11 flavan-3-ols, 14 flavonoids and 16 hydroxycinnamic acids and derivatives. Neutral extractions for the skins and flesh from all of the cultivars yielded a larger number of compounds, and were particularly rich in the number of procyanidin trimers and tetramers when compared to the acid extractions. The total phenolic content (TPC) and antioxidant potential using the DPPH and ORAC methods exhibited better results for neutral extracts with Satsuma skins and Methley flesh, which showed the best values (685.0 and 801.6 mg GAE/g extract; IC50 = 4.85 and 4.39 µg/mL; and 12.55 and 12.22 mmol TE/g extract, respectively). A Two-Way ANOVA for cytotoxicity towards AGS gastric adenocarcinoma and SW620 colon adenocarcinoma indicated a significant difference (p < 0.05) for PLE conditions, with better results for neutral extractions, with Satsuma skin delivering the best results (IC50 = 60.7 and 46.7 µg/mL respectively) along with Methley flesh (IC50 = 76.3 and 60.9 µg/mL, respectively). In addition, a significant positive correlation was found between TPC and ORAC (r = 0.929, p < 0.05), as well as a significant negative correlation (p < 0.05) between TPC and cytotoxicity towards AGS and SW620 cell lines (r = -0.776, and -0.751, respectively). A particularly high, significant, negative correlation (p < 0.05) was found between the number of procyanidins and cytotoxicity against the AGS (r = -0.868) and SW620 (r = -0.855) cell lines. Finally, the PCA clearly corroborated that neutral extracts are a more homogenous group exhibiting higher antioxidant and cytotoxic results regardless of the part or cultivar; therefore, our findings suggest that PLE extracts under neutral conditions would be of interest for further studies on their potential health benefits.
Collapse
|
20
|
García-Díez E, Cuesta-Hervás M, Veses-Alcobendas AM, Alonso-Gordo Ó, García-Maldonado E, Martínez-Suárez M, Herranz B, Vaquero MP, Álvarez MD, Pérez-Jiménez J. Acute supplementation with grapes in obese subjects did not affect postprandial metabolism: a randomized, double-blind, crossover clinical trial. Eur J Nutr 2021; 60:2671-2681. [PMID: 33386890 DOI: 10.1007/s00394-020-02451-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 11/24/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study was to determine whether grape polyphenols have a "second-meal effect", modulating glucose and lipid elevations in the postprandial period after two successive meals in subjects with obesity. METHODS A randomized, double-blind, placebo-controlled, acute clinical trial was conducted. Twenty-five obese subjects (BMI = ≥ 30 and < 40 kg/m2) were randomly divided into two groups. At an initial visit, blood was collected in a fasting state and the subjects received breakfast and 46 g of either grape powder (equivalent to 252 g fresh grapes) or placebo, both solved in water. Lunch was provided 5 h later and then blood was collected after 0, 30, 60, 120, 180, 240, 300, 330, 360, and 420 min since arrival. Two weeks later, at a second visit, the subjects received the other powder. The following were determined: glucose, insulin, triglycerides, uric acid, blood count, hemoglobin, viscosity, antioxidant capacity, and satiety perception. RESULTS Postprandial increases were observed as expected in, for example, glucose and triglycerides after breakfast and lunch. The grape powder supplementation did not cause any significant modification compared to placebo, in these parameters; nor did it significantly modify plasma antioxidant capacity in the 6 h postprandial period. DISCUSSION Single grape powder supplementation did not modify postprandial responses in obese subjects, probably because the polyphenol dose was insufficient to induce such an effect. The result of a combination of grape with other polyphenol-rich products or chronic supplementation with grape powder on postprandial responses remains to be elucidated. TRIAL REGISTRATION NUMBER www.clinicaltrials.gov , NCT03741218.
Collapse
Affiliation(s)
- Esther García-Díez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Marta Cuesta-Hervás
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Ana M Veses-Alcobendas
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Óscar Alonso-Gordo
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Elena García-Maldonado
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Miriam Martínez-Suárez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - Beatriz Herranz
- Department of Food Technology, Veterinary Faculty, Complutense University, Avda/Puerta de Hierro, s/n, 28040, Madrid, Spain
- Department of Characterization, Quality, and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - M Pilar Vaquero
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain
| | - María Dolores Álvarez
- Department of Characterization, Quality, and Safety, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Madrid, Spain
| | - Jara Pérez-Jiménez
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), José Antonio Novais 10, 28040, Madrid, Spain.
| |
Collapse
|
21
|
Rodríguez-Daza MC, Pulido-Mateos EC, Lupien-Meilleur J, Guyonnet D, Desjardins Y, Roy D. Polyphenol-Mediated Gut Microbiota Modulation: Toward Prebiotics and Further. Front Nutr 2021; 8:689456. [PMID: 34268328 PMCID: PMC8276758 DOI: 10.3389/fnut.2021.689456] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 12/11/2022] Open
Abstract
The genome of gut microbes encodes a collection of enzymes whose metabolic functions contribute to the bioavailability and bioactivity of unabsorbed (poly)phenols. Datasets from high throughput sequencing, metabolome measurements, and other omics have expanded the understanding of the different modes of actions by which (poly)phenols modulate the microbiome conferring health benefits to the host. Progress have been made to identify direct prebiotic effects of (poly)phenols; albeit up to date, these compounds are not recognized as prebiotics sensu stricto. Interestingly, certain probiotics strains have an enzymatic repertoire, such as tannase, α-L-rhamnosidase, and phenolic acid reductase, involved in the transformation of different (poly)phenols into bioactive phenolic metabolites. In vivo studies have demonstrated that these (poly)phenol-transforming bacteria thrive when provided with phenolic substrates. However, other taxonomically distinct gut symbionts of which a phenolic-metabolizing activity has not been demonstrated are still significantly promoted by (poly)phenols. This is the case of Akkermansia muciniphila, a so-called antiobesity bacterium, which responds positively to (poly)phenols and may be partially responsible for the health benefits formerly attributed to these molecules. We surmise that (poly)phenols broad antimicrobial action free ecological niches occupied by competing bacteria, thereby allowing the bloom of beneficial gut bacteria. This review explores the capacity of (poly)phenols to promote beneficial gut bacteria through their direct and collaborative bacterial utilization and their inhibitory action on potential pathogenic species. We propose the term duplibiotic, to describe an unabsorbed substrate modulating the gut microbiota by both antimicrobial and prebiotic modes of action. (Poly)phenol duplibiotic effect could participate in blunting metabolic disturbance and gut dysbiosis, positioning these compounds as dietary strategies with therapeutic potential.
Collapse
Affiliation(s)
- Maria Carolina Rodríguez-Daza
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Elena C Pulido-Mateos
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Guyonnet
- Diana Nova, Symrise Nutrition, Clichy-la-Garenne, France
| | - Yves Desjardins
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Denis Roy
- Faculty of Agriculture and Food Sciences, Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada.,Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| |
Collapse
|
22
|
Individual Diet Modification Reduces the Metabolic Syndrome in Patients Before Pharmacological Treatment. Nutrients 2021; 13:nu13062102. [PMID: 34205362 PMCID: PMC8234117 DOI: 10.3390/nu13062102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023] Open
Abstract
Modification of lifestyle, including healthy nutrition, is the primary approach for metabolic syndrome (MetS) therapy. The aim of this study was to estimate how individual nutrition intervention affects the reduction of MetS components. Subjects diagnosed with MetS were recruited in the Lomza Medical Centre. The study group consisted of 90 participants and was divided into one intervention group (individual nutrition education group (INEG)) and one control group (CG). The research was conducted over 3 months. The following measurements were obtained during the first visit and after completion of the 3 months intervention: body mass, waist circumference, body composition, blood pressure, fasting glucose, and blood lipids. Dietary assessments were performed before and post-intervention using 3-day 24-h dietary recalls. Dietary knowledge was evaluated with the KomPAN questionnaire. The total polyphenol content of the diet was calculated. Sociodemographic and lifestyle characteristics were collected from a self-reported questionnaire. The physical activity was assessed by the short version of the International Physical Activity Questionnaire (IPAQ). It was found that the individual nutrition education was an effective method to improve the knowledge, dietary habits, and physical activity of the study participants. The modification of the diet in terms of higher intake of polyphenols (flavonoids and anthocyanins), fiber, polyunsaturated fatty acids (PUFA), PUFA n-3, and lower intake of saturated fatty acids (SFA) had a significant impact on the improvement of some MetS risk factors (waist circumference, fasting glucose, and HDL-cholesterol).
Collapse
|
23
|
Fan J, Xiao D, Zhang L, Edirisinghe I, Burton-Freeman B, Sandhu AK. Pharmacokinetic Characterization of (Poly)phenolic Metabolites in Human Plasma and Urine after Acute and Short-Term Daily Consumption of Mango Pulp. Molecules 2020; 25:E5522. [PMID: 33255828 PMCID: PMC7728344 DOI: 10.3390/molecules25235522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Pharmacokinetic (PK) evaluation of polyphenolic metabolites over 24 h was conducted in human subjects (n = 13, BMI = 22.7 ± 0.4 kg/m2) after acute mango pulp (MP), vitamin C (VC) or MP + VC test beverage intake and after 14 days of MP beverage intake. Plasma and urine samples were collected at different time intervals and analyzed using targeted and non-targeted mass spectrometry. The maximum concentrations (Cmax) of gallotannin metabolites were significantly increased (p < 0.05) after acute MP beverage intake compared to VC beverage alone. MP + VC beverage non-significantly enhanced the Cmax of gallic acid metabolites compared to MP beverage alone. Pyrogallol (microbial-derived metabolite) derivatives increased (3.6%) after the 14 days of MP beverage intake compared to 24 h acute MP beverage intake (p < 0.05). These results indicate extensive absorption and breakdown of gallotannins to galloyl and other (poly)phenolic metabolites after MP consumption, suggesting modulation and/or acclimation of gut microbiota to daily MP intake.
Collapse
Affiliation(s)
| | | | | | | | | | - Amandeep K. Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL 60616, USA; (J.F.); (D.X.); (L.Z.); (I.E.); (B.B.-F.)
| |
Collapse
|
24
|
Li L, Ma H, Liu T, Ding Z, Liu W, Gu Q, Mu Y, Xu J, Seeram NP, Huang X, Xu J. Glucitol-core containing gallotannins-enriched red maple (Acer rubrum) leaves extract alleviated obesity via modulating short-chain fatty acid production in high-fat diet-fed mice. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
25
|
Evans LW, Athukorala M, Martinez-Guryn K, Ferguson BS. The Role of Histone Acetylation and the Microbiome in Phytochemical Efficacy for Cardiovascular Diseases. Int J Mol Sci 2020; 21:E4006. [PMID: 32503339 PMCID: PMC7313062 DOI: 10.3390/ijms21114006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/12/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular diseases (CVD) are the main cause of death worldwide and create a substantial financial burden. Emerging studies have begun to focus on epigenetic targets and re-establishing healthy gut microbes as therapeutic options for the treatment and prevention of CVD. Phytochemicals, commonly found in fruits and vegetables, have been shown to exert a protective effect against CVD, though their mechanisms of action remain incompletely understood. Of interest, phytochemicals such as curcumin, resveratrol and epigallocatechin gallate (EGCG) have been shown to regulate both histone acetylation and microbiome re-composition. The purpose of this review is to highlight the microbiome-epigenome axis as a therapeutic target for food bioactives in the prevention and/or treatment of CVD. Specifically, we will discuss studies that highlight how the three phytochemicals above alter histone acetylation leading to global changes in gene expression and CVD protection. Then, we will expand upon these phytochemicals to discuss the impact of phytochemical-microbiome-histone acetylation interaction in CVD.
Collapse
Affiliation(s)
- Levi W. Evans
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | - Maheshi Athukorala
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
| | | | - Bradley S. Ferguson
- Department of Nutrition, University of Nevada Reno, Reno, NV 89557, USA; (L.W.E.); (M.A.)
- Center of Biomedical Research Excellence for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada Reno, Reno, NV 89557, USA
| |
Collapse
|
26
|
Kim H, Venancio VP, Fang C, Dupont AW, Talcott ST, Mertens-Talcott SU. Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr Res 2020; 75:85-94. [PMID: 32109839 DOI: 10.1016/j.nutres.2020.01.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/20/2019] [Accepted: 01/08/2020] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease (IBD) characterized by chronic intestinal inflammation and intestinal microbial dysbiosis present a major risk factor in the development of colorectal cancer. Previously, dietary polyphenols from mango (Mangifera indica L.) such as gallotannins and gallic acid have been shown to mitigate intestinal inflammation and carcinogenesis, as well as modulate intestinal microbial composition. To further translate findings from preclinical models, we hypothesized that mango polyphenols possess anti-inflammatory and microbiome-modulatory activities and may improve symptoms of IBD, reduce biomarkers for inflammation and modulate the intestinal microbiome when administered as an adjuvant treatment in combination with conventional medications in patients with mild to moderate IBD. In this study, ten participants received a daily dose of 200-400 g of mango pulp for 8 weeks (NCT02227602). Mango intake significantly improved the primary outcome Simple Clinical Colitis Activity Index (SCCAI) score and decreased the plasma levels of pro-inflammatory cytokines including interleukin-8 (IL-8), growth-regulated oncogene (GRO) and granulocyte macrophage colony-stimulating factor (GM-CSF) by 16.2% (P = .0475), 25.0% (P = .0375) and 28.6% (P = .0485), all factors related to neutrophil-induced inflammation, respectively. Mango intake beneficially altered fecal microbial composition by significantly increasing the abundance of Lactobacillus spp., Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus lactis, which was accompanied by increased fecal butyric acid production. Therefore, enriching diet with mango fruits or potentially other gallotannin-rich foods seems to be a promising adjuvant therapy combined with conventional medications in the management of IBD via reducing biomarkers of inflammation and modulating the intestinal microbiota.
Collapse
Affiliation(s)
- Hyemee Kim
- Department of Nutrition and Food Science, College Station, TX 77843, USA.
| | | | - Chuo Fang
- Department of Nutrition and Food Science, College Station, TX 77843, USA.
| | - Andrew W Dupont
- Department of Internal Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Stephen T Talcott
- Department of Nutrition and Food Science, College Station, TX 77843, USA.
| | | |
Collapse
|
27
|
Ji Y, Islam S, Cui H, Dhoke GV, Davari MD, Mertens AM, Schwaneberg U. Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00063a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Loop engineering of aryl sulfotransferase B improves catalytic performance in regioselective sulfation.
Collapse
Affiliation(s)
- Yu Ji
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Shohana Islam
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| | - Haiyang Cui
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Gaurao V. Dhoke
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Mehdi D. Davari
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Alan M. Mertens
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie
- RWTH Aachen University
- 52074 Aachen
- Germany
- DWI – Leibniz-Institut für Interaktive Materialien e.V
| |
Collapse
|
28
|
Sun H, Wang X, Wang J, Shi G, Chen L. Influence of the formula on the properties of a fast dispersible fruit tablet made from mango, Chlorella, and cactus powder. Food Sci Nutr 2020; 8:479-488. [PMID: 31993172 PMCID: PMC6977490 DOI: 10.1002/fsn3.1330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/01/2019] [Accepted: 11/18/2019] [Indexed: 01/04/2023] Open
Abstract
Tableting of fruit powders is gaining popularity because of the advantages it brings in, such as ease of storage, transportation, and use, and effervescent tablets could be a good alternative to accomplish fast dissolving. The present study provides a specific effervescent tablet formulation that is appropriate for the delivery of mango, cactus, and Chlorella fruit powder. The direct compression method was employed. A series of disintegration time, tensile strength, and moisture content tests were performed on the different formulations at each stage. The effects of effervescent agents' ratio, fruit powder proportion, acid and alkali content, and mannitol and lactose content on tablet properties were investigated. The results indicated that the tablet properties were highly influenced by formulation, especially the ratios of effervescent agents, fruit powders, acid to alkali ratio, as well as mannitol to lactose ratio. The best performing formulation was as follows, 45% effervescent agents (citric acid monohydrate:sodium bicarbonate = 1.3:1), 35% adhesives (mannitol:lactose = 1:8), and 20% mixed fruit powders (mango:cactus:Chlorella fruit powders = 14:5:1). With this formula, the moisture content was 3.62% and the disintegration time was 154 s, as well as a sufficient tensile strength of 2.32 MPa. Our study presented useful findings regarding the specific effects of changing ingredient ratios on tablet strength and other properties and provided a basis for the potential of using mango, cactus and microalgae powders as novel functional ingredients for fruit powder effervescent tablets. This may be used as a basis for further research on tableting.
Collapse
Affiliation(s)
- Hanying Sun
- Institute of Food Safety and QualityUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Xin Wang
- Institute of Food Safety and QualityUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Jiangyu Wang
- Institute of Food Safety and QualityUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Gengqiang Shi
- Institute of Food Safety and QualityUniversity of Shanghai for Science and TechnologyShanghaiChina
| | - Lan Chen
- Institute of Food Safety and QualityUniversity of Shanghai for Science and TechnologyShanghaiChina
| |
Collapse
|
29
|
The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6713194. [PMID: 31885810 PMCID: PMC6914975 DOI: 10.1155/2019/6713194] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/11/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
Polyphenols are the general designation of various kinds of phytochemicals, mainly classified as flavonoids and nonflavonoids. Polyphenolic compounds have been confirmed to exhibit numerous bioactivities and potential health benefits both in vivo and in vitro. Dietary polyphenols have been shown to significantly alleviate several manifestations of metabolic syndrome, namely, central obesity, hypertension, dyslipidemia, and high blood sugar. This review is aimed at discussing the bioprotective effects and related molecular mechanisms of polyphenols, mainly by increasing antioxidant capacity or oxygen scavenging capacity. Polyphenols can exert their antioxidative activity by balancing the organic oxidoreductase enzyme system, regulating antioxidant responsive signaling pathways, and restoring mitochondrial function. These data are helpful for providing new insights into the potential biological effects of polyphenolic compounds and the development of future antioxidant therapeutics.
Collapse
|
30
|
Alañón ME, Oliver-Simancas R, Gómez-Caravaca AM, Arráez-Román D, Segura-Carretero A. Evolution of bioactive compounds of three mango cultivars (Mangifera indica L.) at different maturation stages analyzed by HPLC-DAD-q-TOF-MS. Food Res Int 2019; 125:108526. [PMID: 31554094 DOI: 10.1016/j.foodres.2019.108526] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 06/21/2019] [Indexed: 12/23/2022]
Abstract
Mango is an important natural source of bioactive compounds with functional properties. However, factors such as variety and maturation stage can have a great influence on the bioactive composition. In this sense, a comprehensive study of chemical composition of three spanish mango varieties (Keitt, Kent and Osteen) at five ripening stages was conducted. The analysis by HPLC-DAD-q-TOF-MS revealed the presence of more than seventy compounds from different chemical families. Subsequently, PCA evidenced that ripening process entailed an important decrease on phenolic compounds which was being more accentuated in Keitt variety. On the other hand, Osteen was revealed as the poorest variety on phenolic compounds meanwhile mangoes from Keitt variety exhibited the major quantities of gallotannins and mono and di-galloyl species at the earliest maturation stages. Therefore, from a functional point of view, unripe mango from Keitt variety seems to be an excellent natural source of bioactive compounds.
Collapse
Affiliation(s)
- M Elena Alañón
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Area of Food Technology, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela, 10, 13071 Ciudad Real, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - Rodrigo Oliver-Simancas
- Area of Food Technology, Regional Institute for Applied Scientific Research (IRICA), University of Castilla-La Mancha, Avda. Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - Ana M Gómez-Caravaca
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain
| | - David Arráez-Román
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain.
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, C/Fuentenueva s/n, 18071 Granada, Spain; Research and Development of Functional Food Centre (CIDAF), PTS Granada, Avda. Del Conocimiento 37, Bioregión Building, 18016 Granada, Spain
| |
Collapse
|
31
|
Fang C, Kim H, Yanagisawa L, Bennett W, Sirven MA, Alaniz RC, Talcott ST, Mertens‐Talcott SU. Gallotannins and
Lactobacillus plantarum
WCFS1 Mitigate High‐Fat Diet‐Induced Inflammation and Induce Biomarkers for Thermogenesis in Adipose Tissue in Gnotobiotic Mice. Mol Nutr Food Res 2019; 63:e1800937. [DOI: 10.1002/mnfr.201800937] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/15/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Chuo Fang
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Hyemee Kim
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Lora Yanagisawa
- Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M University College Station 77843 TX USA
| | - William Bennett
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Maritza A. Sirven
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | - Robert C. Alaniz
- Microbial Pathogenesis and ImmunologyCollege of MedicineTexas A&M University College Station 77843 TX USA
| | - Stephen T. Talcott
- Department of Nutrition and Food ScienceTexas A&M University College Station 77843 TX USA
| | | |
Collapse
|
32
|
Polyphenols from mango (Mangifera indica L.) modulate PI3K/AKT/mTOR-associated micro-RNAs and reduce inflammation in non-cancer and induce cell death in breast cancer cells. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.01.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
33
|
Directed aryl sulfotransferase evolution toward improved sulfation stoichiometry on the example of catechols. Appl Microbiol Biotechnol 2019; 103:3761-3771. [PMID: 30830250 DOI: 10.1007/s00253-019-09688-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/27/2022]
Abstract
Sulfation is an important way for detoxifying xenobiotics and endobiotics including catechols. Enzymatic sulfation occurs usually with high chemo- and/or regioselectivity under mild reaction conditions. In this study, a two-step p-NPS-4-AAP screening system for laboratory evolution of aryl sulfotransferase B (ASTB) was developed in 96-well microtiter plates to improve the sulfate transfer efficiency toward catechols. Increased transfer efficiency and improved sulfation stoichiometry are achieved through the two-step screening procedure in a one-pot reaction. In the first step, the p-NPS assay is used (detection of the colorimetric by-product, p-nitrophenol) to determine the apparent ASTB activity. The sulfated product, 3-chlorocatechol-1-monosulfate, is quantified by the 4-aminoantipyrine (4-AAP) assay in the second step. Comparison of product formation to p-NPS consumption ensures successful directed evolution campaigns of ASTB. Optimization yielded a coefficient of variation below 15% for the two-step screening system (p-NPS-4-AAP). In total, 1760 clones from an ASTB-SeSaM library were screened toward the improved sulfation activity of 3-chlorocatechol. The turnover number (kcat = 41 ± 2 s-1) and catalytic efficiency (kcat/KM = 0.41 μM-1 s-1) of the final variant ASTB-M5 were improved 2.4- and 2.3-fold compared with ASTB-WT. HPLC analysis confirmed the improved sulfate stoichiometry of ASTB-M5 with a conversion of 58% (ASTB-WT 29%; two-fold improvement). Mass spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) confirmed the chemo- and regioselectivity, which yielded exclusively 3-chlorocatechol-1-monosulfate. For all five additionally investigated catechols, the variant ASTB-M5 achieved an improved kcat value of up to 4.5-fold and sulfate transfer efficiency was also increased (up to 2.3-fold).
Collapse
|
34
|
Martin KR, Burrell L, Bopp J. Authentic tart cherry juice reduces markers of inflammation in overweight and obese subjects: a randomized, crossover pilot study. Food Funct 2019; 9:5290-5300. [PMID: 30255184 DOI: 10.1039/c8fo01492b] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Subclinical inflammation is frequently noted in chronic diseases such as diabetes, cardiovascular disease (CVD) and obesity. Accumulating epidemiological evidence demonstrates that diets rich in vegetables and fruits, e.g., cherries, may significantly reduce the risk of chronic disease, in part, via antioxidant and anti-inflammatory activities. In this randomized, placebo-controlled crossover study, we recruited 10 at-risk participants (38.1 ± 12.5 years; 8 females, 2 males) with BMI >25.0 kg m-2 (32.2 ± 4.6 kg m-2; 5 obese, 5 overweight) to consume 240 mL (8 ounces) daily of either 100% tart cherry juice (TCJ) or an alternate placebo beverage, for 4 weeks with a 2-week intervening washout period before switching to the alternate beverage for four weeks. Fasting blood samples were collected at the beginning and end of each arm for measurement of biomarkers of inflammation. The erythrocyte sedimentation rate (ESR), an indicator of chronic inflammation, was significantly (p < 0.05) lower with TCJ than with the placebo beverage, which increased ESR by 19%. Mean baseline hsCRP, an indicator of acute inflammation, was 7.0 ± 5.2 mg L-1 and consumption of TCJ did not affect hsCRP levels. The chemokine MCP-1 and cytokine TNF-alpha were lower in participants after consuming TCJ compared to those consuming the placebo beverage. Plasma IL-6 and IL-l0 were not different between treatments. Collectively, the data suggest that authentic 100% TCJ may reduce biomarkers of inflammation often noted in chronic disease and may be a preferable dietary selection compared to artificially flavored beverages with added sugars.
Collapse
Affiliation(s)
- Keith R Martin
- Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38152, USA
| | | | | |
Collapse
|
35
|
Chen B, Zhou J, Meng Q, Zhang Y, Zhang S, Zhang L. Comparative analysis of fecal phenolic content between normal and obese rats after oral administration of tea polyphenols. Food Funct 2019; 9:4858-4864. [PMID: 30156246 DOI: 10.1039/c8fo00609a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tea polyphenols (TP) have many health benefits, but most are metabolized into low molecular-weight phenolic acids after oral administration. In the present study, the absorption, metabolism, and excretion of catechins in rats fed a normal chow diet and in obese rats fed a high-fat and high-sugar (HFHS) diet were compared. After a ten-day oral administration of TP (500 mg per kg bw), the plasma levels of (-)-epigallocatechin gallate (EGCG) and (-)-gallocatechin gallate (GCG) in obese rats were significantly lower than those in the normal group. In obese rats, the fecal levels of EGCG, (-)-epicatechin gallate (ECG) and GCG were significantly enhanced. Ten phenolic metabolites of TP were quantitatively analyzed, and the results showed that 4-hydroxyphenylacetic acid was the primary metabolite in feces and plasma. The plasma and fecal concentrations of 4-hydroxyphenylacetic acid in the obese group were significantly lower than those in normal rats, but the levels of 4-hydroxyphenylpropionic acid in plasma and feces were increased. The content of other phenolic acids was also dramatically changed. These results suggested that a HFHS diet might influence the excretion of tea catechins, leading to insufficient metabolism of catechins by the gut microflora.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | | | | | | | | | | |
Collapse
|
36
|
Barnes RC, Kim H, Fang C, Bennett W, Nemec M, Sirven MA, Suchodolski JS, Deutz N, Britton RA, Mertens-Talcott SU, Talcott ST. Body Mass Index as a Determinant of Systemic Exposure to Gallotannin Metabolites during 6-Week Consumption of Mango (Mangifera indica L.) and Modulation of Intestinal Microbiota in Lean and Obese Individuals. Mol Nutr Food Res 2018; 63:e1800512. [PMID: 30427574 DOI: 10.1002/mnfr.201800512] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/19/2018] [Indexed: 12/13/2022]
Abstract
SCOPE This human clinical pilot trial investigated pharmacokinetics of gallotannin-metabolites and modulation of intestinal microbiota in healthy lean and obese individuals after 6 weeks of daily mango consumption. METHODS AND RESULTS Participants are divided into three groups: Lean Mango (LM: n = 12; BMI = 22.9 kg m-2 ), Obese Mango (OM: n = 9; BMI = 34.6 kg m-2 ), and Lean Control (LC: n = 11; BMI = 22.1 kg m-2 ). LM and OM consumed 400 g of mango per day for 6 weeks. LC consumed mango only on Days 0 and 42. After 6 weeks, LM experienced increased systemic exposure (AUC0-8h ) to gallotannin-metabolites, 1.4-fold (p = 0.043). The greatest increase is 4-O-methyl-gallic acid, 3.3-fold (p = 0.0026). Cumulative urinary excretion of gallotannin-metabolites significantly increased in LM and OM, but not LC. For OM, qPCR data show increased levels of tannase-producing Lactococcus lactis and decreased levels of Clostridium leptum and Bacteroides thetaiotaomicron, bacteria associated with obesity. LM experienced an increased trend of fecal levels of butyric (1.3-fold; p = 0.09) and valeric acids (1.5-fold; p = 0.056). Plasma endotoxins showed a decreased trend in LM and OM. CONCLUSION Continuous mango intake significantly increased systemic exposure to gallotannin- metabolites and induced an increased trend for fecal short-chain fatty acids in lean but not obese individuals. This pharmacokinetic discrepancy may result in BMI-associated reduced gallotannin-derived health benefits.
Collapse
Affiliation(s)
- Ryan C Barnes
- Department of Nutrition and Food Science, Texas A&M University, College Station, 77843, TX, USA
| | - Hyemee Kim
- Department of Nutrition and Food Science, Texas A&M University, College Station, 77843, TX, USA
| | - Chuo Fang
- Department of Nutrition and Food Science, Texas A&M University, College Station, 77843, TX, USA
| | - William Bennett
- Department of Nutrition and Food Science, Texas A&M University, College Station, 77843, TX, USA
| | - Matthew Nemec
- Department of Nutrition and Food Science, Texas A&M University, College Station, 77843, TX, USA
| | - Maritza A Sirven
- Department of Nutrition and Food Science, Texas A&M University, College Station, 77843, TX, USA
| | - Jan S Suchodolski
- Gastrointestinal Laboratory, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, 77843, TX, USA
| | - Nicolaas Deutz
- Center for Translational Research in Aging and Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, 77843, TX, USA
| | - Robert A Britton
- Therapeutic Microbiology Laboratory, Department of Molecular Virology and Microbiology, Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, 77030, TX, USA
| | | | - Stephen T Talcott
- Department of Nutrition and Food Science, Texas A&M University, College Station, 77843, TX, USA
| |
Collapse
|
37
|
Kim H, Simbo SY, Fang C, McAlister L, Roque A, Banerjee N, Talcott ST, Zhao H, Kreider RB, Mertens-Talcott SU. Açaí (Euterpe oleracea Mart.) beverage consumption improves biomarkers for inflammation but not glucose- or lipid-metabolism in individuals with metabolic syndrome in a randomized, double-blinded, placebo-controlled clinical trial. Food Funct 2018; 9:3097-3103. [PMID: 29850709 DOI: 10.1039/c8fo00595h] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Açaí (Euterpe oleracea Mart.) berries, characterized by high polyphenol concentrations (predominantly anthocyanins), have demonstrated anti-inflammatory and anti-diabetic activities. The study objective was to determine the modulation of lipid and glucose-metabolism, as well as oxidative stress and inflammation, by an açaí-beverage (containing 1139 mg L-1 gallic acid equivalents of total polyphenolics) in 37 individuals with metabolic syndrome (BMI 33.5 ± 6.7 kg m-2) who were randomized to consume 325 mL twice per d of a placebo control or açaí-beverage for 12 weeks. Anthropometric measurements, dietary intake, and blood and urine samples were collected at baseline and after 12 weeks of consumption. Two functional biomarkers, plasma level of interferon gamma (IFN-γ) and urinary level of 8-isoprostane, were significantly decreased after 12 weeks of açaí consumption compared to the placebo control (p = 0.0141 and 0.0099, respectively). No significant modification of biomarkers for lipid- and glucose-metabolism was observed in this study. Findings from this small pilot study provide a weak indication that the selected dose of açaí polyphenols may be beneficial in metabolic syndrome as only two biomarkers for inflammation and oxidative stress were improved over 12 weeks. Follow-up studies should be conducted with higher polyphenol-doses before drawing conclusions regarding the efficacy of açaí polyphenols in metabolic syndrome.
Collapse
Affiliation(s)
- Hyemee Kim
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kim H, Krenek KA, Fang C, Minamoto Y, Markel ME, Suchodolski JS, Talcott ST, Mertens-Talcott SU. Polyphenolic derivatives from mango (Mangifera Indica L.) modulate fecal microbiome, short-chain fatty acids production and the HDAC1/AMPK/LC3 axis in rats with DSS-induced colitis. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.07.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|